
Supplementary Analysis

1 TIM Example

To explain the Target Inhibition Map (TIM), let us consider a simple example of a pathway as shown in

figure 4(a). The downstream target K3 can be activated by either of the upstream targets K1 or K2. The

tumor is in turn caused by the activation of K3. For this directional pathway, we will assume that K1 and K2

are activated by their own mutations or have latent activations. We note that the tumor proliferation (tumor

activation) can be stopped by inhibiting K3 or inhibiting both of K1 and K2. We can consider this as two

series blocks (Block1= {K1,K2 } and Block2 = {K3}) that independently can reduce tumor proliferation.

Suppose Block1 can reduce tumor proliferation by 80% and Block 2 can reduce tumor proliferation by 70%

, then we will consider that inhibition of both blocks simultaneously will reduce tumor proliferation by (1-

(1-0.8)(1-0.7))*100= 94%. Note that we consider the sensitivity to be 1 - the ratio of tumor cells remaining

after drug application as compared to without drug application. Thus 94% reduction of tumor cells produces

a sensitivity of 0.94. Thus, if we consider the sensitivities for different combinations of target inhibitions, we

will arrive at a truth table of the sort shown in table A.1. The continuous sensitivities have been binarized

using a threshold of 0.5. Note that, it is not required to test all the possible 23 = 8 target combinations

for arriving at the column of sensitivities. For instance, if we consider the binarized sensitivities and our

experimental data shows that inhibition of K1,K2,K3 = {0, 0, 1} produces a sensitivity of 1, then we know

that K1,K2,K3 = {1, 0, 1}; {0, 1, 1}; {1, 1, 1} will also have a sensitivity of 1. Thus, in this particular case,

we can estimate the sensitivities of 4 possible target combinations based on a single experiment.

Table A.1: Target inhibitions and corresponding sensitivities for pathway in figure 4(a)

Target Inhibition Sensitivity
(continu-
ous)

Sensitivity
(bina-
rized)

Tumor
Survival

K1 K2 K3 S B(S) 1−B(S)
0 0 0 0 0 1
0 0 1 0.7 1 0
0 1 0 0 0 1
0 1 1 0.7 1 0
1 0 0 0 0 1
1 0 1 0.7 1 0
1 1 0 0.8 1 0
1 1 1 0.94 1 0

We next provide another set of synthetic simulation experiments to estimate the accuracy of the prediction
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algorithm.

2 Synthetic Experiment 2

We consider that the biological tumor proliferation pathways consists of multiple blocks as shown in figures 2,

3 and 8. The tumor proliferation can be reduced by inhibiting all the targets in a block. For the simulation,

cases like the block EHMT1 and CDK4, AKT1 in figure 3 is considered as two blocks consisting of {EHMT1,

CDK4} and {EHMT1, AKT1}. The number of blocks for each random synthetic pathway is selected to be

a random number between NBmin and NBmax. The number of targets in a block is a random number

between 1 and MaxBlockSize. The sensitivity of each block is selected to be a random number between

0 and 1 that satisfies the biological constraints of Rule 1 and Rule 2. The final sensitivity when multiple

blocks are inhibited is calculated similar to the manner described in the preliminary example. For T number

of targets, there can be 2T different drugs and once a synthetic pathway is created, a set of N random

dugs from the possible 2T drugs is selected to create the training samples. The prediction results are then

tested on a separate M drugs selected random from the 2T drugs. As an example, if T = 12, there can be

212 = 4096 possible drugs and we tested with 100 training drugs which constitute less than 2.5 percent of

possible drugs and the sensitivities of the remaining 97.5 percent drugs are unknown.

Table B.2: Simulation Results for Synthetic Pathway Experiment 2. Here MB=MaxBlockSize,
N1=NBMin, N2= NBMax, NT=Number of Targets, NTR=Number of Training Samples, NTS=No. of
Test Samples, NP=Noumber of Different pathways, MAE = Mean Absolute Error, MC = Mean Correlation
Coefficient, ESD= Mean Error Standard Deviation

Proposed Algorithm Random Predictions
MB [ N1 N2] NT NTR NTS NP MAE MC ESD MAE MC ESD
4 [5 10] 12 100 100 25 0.093 0.91 0.17 0.44 0.02 0.51
5 [5 10] 12 200 400 25 0.07 0.93 0.15 0.44 -0.01 0.51
4 [5 10] 10 200 400 25 0.046 0.96 0.12 0.44 0.01 0.51
4 [5 10] 10 100 100 25 0.071 0.93 0.14 0.45 -0.03 0.52
5 [5 15] 15 250 750 25 0.09 0.92 0.17 0.44 0 0.52
5 [5 15] 15 100 200 25 0.11 0.88 0.19 0.45 0 0.51
4 [5 15] 20 200 300 10 0.115 0.88 0.19 0.44 0.02 0.51
4 [5 15] 20 500 500 10 0.091 0.91 0.17 0.43 0.02 0.5

The simulation results are shown in Table B.2. In table B.2, MB refers to the maximum number of

targets in a single block, the number of blocks for each synthetic pathway is between N1 and N2, NT

provides the number of targets, NTR and NTS provides the number of training and testing samples for each

synthetic pathway, NP provides the number of pathways generated. For these simulation parameters, the
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predictions results of our proposed algorithm is provided as the mean absolute error (MAE) which denotes

the expectation over the pathways of the average absolute error of each pathway for the testing samples.

The MC denotes the average correlation coefficient between the actual synthetic pathway sensitivities and

predicted sensitivities for the testing samples. The ESD denotes the mean standard deviation of the error

in prediction for the testing samples. The next three columns denotes the MAE, MC and ESD if we predict

the sensitivities using uniform random numbers between 0 and 1. The first row shows that for 12 targets

and 100 training samples, we are able to achieve a MAE of 0.093 and a MC of 0.91 while random predictions

have a MAE of 0.44 and MC of 0.02. For our synthetic pathway simulation experiments, the correlation

coefficient between predicted and actual sensitivity is close to 0.9 and the MAE is around 0.1 showing the

high prediction accuracy of our proposed algorithm.

Figure B.1 shows the histogram of the errors in prediction for the set of synthetic pathway results shown

in second row of table B.2. Note that with NTS=400 and NP=25, there were a total of 400 × 25=10,000

prediction errors. The histogram in B.1 shows that a large number of sample errors are close to 0 with 10

percentile being -0.154 and 90 percentile being 0.051.
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Figure B.1: Histogram of errors for 400× 25 = 10000 testing sample predictions for case 2 in Table B.2.
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3 Prediction Error Analysis

In this section, we analyze the prediction error resulting from each serial pathway block. Let us consider

that a block has β targets. Usually the β will be ≤ 6. Let us consider that the training set consists

of η samples that are independently selected based on the probability distribution fX1,X2,··· ,Xβ
. We are

interested in predicting the block sensitivity of a new sample with the following target inhibition profile

V = y1, y2, · · · , yβ where yi = 0 or 1 for i ∈ {1, 2, · · · , β}. Let the number of 1’s in V be denoted by ω

and 0’s by β − ω. Let A denote the event that a sample x1, x2, · · · , xβ selected based on the probability

distribution fX1,X2,··· ,Xβ
has the relation (x1 ≤ y1) ∧ (x2 ≤ y2) ∧ · · · (xβ ≤ yβ) .

Then assumingX1,. . .Xβ are identically and independently distributed with equal probability of selecting

1 or 0, we have

P (A) =
1

2β−ω
(12)

Similarly, let B denote the event that a sample x1, x2, · · · , xβ selected based on the probability distri-

bution fX1,X2,··· ,Xβ
has the relation (x1 ≥ y1) ∧ (x2 ≥ y2) ∧ · · · (xβ ≥ yβ) and at least one xi > yi for

i = 1, 2, · · · , β.

Thus,

P (B) =
2β−ω − 1

2ω
=

1

2ω
− 1

2β
(13)

The number of samples out of the training set that satisfies events A and B follows binomial distributions

Binomial(η, P (A)) and Binomial(η, P (B)) respectively. Thus, the expected number of samples for events

A and B are η ∗ P (A) and η ∗ P (B). As a numerical example, if number of samples η = 60 and block size

β = 6 and for equal number of 1’s ω = 3, then the expected number of samples for event A= 7.5 and for

event B = 6.56. For this example, the number of samples in combined events A and B will always be greater

than 14 for all ω’s.

Next, let us estimate the error in prediction when we estimate based on maximum sensitivity among

points in A and minimum sensitivity among points in B. We will consider that A and B contain n1 and n2

points respectively with n1 + n2 = λ. Let the sensitivities of the λ points be distributed uniformly in [0 1].

We will also add two more points 0, 0, · · · , 0 and 1, 1, · · · , 1 with sensitivities 0 and 1 respectively. Let the

sorted λ + 2 sensitivities be 0 ≤ s1 ≤ s2 · · · ≤ sλ ≤ 1. Let us denote the maximum sensitivity among the

n1 points in A by Yl and the minimum sensitivity among the n2 points in B by Yh. Based on biological

constraints, the actual sensitivity for y1, y2, · · · , yβ lies between Yl and Yh. Without any other information,

we will consider that the actual sensitivity Yac follows a uniform distribution fYac between Yl and Yh. Thus
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if we consider a basic prediction of Yp = (Yl + Yh)/2 for our unknown sensitivity, the expected error in

prediction for given Yl and Yh is EYac(|Yac − Yp| |Yl, Yh, λ) =
∫ Yh

Yl
|x− Yp|fYac(x)dx. For uniform sensitivity

in the range [Yl Yh], the expected error is (Yh − Yl)/4. Thus,

EYl,Yh,Yac(|Yac − Yp| |λ) = EYl,Yh
(EYac(|Yac − Yp| |Yl, Yh, λ))

=
E(Yh)− E(Yl)

4
(14)

For the sorted λ+2 sensitivities 0 ≤ s1 ≤ s2 · · · ≤ sλ ≤ 1, E(si)−E(si−1) = 1/(λ+1). Thus the expected

error for a given λ is E(|Yac − Yp| |λ) = 1
4∗(λ+1) . To calculate the expected error based on the possibilities

of λ, we note that λ follows a binomial distribution Binomial(η, P (A) + P (B)). Thus the expected error is

E(|Yac − Yp|) =

η∑
λ=0

1

4 ∗ (1 + λ)

(
η

λ

)
(P (A) + P (B))λ(1− P (A)− P (B))η−λ

=
1− (1− P (A)− P (B))η+1

4 ∗ (η + 1) ∗ (P (A) + P (B))
(15)

We also have P (A) + P (B) = 2ω+2β−ω−1
2β

≥ 1
2β/2−1 − 1

2β
.

As a numerical example, when P (A) + P (B) = 1
2β/2−1 − 1

2β
and η = 100, then E(|Yac − Yp|) =

0.0057, 0.0106, 0.0204 for β = 4, 6, 8 respectively. Thus we note that the sensitivities for each individual

block can be predicted with high precision.

4 TIM Circuits

The inferred circuits for primary cultures Charley and Cora are shown in Figs D.2 and D.3 respectively.
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Figure D.2: TIM Circuit for Osteosarcoma Primary Culture Charley
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Figure D.3: TIM Circuit for Osteosarcoma Primary Culture Cora
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