Text S1. Modeling of the PhoQ/PhoP Network
A. Simple Model of the PhoQ/PhoP Network

We first describe a simple model of the PhoQ/PhoP network that compares phoQ (WT) and phoQ
(T281R) and recapitulates many of the experimentally observed properties of the system. This
model is referred to in Figures S1A and S7.

We model the PhoQ/PhoP network as consisting of three species: P, P* and Q. P and P* play the role
of PhoP and PhoP-P respectively, whereas bifunctional PhoQ is represented as Q. The
phosphorylation state of PhoQ is ignored in this model. Transcription and translation of the phoPQ
operon are modeled as a single step. Production rate of P is assumed to be a sum of contributions
from the constitutive P, promoter and the P* responsive P, promoter as follows:
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where V; parameterizes the constitutive production, and Vf' and K* parameterize the feedback
from P*. K* is the concentration of P* at which feedback-mediated production rate of P is half-
maximal. We define [P;,:] and [Q;:] to be the total concentration of PhoP and PhoQ in the system.
In this model, [Py,:] = [P] + [P*] and [Q;0:] = [Q]. Since phoP and phoQ are in an operon driven by
a common promoter, [P;,;] and [Q¢,:] are assumed to be proportional:

[Qtot] = AM[Prot]

The production of P* from P is modeled as a bimolecular reaction between P and Q with rate
constant k. Similarly, the phosphatase reaction is modeled as bimolecular reaction between P* and
Q with rate constant k;,. Finally, we assume that all three species are stable proteins and that their
concentrations are affected by dilution through growth at a rate equivalent to the growth rate k.

We choose [P*], [P;o:] and [Qs,:] to be the state variables. At steady state, the production of P*
from P must be balanced by the phosphatase flux and the dilution of P* through growth:

ki [P1[Q] = kp[P*][Q] + k[P”] (1)
This can be rewritten as:
ki ([Proc] = [P"DI[Qtoc] = kp[P*1[Qror] + k[P] (2)
At steady state, the production of P must be balanced by dilution of P and P* through growth:
v )
0 f K* + [P*] - [ tOt]
The third constraint required to obtain the steady state is:
[Qtot] = A[Ptot] (4)

The number of parameters can be reduced by transforming to dimensionless variables and
parameters by scaling all concentrations to K* and all rates to k as follows:
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Then, equations (2)-(4) transform to:
ki(Peot — P*)Qtot = kpP*Qtor + P” (5)
P*
VO + Vfﬁ = Ptot (6)
Qtot = APtot (7)

Substituting the expressions for P;,; and Q¢,; from equations (6) and (7) into equation (5) yields a
cubic equation in P* whose roots represent potential steady states of the system:
(—AkV — 1)(P*)3 + (Aky V2?2 — Ak, V — Ak Vy — 2)(P¥)?
+(Ak VoV — Ak Vy — 1P* + Ak VE =0
whereV =V, + Vrand k¢ =k + k.

(8)

For bistability, equation (8) must have 3 non-negative roots. A systematic exploration of parameters
reveals that the network readily shows bistability especially at low V,, values (Figure S7). However, at
a given V,, the region of bistability shrinks as the kinase rate kj, increases. As will be discussed
below, there are two non-linearities in the system that are essential for bistability: (1) the second-
degree terms that quantify the phosphatase and kinase reaction rates (kj (P;ot — P*)Q¢0r and

ky, P* Qo respectively), and (2) the non-linear dependence (in particular, saturation) of the

expression of the phoPQ operon on P* concentration.

To explain the difference between phoQ (WT) and phoQ (T281R), we need to consider that the phoQ
(T281R) mutant is not only phosphatase-deficient, but also a poorer kinase [1]. This would
correspond to a lower value of the parameter k;, for phoQ (T281R) compared to phoQ (WT).
Bistability is not seen in phoQ (WT) for one of three reasons:

(1) The kinase rate is high enough that for all values of the phosphatase rate, the system is
monostable. This scenario is depicted in Figure S1A (left panel) and contrasted with the situation
in phoQ (T281R) where the lower kinase rate makes bistability possible at low phosphatase rates
(Figure S1A, right panel). The following parameters were used to plot Figure S1A: 4 = 0.02,V, =
0.1,V = 10. In addition, kj, = 50 for the left panel and k; = 10 for the right panel. Steady
state P* values for these parameters were computed numerically using equation (8) at different
values of k,, and plotted as a function of k,,. Comparison of the steady states in the high kinase,
high phosphatase (phoQ (WT)) and low kinase, low phosphatase (phoQ (T281R)) cases in Figure
S1A shows that the WT steady state can be in between the low and high values of T281R
consistent with experimental results depicted in Figure 1D.

(2) The kinase rate is low enough that at low phosphatase rates the system could show bistability.
However, such low kinase rates are associated with high phosphatase rates in phoQ (WT) and
the predominant mechanism for loss of P* under these circumstances is the phosphatase action



of PhoQ (dilution of P* due to growth can be neglected). In this limit, the network can be shown
to be monostable as discussed below.

(3) The kinase rate and phosphatase rates are such that it is not possible to achieve P* levels high
enough to begin to saturate the P* dependent feedback expression of the operon. In this
scenario, the network cannot be bistable as will be discussed below. It should be noted that in
wild-type E. coli, this scenario holds at a Mg”* concentration of 100uM, which is considered an
activating stimulus [2].

Sufficient Criteria For Monostability

1. Phosphatase Flux Dominates Over Dilution Flux of P*

In this scenario, the phosphatase rate is assumed to be high enough that the predominant
mechanism for the loss of P* from the system is the phosphatase reaction. Mathematically, this
condition can be stated as k;, Qo > 1. The loss of P* by dilution due to growth can be neglected. In
this case, equation (5) can be simplified to the following:
ki (Ptor — P*) = ka* (9)

Substituting the expression for P, from equation (6) yields a quadratic equation in P* whose roots
represent potential steady states of the system:

—ke(P*)? + (ki V — k)P* + ki Vo =0 (10)
This equation has one positive root, and thus the system is monostable.

2. Decoupling of expression of Q from P* regulation

The second-degree non-linearity in the phosphatase and kinase reaction rates (kj (Pro: — P*)Qtot
and k, P*Qy,; respectively) can be eliminated in an altered phoPQ network where the expression of
P remains P* sensitive, but expression of Q is constitutive (i.e. insensitive to P* levels). In this case,
Q¢o¢ is a constant determined by the constitutive expression rate of Q and the kinase and
phosphatase reaction rates become linear in P and P* respectively. Equations (5) and (6) are now
sufficient to determine steady state P* levels. Substituting the expression for P, from equation (6)
into equation (5) yields a quadratic equation in P* whose roots represent potential steady states of
the system:

—(keQeot +1) (P + (kiVQtor — keQeor — 1P* + ki QeotVo = 0 (11)
This equation also has one positive root, and thus the system is again monostable.

3. P* levels sufficiently low that feedback expression of phoPQ operon depends linearly on P*
concentrations

In general, the P* dependent feedback expression of the phoPQ operon is a non-linear function of
P* concentration. However, at low levels of P*, the function can be approximated by a linear



function. Mathematically, this regime is characterized by the constraint that [P*] < K*,or P* < 1
in terms of the scaled variable. In this regime, equation (6) can be simplified to:
VO + VfP* = PfOt (12)

Substituting the expressions for P, and Q¢,; from equations (12) and (7) into equation (5) yields a
guadratic equation in P* whose roots represent potential steady states of the system:

AV (ki Ve — ki) (P)? + (22K VoV — Ak Vo — 1)P* + Aky VE = 0 (13)
where k; = kj + k, . Equation (13) can have at most two non-negative roots, and only one of these
can be a stable state. However, it is possible for equation (13) to have no non-negative roots. In that
case, P* steadily increases and the constraint P* « 1 is violated. Thus, if the network parameters
are such that non-linear nature of the dependence of phoPQ operon expression on P* is never
encountered, the network is always monostable.

Monostable and Bistable Regimes in the Phosphatase-deficient Mutant

In the phosphatase-deficient mutant (k,, = 0), two parameters largely determine the nature of
roots of equation (8). These are the kinase rate (k) and the maximal operon expression rate (V). If
either the kinase rate or the maximal operon expression rate is zero, then P* = 0 is the only non-
negative solution to equation (8). As shown in Figure S7, for sufficiently high values of k; , V; or Vg,
the system is monostable with a high value of P* (P* > 1). Thus, starting from a set of parameters
for which the system is bistable, one should enter a monostable regime with a low or high steady
state P* value if one decreased or increased kj, (or V) sufficiently while keeping other parameters
constant. Since all kinetic parameters are scaled to the growth rate, an increase in kj, or VV can be
achieved either by increasing the unscaled kinase rate (k;) , the unscaled maximal operon
expression rate (Vg + Vf') or by decreasing the growth rate (k). The qualitative effect of varying
these parameters is depicted in Figure 3B (Higher Mg”* concentrations are assumed to increase
either the unscaled kinase rate or the unscaled maximal operon expression rate in the phoQ (T281R)
network).

Detailed Model of the phoQ (T281R) mutant

This model is an extension of the phoQ (WT) model described previously [1] to the case of zero
phosphatase rate. Key assumptions and parameter definitions are stated below. The actual algebraic
manipulations were performed using MATLAB’s Symbolic Math Toolbox and code is available upon
request.

The model consists of six species: P, P*, Q, Q*, P*Q and PQ*. P, P*, Qand Q* represent PhoP, PhoP-
P (phosphorylated PhoP), PhoQ and PhoQ-P (phosphorylated PhoQ) respectively. PQ* is a complex
between P and Q* and is an intermediate state in the phosphotransfer step. P*Q is a complex
between P* and Q and is an intermediate state in the phosphatase reaction. In the phosphatase
mutant, P*Q is taken to be a dead-end complex. Note that this dead-end complex is different from



the dead-end complex between P and Q considered in reference [3] as a potential source of
bistability in two-component systems.

Binding and unbinding reactions for the formation of complex P*Q are assumed to be fast and in
equilibrium. As in the original model, ATP is not included explicitly. ATP concentration in the cell is
assumed to be constant and this concentration is absorbed into the kinetic constant for the
autophosphorylation reaction of phoQ (T281R).

We now describe the post-translational reactions that are included in the model and the parameters
associated with them:

1. Autophosphorylation and Dephosphorylation of Q with rate constants k; and k’, respectively:

QZQ*’Q*E Q

2. Phosphotransfer from Q* to P

kP
Q*+P PQ* = P"+Q
PQ* e
kr

Here k/fQ*and ka* are the rate constants for the association and dissociation of the PQ*

complex respectively and kz’,t is the rate constant for the phosphotransfer step.

3. Formation of Dead-end Complex between P* and Q
Q+ P ‘:;Q P*Q

L]
Here Kg s the equilibrium dissociation constant for the P*Q complex.

4. Conversion of P* to P through spontaneous hydrolysis or constitutive non-specific phosphatase
with a first-order rate constant kzys-
P* - P
kCOTlS
Autoregulation of the phoPQ operon is modeled as a single transcription/translation step.
Production rate of P is assumed to be a sum of contributions from the constitutive P, promoter and
the P* responsive P, promoter as follows:
[P"]
Vg +Vi——"—
0 f K* + [P*]
where V; parameterizes the constitutive production, and Vf' and K* parameterize the feedback

from P*. K* is the concentration of P* at which feedback-mediated production of P is half-maximal.



Since phoP and phoQ are in an operon driven by a common promoter, the production rate of Q is
assumed to be proportional to that of P:

A
1V0+me

where A is the constant of proportionality.

All six species are assumed to be stable proteins/complexes whose concentrations are affected by
dilution through growth at a rate equivalent to the growth rate k.

As in the simple model described above, we transform to dimensionless variables and parameters
by scaling all concentrations to K* and all rates to k. The scaled concentrations of the six species P,
P*, Q, Q* P*Qand PQ* are represented by variables P, P*, Q, Q*, C?"%and CP?" respectively. We
also define Py, and @y, to be the total scaled concentration of PhoP-species and PhoQ-species
respectively. We now present the steady-state determining equations in terms of these scaled
variables and parameters.

The equilibrium assumption for P*Q and the steady state condition for PQ* yield two constraints:

CP'Q = K,,QP* (14)
CPQ" = Ky PQ* (15)
_ K _ KK
where K, = W and Ky = m.
At steady state, production and loss of Q* and P*must balance:
kiQ = kpeCP + k_iQ” (16)
kpeCPC = CP" ¢+ (14 keons)P* (17)

!

k Ky k! k! .
?", kpe = %, k_, =1+ ?", and kgons = ~2*. Also, at steady state, the production

of P must be balanced by dilution through growth of all PhoP-species:

where k;, =

P*
VO + Vfﬁ = Ptot (18)
4 V’
where V, = V—"*and Ve = f*.
kK kK
By definition, the total concentration of PhoQ-species is:
Quor = Q + Q" +CP¢ + 7@ (19)
We now use the experimentally-observed fact that Q¢y; K Prpt (i.e. 4 < 1) to approximate Py, as:
Piot = P+ P* (20)
The final constraint is that of the proportionality of Py, and Qo , namely:
Qtot = AProt (21)

Equations (14)-(21) define 8 constraints in 8 variables (6 species, Pyt , Qtot)- These can be used to

obtain a quintic equation in P* whose roots represent potential steady states of the system:
5

> (P =0 (22)

i=0



Depending on parameter values, equation (22) can either have 2 or 4 positive real roots (one root is
always negative provided V; # 0), which correspond to monostable and bistable regimes. A
systematic exploration of parameters was performed to determine the bistable regime (Figure S8).
In Figure S8, we can see that whenever the parameters allow a stable state where the non-linear
nature of the transcriptional feedback becomes relevant (P* > 1, or equivalently [P*] > K*), one
can obtain a parameter set demonstrating bistability by reducing Vywhile keeping all other
parameters same. On the other hand, bistability is lost if I/ is increased sufficiently. This effect is
depicted in Figure S1B. The following parameters were used to plot Figure S1B: 1 = 0.02,V; =
20,Ky = 0.1,Ky = 0.1, kp = 100, k. = 100, k_, = 10, and k.,ps = 1. Steady state P* values for
these parameters were computed numerically using equation (22) at different values of V; and
plotted as a function of V.

Equation (22) also allows us to look at the effect of changes in growth rate on steady state values of
P*. We assume that changes in growth rate do not affect the unscaled kinetic parameters — these
are assumed to be intrinsic parameters of the proteins or the phoPQ promoter. In the scaled model,
however, since the growth rate is set to 1, a reduction (or increase) in true growth rate is equivalent
to upscaling (or downscaling) of all other parameters as follows:

Vol = 222 () = L2
ke (1 ki (1 Keons (1
kpt(a) = pta( ):kk(a') = kCE )'kcons(a) = Cor;j( ) (23)
koo(a) = 1+ (k—k((lx) -1)

where P(a) is the notation for the value of parameter P at growth rate a. Parameters 4, K, and Ky
are unaffected by growth rate since these are ratios of concentrations. The effect of changing
growth rate on steady state values of P* is shown in Figure S1C. Growth rate () was varied from 0.2
to 2 and parameters scaled according to (23). Equation (22) was then used to compute steady state
P* values numerically, which were plotted as a function of a. The values of the different parameters
at a growth rate of 1 were the same as in Figure S1B, except that V(1) = 0.1 for the top panel and
Vo(1) = 0.01 for the bottom panel. At sufficiently low growth rates, the system becomes
monostable irrespective of the value of V(1) with a steady state P* value that is high.

Decoupling of phoQ (T281R) expression from PhoP-P regulation

We now consider the steady state behavior of an altered phoPQ network where phoP expression is
still regulated by the native phoPQ promoter (and is sensitive to PhoP-P levels), while phoQ (T281R)
expression is driven by a PhoP-P independent, inducible promoter. In the simple model presented in
section A, this decoupling was shown to be sufficient for monostability (cf. equation (11)). An
analogous result holds true even when the network is analyzed in detail provided the dissociation
constant of the P*Q complex is very large (see below).



In the altered network, equations (14)-(19) still hold. However, one can no longer assume that
Qtor K Pior - Therefore, equation (20) has to be modified to

Pioe = P+ P* + CPQ 4+ CP'Q (24)
Since Q¢ is now a free parameter, equations (14)-(19) along with equation (24) define 7 constraints
in 7 variables (6 species, P;,; ). These can be used to obtain a quintic equation in P* whose roots
represent potential steady states of the system:

5
Z b; (P =0 (25)
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Depending on parameter values, equation (25) can either have 2 or 4 positive real roots (one root is
always negative provided V;; # 0), which correspond to monostable and bistable regimes. A
systematic exploration of parameters was performed to determine the bistable regime (Figure S9).
In Figure S9, we can see that bistability is contingent on having a high value of the parameter K,,
(compare left and right halves of the figure). In contrast to the situation where both phoP and phoQ
are autoregulated, at low Ky, it is possible to saturate the transcriptional feedback of phoP
expression (i.e. achieve steady state P* values >1) but not have bistability at low values of V;.
Bistability in the decoupled network is a result of trapping of P* through the formation of dead-end
complex P*Q analogous to the stoichiometric sequestration mechanism described in reference [4].
Indeed, even in the monostable regime, the steady-state P* value can be a non-monotonic function
of Q. — at sufficiently high levels of Q;,; , further increases in Q;,; result in a decrease in steady
state P*. This is evident in the right half of Figure S9, which plots steady-state values at high K;; (low
dissociation constant of P*Q).

This dependence of bistability on the dissociation constant of P*Q is also depicted in Figure S1D. The
following parameters were used to plot Figure S1D: 4 = 0.02,V, = 0.1, V; = 20, Ky = 0.1, ky,; =
100, k;, = 100, k_;, = 10, and k.y,s = 1. In addition, K; = 0.1 for the left panel and K, = 80 for
the right panel. Steady state P* values for these parameters were computed numerically using
equation (25) at different values of Q;,; and plotted as a function of Q;,;.

The monostability of the system in the limit of infinitely large dissociation constant for P*Q can be

demonstrated analytically. This limit can be mathematically written as KCI;*Q — 0o, or equivalently
K = 0. Substituting Ky = 0 in equation (25) simplifies it to a cubic equation:
3
fPY= ) (P =0 (26)

i=0
Moreover, both ¢, > 0 and ¢3 > 0 provided V,, # 0. Thus, f(0) = ¢y > 0 and f(P*) » —o0 as
P* — —oo. This means that equation (26) has one negative root provided V,, # 0. In other words,
there cannot be three non-negative solutions to equation (26) and the system has only one non-
negative, stable state, i.e., it is monostable.



D. Stochastic simulations of autoregulated and decoupled phoQ (T281R) networks

We essentially follow the approach of Kierzek et. al. [5] for our stochastic simulations except that we
make a fixed volume approximation. We perform simulations on two networks: (1) the phoQ
(T281R) mutant network (Figure 1A) and (2) the decoupled phoQ (T281R) network (Figure 6A). For
brevity, we refer to these as autoregulated and decoupled phoQ (T281R) networks respectively. The
difference between autoregulated and decoupled networks is that in the former, transcription of
both phoP and phoQ is positively regulated by PhoP-P, whereas in the latter only phoP is
autoregulated by PhoP-P and phoQ is constitutively expressed (although the transcription level can
be set by an external inducer).

The autoregulated model consists of 7 molecular species and 18 reactions (Table S5), whereas the
decoupled model has 8 species and 20 reactions (Table S6). Stochastic simulations were performed
using Gillespie’s algorithm [6].

We first analyzed the autoregulated model in the deterministic limit. It is straightforward to map the
stochastic parameters in Table S5 to their corresponding deterministic model presented in section B
by collapsing transcription and translation to a single step, and by setting deterministic fluxes equal
to probabilistic propensities. We identified four representative sets of parameters corresponding to
monostable OFF, bistable, near-bistable and monostable ON regimes (parameter sets 1-4 in Figure
S5A) and performed detailed stochastic simulations with these sets.

To explore the phenomenon of hysteresis, we started simulations with parameter sets 1-4 with
either OFF or ON cells. The OFF and ON initial conditions are shown in Table S5. Note that the ON
condition approximates the ON stable state computed using deterministic analysis for parameter set
2. For parameter set 1 (monostable OFF regime), we see that irrespective of the starting condition,
all simulated trajectories end with very few PhoP-P molecules (Figure S5B, column 1). Parameter set
2 (bistable regime) shows hysteresis that would be expected using deterministic analysis. Both OFF
and ON cells mostly retain their state (Figure S5B, column 2). There are, however, some instances of
stochastic switching especially in the ON->OFF direction. Such switching events are responsible for
the metastability of the ON state demonstrated in Figure 5. With parameter set 3 (near bistable), we
see that ON cells remain ON as expected from the deterministic analysis (Figure S5A, column 3).
However, a substantial fraction of OFF cells also remained OFF in contrast to deterministic
predictions. This is characteristic of the phenomenon of noise-induced bistability [5,7,8]. Far away
from the bistable regime (Parameter set 4, Figure S5A, column 4), both OFF and ON cells turn ON as
expected from deterministic analysis.

Next, we examined the impact of growth rate and the constitutive promoter (P;) activity on priming.
Starting with parameter set 2 (bistable regime), we performed stochastic simulations with either the
normal growth rate, or growth rate decreased by a factor of 2 starting from the OFF initial condition
(Figure S5C, columns 1 and 2). Consistent with our deterministic analysis and our experimental
results, we find that the reduction in growth rate increased priming from ~0 to ~100%. Thence, we



examined the role of constitutive promoter activity. At the normal growth rate, deletion of the P,
promoter (modeled by a reduction in constitutive activity by a factor of 10) reduced the number of
PhoP-P molecules to almost zero. More importantly, even at the slower growth rate, only ~40% of
the cells primed to the OFF state. This is similar to the experimental results documented in Figure
6D.

Finally, we examined the decoupled model. The data presented here corresponds to parameters
that are essentially the same as parameter set 2 (bistable regime) for the autoregulated model,
except that phoQ is no longer regulated by PhoP-P, and is instead expressed at a constitutive (but
tunable) rate C; (Table S6). As in Figure 6B, we start our simulations with either uninduced or fully
induced cells (Table S6, the fully induced starting condition approximates the deterministic steady
state for C, = 20) and then examined the effect of varying the C, value. Consistent with the
monostability, we find that both starting conditions converge to similar distributions, and that the
response is no longer bimodal (Figure S5D). In fact, the mean of the distribution can be tuned by
changing the parameter C, (Figure S5D). Note that Figure S5D is qualitatively similar to the
experimental data presented in Figure 6B.

Overall, we find that the stochastic analysis presented in this section agrees largely with the
deterministic analysis in the preceding sections. The main exception is that near the bistable region,
one can see the phenomenon of noise-induced bimodality with OFF cells taking a long time to turn
ON (Figure S5B, column 3).
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