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Appendix E1 

Scaling Power Laws 

We defined a proximal vessel segment as a stem and the tree distal to the stem as a crown, as 

shown in Figure E1. A tree structure (eg, the epicardial coronary artery tree) has many stem-

crown units. In a stem-crown unit, the crown volume (
cV , in milliliters) is defined as the sum of 

the intravascular volumes of each vessel segment and the crown length (
cL , in centimeters) as 

the sum of the lengths of each vessel segment in the crown from the stem to the most distal 

vessels. Here, the smallest stem-crown unit corresponds to a terminal bifurcation (ie, Stemn and 

Crownn in Fig E1) of the epicardial coronary arterial tree obtained from CT angiography with the 

diameter of terminal vessels in the range of 0.6–1 mm. 

To derive the volume-length scaling power law, a cost function for an integrated system 

of stem-crown units was proposed, which consists of two terms: viscous and metabolic power 

dissipation. The cost function, 
cF  (in ergs), is written as follows (22): 

cmcsc VKPQF 
, [A1] 

where Qs and Pc = Qs · Rc are the flow rate through the stem (in milliliters per second) and the 

pressure drop in the distal crown (in dynes per square centimeter), respectively. Km is a metabolic 

constant of blood in a crown (in dynes/cm
2
 · sec). Two important structure-structure scaling 

power laws as well as a flow-structure scaling power law are needed to perform the minimum 

energy analysis in the cost function. First, we have shown that the resistance of a crown (in 

dynes · sec/cm
5
) has the following form (22): 
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where Ds is the stem diameter (in centimeters) and KR a flow resistance constant in a crown (in 

dynes · sec/cm
2
), which depends on the branching ratio and total number of tree generations in a 

crown. Second, the crown volume is found to scale with the stem diameter, as follows (21): 
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where KVD is a morphometric constant in a crown. Finally, the flow-length scaling power law is 

given as follows (21): 

QLs cQ K L , [A4] 

where KQL is a functional constant in a crown (in square centimeters per second). 

When resistance (Eq [A2]), volume-diameter (Eq [A3]), and flow-length (Eq [A4]) 

scaling power laws are substituted into the energy cost function, Equation [A1] can be written as 

follows: 
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Similar to the approach used by Murray (31), we minimized the cost function with respect to 

crown volume at a fixed crown length to obtain the following equation (21): 
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Equation [A6] can be written as follows: 
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where  
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is a constant (in cm
-4/3

). Equation [A7] provides the length-volume scaling power law, which 

forms the theoretic basis for the diagnosis of diffuse CAD. Moreover, a combination of 

Equations [A3] and [A7] results in 
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where As is the cross-sectional area of the stem (in square centimeters) and KLA is a constant (in 

cm
4/3

). Equation [A9] refers to the length-area scaling power law. 

Reference 

31. Murray CD. The physiological principle of minimum work. I. The vascular system and the cost of blood volume. 

Proc Natl Acad Sci U S A 1926;12(3):207–214.  

 
 


