
ADDITIONAL FILE 2: ADDITIONAL INFORMATION ON THE 

HYDREMATS MODEL 
 

The Hydrology, Entomology and Malaria Transmission Simulator (HYDREMATS), was developed by 

Bomblies et al. [1] to simulate the village-scale response of malaria transmission to hydrological and 

climatological determinants, and has been used in several recent studies in West Africa [2-7].  For full 

details about HYDREMATS, and for comparison to field observations of hydrological conditions and 

mosquito populations, we refer the reader to Bomblies et al. [1].  Here, we repeat the key features of the 

model in order to orient the reader.   

HYDROLOGY COMPONENT 
Because spatial distributions of pools relative to human habitation are so important and can play a large 

role in transmission intensity [8, 9] a gridded region surrounding human habitation forms the 

HYDREMATS model domain and individual pool locations are predicted using fine-scale topography as 

hydrology model input. Simulated pools in topographic depressions host sub-adult mosquitoes, which 

emerge as individual “agents” if their host pool persists long enough, and are free to interact with their 

simulated environment within the model domain based on a set of pre-assigned rules and attributes [1].  

 

Pool persistence is a key mosquito population control. To inform the presented model, many field 

observations were made in a region of southwestern Niger considered representative of the Sahel. In this 

field environment, rainfed pools and their entomological activity were monitored regularly. Pool 

desiccation kills all aquatic stage mosquitoes [10]. If they manage to emerge before desiccation, however, 

mosquitoes will plague humans living nearby. Interaction of simulated mosquito “agents” with immobile 

human agents facilitates virtual malaria transmission [1].  

 

OVERLAND FLOW 
Pool formation is simulated by distributed flow routing. A finite difference solution of a diffusion wave 

approximation to the St. Venant equations determines routed and pooled water for each time step. Run-on 

onto down-gradient grid cells combines with available precipitation for the next iteration of the 

unsaturated zone model. In this manner, shallow flow over a spatially variable infiltrating surface is 

simulated. Flow velocity is represented by Manning’s equation with distributed roughness parameter n. 

The formulation follows that of Lal [11]. The continuity equation for shallow flow is: 
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where u and v are the flow velocities in the x and y directions, respectively, h is the water depth, P is 

precipitation, I is infiltration, and ET is evapotranspiration [1].  

 

The momentum equations for the x and y directions are: 
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where g is the gravitational acceleration, and Sfx and Sfy are the friction slopes in the x and y directions, 

respectively. For the diffusion wave approximation, we neglect the first three terms which represent 

inertial effects. We make the replacement H = h + z for water level above a datum. Equations 2 and 3 then 

reduce to 
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Manning’s equation relates flow velocity to friction slope and flow depth. For the x-direction: 
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where n is the Manning’s roughness coefficient which determines resistance to overland flow. The y 

direction velocity is formulated similarly. Following Lal [11], we reformulate equation 6 in terms of H 

and n: 
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Equations 1, 4, 5, 7 and 8 are then solved using the alternating-direction implicit (ADI) method, as 

described in Lal [11].  

Topography at very high resolution is a critical parameter for overland flow simulation and prediction of 

pool formation. Topography determines the cell-to-cell bed slope, which is then used to determine 

intercell flow potentials [11]. The model uses a digital elevation model (DEM) which was derived from a 

combination of a ground topographic survey and Envisat synthetic aperture radar data [12].  In addition to 

topography, Manning’s n in equation 6 strongly controls the timing and volume of hydrographs entering 

topographic depressions. This roughness parameter depends on the vegetation cover and soil type at the 

grid cell, and influences overland flow velocities [1].  

LAND SURFACE MODEL 
The model presented borrows heavily from the land surface scheme LSX of Pollard and Thomson [13]. 

The model simulates six soil layers and two vegetation layers for a detailed representation of hydrologic 

processes in the vertical column. LSX simulates momentum, energy, and water fluxes between the 

vegetation layers, soil, and the atmosphere. Vegetation type and soil type strongly influence soil moisture 

profile simulation, and spatially variable soil and vegetation properties are used to assign roughness in the 

runoff routing model.  

 

Vertical soil layer thicknesses are assigned to allow simulation of a low-permeability structural crust 

commonly observed at the land surface in bare soil and sparsely vegetated areas of the Sahel [14].  

Precipitation at each grid cell is partitioned between runoff and infiltration, based on hortonian runoff 

processes. The resulting infiltration flux is redistributed in the unsaturated zone with a Richard’s equation 

solver, with soil hydraulic parameters assigned for each layer and grid cell. The Richards equation 

governs vertical water movement through the unsaturated zone, for which the model uses an implicit 

solver. The Richards equation is presented in equation 9: 
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where    = soil moisture [cm
3
 cm

-3
] 

 Ku( ) = unsaturated hydraulic conductivity [m sec
-1

] 

   ( ,z)= head value [m] 

 z = elevation [m] 

 

Groundwater representation is similar to the lumped aquifer model of Yeh and Eltahir [15]. The regional 

unconfined aquifer is represented using a lumped model in which groundwater table fluctuations are simulated. 

The depth to the water table varies from cell to cell and is a function of topography. This addition to the model 

allows areas of groundwater penetration of the surface and the resulting extended pool persistence to be 

predicted [1]. 

 

MODEL INPUTS 
Necessary model inputs come from a variety of sources. The climate data for model forcing can come 

from meteorological stations in the field, and/or from regional climate model simulations. Meteorologic 

variable inputs for the hydrology model are temperature and humidity, wind speed and direction, 

incoming solar radiation, and precipitation. These six variables can be assumed spatially invariant over 

the model domain, or can be represented as distributed rasters, based on either multiple measurements or 

assumptions, to account for the existence of mosquito microhabitats. Table 1 summarizes all hydrology 

model inputs. 

  



 

Table 1. Hydrology model inputs. Reprinted from “Hydrology of malaria: Model development and 

application to a Sahelian village,” by Bomblies A, Duchemin JB, Eltahir EAB. 2008. Water Resour Res 

44. 

variable Type Remarks 

vegetation distributed supervised classification of multispectral satellite image (eg Landsat) 

roughness distributed Assigned based on vegetation classification 

soil type distributed supervised classification, and knowledge of local soil compositions 

topography distributed 

Synthetic aperture radar products (eg Radarsat), or other suitable DEM 

source 

precipitation lumped from meteorological station or climate model output 

temperature lumped from meteorological station or climate model output 

humidity lumped from meteorological station or climate model output 

wind speed lumped from meteorological station or climate model output 

wind dir lumped from meteorological station or climate model output 

SW radiation lumped  from meteorological station or climate model output 

grid 

resolution user-defined 

flexible telescopic mesh refinement grid layout to accommodate area of 

interest 

time step user-defined 

different time steps as input for overland flow and unsaturated zone 

models 

 

  



ENTOMOLOGY COMPONENT 
Malaria response to environmental determinants is simulated using individual mosquito and human 

“agents”. Mobile individual mosquito agents behave probabilistically according to a prescribed set of 

rules governing dispersal and discrete events (e.g. bloodmeals, egg-laying, etc), in response to their 

immediate environment. This formulation allows population behavior of both mosquitoes and malaria 

parasites to emerge based on the individuals’ actions. Characteristics of each mosquito such as location 

and gonotrophic or infective status are tracked through time.  Interaction with the human population, 

acquisition of infection, intrinsic and extrinsic incubation periods (parasite development time in humans 

and mosquitoes, respectively), and infectious bites upon subsequent contact with humans are all simulated 

in the described manner [1]. 

 

MODEL INPUTS 
Air temperature, water temperature, humidity, wind speed, wind direction, and distributed water depths 

are the primary inputs for the entomology model. Water depth and temperature for each grid cell are 

predicted by the hydrology model, and the remaining four can be either field measured or supplied by 

climate models [1]. 

 

AQUATIC STAGE SIMULATION 
Aquatic stage, or subadult, mosquitoes advance through several stages between eggs and adult 

mosquitoes. Eggs hatch to become L1, or first stage larvae. They then advance through three more larval 

stages (instars) as they grow and mature, to finally pupate. Pupae do not feed. They remain in this state 

for approximately two days before emerging as adult mosquitoes [1].  

Simulation of aquatic stage development relies on a compartmental structure model for each grid cell in 

which the hydrology model assigns a pool. As long as the pool persists in the simulation, the aquatic stage 

model will continue to advance. In pools predicted by the hydrology model to disappear, any simulated 

aquatic stages will be killed in the simulation, as is expected of naturally occurring An. gambiae larvae 

and pupae upon desiccation [10]. An aquatic-stage model structure is embedded within each model grid 

cell containing water. This model describes the water temperature-dependent stage progression rates of 

eggs, larvae, pupae, and emerging adults. Only integer abundances are advanced from a previous stage to 

the next. Progression from eggs to larvae to pupae to adults is calculated using Depinay’s temperature-

dependent model [16]: 

  kkk tTrd           (10) 



where d is the fraction of individuals in a certain stage progressed to the next stage, Tk is the temperature 

(K) over time interval k,  tk is the time step at interval k, and r(Tk) is the temperature-dependent 

development rate, given by Depinay et al. [16] as a function of water temperature and biochemical 

parameters specific to each subadult stage. For details of the temperature dependence, the reader is 

referred to Depinay et al. [16]. For all stages, predation and natural mortality are model parameters [1].  

Following Depinay et al. [16], we limit pool biomass using an intraspecific competition coefficient 

defined as: 
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where w is the sum of total larval biomass in the pool grid cell, and e is the ecological carrying capacity 

[mg biomass m
-2

]. Ecological carrying capacity is an assigned model parameter and is assumed to be 

time-invariant [1]. 

Several other factors influence larvae. Pool water temperatures in excess of 40 degrees result in death of 

larvae [16]. In addition, we assume that oviposition does not occur in pools deeper than a threshold depth 

[17].  This is consistent with our own observations that wave action (which generally occurs in deeper, 

larger, unvegetated pools) seems to deter larvae, either by wave action drowning them or by waves 

discouraging oviposition. Also, deep water in the center of large pools appears to contain virtually no 

larvae. In the hydrology simulation, shrinking pools will regularly dry out grid cells at the pool edges as 

the receding water line causes a retreat of the pool boundaries. As soon as one pool grid cell is predicted 

to become dry, all subadult mosquitoes are simply moved into the adjacent cells, concentrating larvae and 

pupae into remaining pool cells [1].  

 

ADULT STAGE SIMULATION 
After emergence from the pools, adult mosquitoes are tracked through space and time using an individual-

based approach, in contrast to the compartmental structure of the aquatic stage simulation. At each time 

step in the model, after the aquatic routine has been stepped to simulate newly emerging adult mosquitoes 

in the simulation, the mosquito matrix is updated. Elapsed times since significant events are updated, and 

X and Y position and behavior of the mosquito are updated based on radial random walk motion, 

corrected for wind displacement and including representation of CO2 plumes as a host-seeking cue, as 

described below.  We assume the following sequence of behavioral events: host-seeking, biting, resting, 

oviposition, and again host-seeking to repeat the cycle until the mosquito dies. Figure S2.1 shows adult 



stage model flow. The model cycles through each individual, assesses the mosquito’s gonotrophic and 

infectious states and updates the mosquito attributes for infection and bloodmeals based on interaction 

with the environment or human agents at that individual mosquito’s location. Each time step only allows 

events which occur within the flight range of one time step.  The model simulates the diurnal cycle, and 

allows mosquito activity only during the evening and nighttime hours. Anophelines are assumed to rest 

during the day, either in houses or in nearby vegetation [1]. 

 

 

 

Figure S2.1 Adult mosquito simulation flow.  During each timestep, the model updates each individual 

mosquito as she progresses through her life cycle.  Mosquito attributes are updated as they interact with 

the environment and human agents.  Reprinted from “Hydrology of malaria: Model development and 

application to a Sahelian village,” by Bomblies A, Duchemin JB, Eltahir EAB. 2008. Water Resour Res 

44.  



The model incorporates a daily survivability based on daily average temperatures. Above a 42 ˚C daily 

average temperature threshold, anophelines cannot survive. [18, 19]. The survivability dependence on 

daily average temperature follows the model developed by Martens [19]: 
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where p is the daily survivability probability of each mosquito and Td is the average temperature of the 

previous 24 hours [1]. 

 

EGG DEVELOPMENT AND EXTRINSIC INCUBATION PERIOD 
Egg development within the mosquito follows the temperature-dependent model of Depinay et al. [16]  as 

shown in equation 14. For details of the temperature-dependent development rate of eggs within the 

mosquito, the reader is referred to Depinay et al [16]. Ambient temperature at the mosquito’s location 

regulates this development rate. If the mosquito has finished the full gonotrophic (egg development) 

cycle, and it encounters a suitable water body, then it deposits a clutch of eggs to add to the subadult 

mosquitoes of various stages already present in that water body [1]. 

Once an adult mosquito takes an infectious bloodmeal and becomes infected, the parasite advancement 

beyond the midgut and into the salivary glands as infectious sporozoites requires 111 degree-days above 

18˚ C [20]. Because each individual mosquito tracks degree-days since infection, infective status depends 

on a simple comparison of this value to 111. If the mosquito reaches this point, it becomes capable of 

malaria transmission to humans during subsequent blood meals. Once it has become infectious with 

sporozoites in the salivary glands, all subsequent bites from the mosquito are capable of transmitting 

malaria [1]. 

 

HUMAN AGENTS 
The model simulates immobile human agents, representing village inhabitants. Human agents are 

assumed immobile. While villagers are obviously in reality quite mobile, this may be a reasonable 

assumption because the mosquitoes actively seek blood-meal hosts at night [21] when villagers are 

sleeping in their houses. Each model grid cell marked as inhabited (digitized houses from satellite image) 

contains a finite number of human agents. Unless house survey data allows actual assignment of 

inhabitant numbers to each house, we assume a constant ten inhabitants per 10 m
 
x 10 m village grid cell. 

When a mosquito enters a house to seek a bloodmeal, a certain portion of the inhabitants can be assumed 

protected by bednets, and if that bednet-protected host is targeted by the mosquito for a bloodmeal it will 



result in the mosquito’s death. If desired, repellent effects can also be included through a simple 

modification [1]. 

 

 

Table 2. Entomology model parameters used in this paper.  

aquatic stage simulation     

Variable nominal value units reference sensitivity

y* cannibalism rate 0.0008 hr
-1

 5 medium 

number of eggs lain per oviposition 600   low 

egg death rate 0.001 hr
-1

 none very low 

weight of first-stage larvae 0.02 mg none low 

weight of stage 2 larvae 0.16 mg none medium 

weight of stage 3 larvae 0.30 mg none medium 

weight of stage 4 larvae 0.45 mg none low 

predation module on/off off    

lag time for predators to establish n/a hr 2 low 

maximum predation rate for larvae n/a hr
-1

 2 low 

pupae predation rate n/a hr
-1

 none very low 

carrying capacity of pools 100 mg m
-2

 2 low 

proportion of pooled grid cell available for  

breeding 

1% (Bani)/    

12% (Zind)  
   

larvae death rate 0.005 hr
-1

 4 very low 

adult mosquito simulation      

Variable nominal value units reference sensitivity 

probability that a mosquito takes a bloodmeal 0.07  none low  

average mosquito flight velocity 25 m hr
-1

 1 low 

weighting of random walk vs. straight line 0.2  none medium 

resting time 24 hr none medium 

threshold distance for visual cues 15 m 3 low 

utilization probability of water 0.95   none low 

references:     

1. Costantini et al. (1996)     

2. Depinay et al. (2004)     

3. Gillies (1980) 

 

    

4. Hoshen and Morse (2004)     

5. Koenraadt anand Takken (2003)    

*parameter sensitivity gauged by maximum 

simulated abundance 

    

     

 



 

INITIAL CONDITIONS 
The entomology model is initialized with 10,000 adult mosquitoes randomly distributed throughout the 

model domain in each village, followed by a one year spin-up period where mosquitoes disperse, 

generally concentrating themselves by food and water sources if available.  This spin-up period includes 

the dry season so most initial mosquitoes die and are not replaced.  The model maintains a minimum 

number of 1000 mosquitoes to represent the existence of aestivating or migrating mosquitoes to replenish 

the mosquito population at the onset of the rainy season. 
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