Kinetic Characterizations of Nitrocefin, Cefoxitin, and Meropenem Hydrolysis

by β -lactamase of *Mycobacterium tuberculosis*

Carmen Chow, Hua Xu, and John S. Blanchard*

Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461.

Figure S1. Saturation curves for (A) cefoxitin and (B) meropenem hydrolysis. When k_{obs} reaches saturation, $k_1[S] >> k_2$ and BlaC is considered sufficiently saturated to produce pseudo-first-order kinetics for cefoxitin hydrolysis. Concentrations of meropenem below 600 μ M resulted in poor fit likely due to contributions from binding and k_{obs} values could not be obtained. At concentrations of meropenem above 600 μ M, k_{obs} values were relatively constant, suggesting that the enzyme is sufficiently saturated.

Figure S2. Burst kinetic isotope effects on cefoxitin in H_2O (black), D_2O (light gray), and 9% glycerol (gray).

Table S1. Pre-steady state kinetic fitting		
Substrate	Cefoxitin	Meropenem
$k_2 (s^{-1})$	1.4 ± 0.01	$(1.9 \pm 0.3) \ge 10^{-2}$
$k_3 (s^{-1})$	0.4 ± 0.001	$(4.0 \pm 1.0) \ge 10^{-4}$
A_{o}	0.67 ± 0.001	0.95 ± 0.01
Pre-steady state k_{cat} (s ⁻¹)	0.30 ± 0.01	$(4.0 \pm 1.0) \ge 10^{-4}$
k_2 , rate of acylation; k_3 , rate of deacylation; A_0 , burst amplitude; k_{cat} ,		
turnover number.		