
Supplemental Information

Acquisition of an animal gene by microsporidian intracellular parasites

Mohammed Selman, Jean-François Pombert, Leellen Solter, Laurent Farinelli, Louis M. Weiss, Patrick Keeling and Nicolas Corradi

Figure S1 (Related to Figure 1): A. Phylogeny of the genus *Encephalitozoon* and presence of a new gene in *Encephalitozoon romaleae* and *Encephalitozoon hellem*. B. Phylogenies of the PNP genes from *E. romaleae* and *E. hellem* after removal of the longest branches from Arthropods;

A. Alignment of highly collinear sections of approximately 13kb from *E. romaleae* and *E.* hellem that are homologous to regions of chromosome 1 of Encephalitozoon cuniculi and E. intestinalis, and phylogeny of the genus Encephalitozoon based on the amino acid sequence of 20 conserved genes (8155 amino acids in total). Values at nodes represent bootstrap and posterior probabilities support obtained using Minimum evolution (JTT model of evolution), as well as PhyML, RAxML, and Mr bayes (WAG model of evolution). The location of the purine nucleoside phosphorylase (PNP) genes in E. romaleae and E. hellem are shown in red. Conserved hypothetical proteins are shown as black rectangles, whereas genes encoding for proteins with known functions are shown as coloured rectangles. Dashed lines indicate portions of the genome sequence that are missing a particular gene. The GenBank accession number for the E. romaleae contig containing the PNP gene is JF808666. B. Phylogenetic relationships between the PNP genes of several eukaryotic and prokaryotic lineages based on 240 amino acid positions after removal of sequences corresponding to Pediculus humanus and Crustaceans. Major lineages are indicated by coloured boxes, while black circles indicate branches with bootstrap support of over 95% from Maximum Likelihood analyses (WAG model of evolution) and posterior probabilities over 0.95 obtained using Mr bayes (WAG model of evolution) and Phylobayes (CAT and LG models of evolution). Red circles indicate branches with posterior probabilities of 1 using Mr bayes, but with bootstrap support and posterior probabilities sometimes below 95% and 0.95 for either Maximum Likelihood analyses (WAG model of evolution), or for the Bayesian analyses performed under the CAT and LG models of evolution implemented in Phylobayes.

Supplemental Experimental Procedures

Identification of putative animal-derived genes in the E. romaleae genome

Open reading frames (ORFs) were annotated across the genome survey of *Encephalitozoon romaleae* using Artemis [S1]. Potential LGTs of animal origin were searched, at first, across annotated ORFs using a number blast procedures (Blastp, Blastx, tBlastn, tBlastx) [S2] against available microsporidian genome data and the 'non-redundant' repository at NCBI. One gene found to be absent from any other available microsporidian sequence data (PNP), was also found to show strong sequence similarities against a number of metazoan sequences following Blast searches. Its metazoan origin was further tested using a number of phylogenetic methodologies, as explained in the section below.

Phylogenetic analyses

Amino acid sequences of PNP's eukaryotic orthologs (best reciprocal blast hits) were acquired from RefSeq GenBank, ESTdb, and from complete eukaryotic genome databases from the Broad institute and DOE Joint Genome Institute. GenBank accession numbers used for phylogenetic reconstruction can be found in the table below. Protein sequences were aligned using MUSCLE 3.7[S3], with a maximum number of iterations of 16. Poorly aligned positions and divergent regions of the alignment were removed using GBlocks 0.91b and default settings [S4], resulting in a data set of 174 amino acids. Trimal [S5], a less stringent trimming tool, was also used to remove non-informative amino acid regions from the alignment using the "strict method". The resulting alignment contained a suite of 240 amino acids.

PNP Accession	Species Name	Group	
YP 079657	Bacillus licheniformis ATCC 14580	Bacteria	
NP 465477	Listeria monocytogenes EGD-e	Bacteria	
XP_001020972	Tetrahymena thermophila	Alveolata	
-	Batrachochytrium dendrobatidis		
EGF83310	JAM81	Fungi	
EEH43246	Paracoccidioides brasiliensis Pb18	Fungi	
XP 506036	Yarrowia lipolytica CLIB122	Fungi	
XP_002548301	Candida tropicalis MYA-3404	Fungi	
NP ⁵⁹³⁹²⁷	Schizosaccharomyces pombe 972h-	Fungi	
XP_001837849	Coprinopsis cinerea okayama7#130	Fungi	
XP_001878763	Laccaria bicolor S238N-H82	Fungi	
AMAG 14981.1**	Allomyces macrogynus	Fungi	
RO3G 00999**	Rhizopus oryzae	Fungi	
105288*	Mucor circinelloides CBS277.49	Fungi	
EFX76980	Daphnia pulex	Crustacea	
ACO14860	Caligus clemensi	Crustacea	

Table: List of accession numbers (GenBank) and species used in phylogenetic analyses of PNP genes, Related to Figure 1.

XP 967070	Tribolium castaneum	Hexapoda	
XP_001688760	Anopheles gambiae str. PEST Hexapo		
XP_391850	Apis mellifera Hexapod		
EFN71333	Camponotus floridanus	Hexapoda	
XP_002427236	Pediculus humanus corporis	Hexapoda	
EH641232			
EH634545***	Laupala kohalensis	Hexapoda	
ACO14424	Esox lucius	Actinopterygii	
NP_998476	Danio rerio	Actinopterygii	
NP_001006720	Xenopus (Silurana) tropicalis	Amphibia	
XP_002718082	Oryctolagus cuniculus	Mammalia	
XP_001104622	Macaca mulatta	Mammalia	
NP_000261	Homo sapiens	Mammalia	
XP_001140576	Pan troglodytes	Mammalia	
XP_001505186	Equus caballus	Mammalia	
XP_002897613	Phytophthora infestans T30-4	Phytophthora infestans T30-4 Oomycetes	

* Protein ID, JGI (DOE Joint Genome Institute)

**Locus ID, Broad Institute

*** EST fragment containing PNP gene

Phylogenetic analyses were carried out using Maximum Likelihood and Bayesian methods. Maximum Likelihood phylogenies were performed with PhyML 3.0 [S6] using the WAG substitution model, 100 bootstraps, 4 substitution rate categories and estimated gamma (Γ) parameters and proportion of invariant sites (I). Bayesian reconstructions were performed with Mr Bayes 3.1.2 [S7] under the WAG+ Γ 4+I model of amino acid substitution. The Markov chain Monte Carlo searches were run for 10,000,000 generations, sampling the Markov chains every 10 generations; the first 25,000 trees were discarded as 'burn-in'. Finally, the CAT and LG models implemented in Phylobayes were also used to reconstruct the phylogeny of PNP [S8]. The two independent chains run for 10,000 (CAT) and 50,000 (LG) cycles, even though both were found to rapidly converge (after 100 cycles). The posterior distributions obtained under these independent runs were compared after a burn-in of 100 (CAT) and 1,000 (LG), resulting in maxdiff values much less than 0.1 (indicative of very good runs) for CAT and lower than 0.016 for LG (indicative of very good runs). The consensus trees were obtained by pooling all the trees from both chains.

The phylogeny of the genus *Encephalitozoon* (Figure S1.A) was reconstructed using the amino acid sequences of 20 conserved genes (8155 amino acids in total) from the complete genomes of *E. cuniculi* and *E. intestinalis*, the genome sequence survey data from *E. romaleae*, and sequences from an ongoing genome project from *E. hellem*. Homologues from complete or nearly complete genomes of *Nosema ceranae* and *Antonospora locustae* were used as outgroups

Table: List of accession numbers (GenBank) and species used in phylogenetic analyses conserved Microsporidian genes.

Protein	Antonospora	Nosema ceranae	Е.	Е.	Е.	Е.
	locustae*		cuniculi	hellem	intestinalis	romaleae
Actin	AAB86863	XP_002995436	XP_965880	AAB86862	XP_003072256	JN039386
DNA repair	contig_340	XP_002995956	XP_965942	JN039409	XP_003072319	JN039394
helicase RAD25						
Enolase	contig_489	XP_002995378	NP_586285	JN039405	XP_003073850	JN039388
Glucose-6-	contig_2954	XP_002996045	NP_597407	JN039408	XP_003072875	JN039392
phosphate						
isomerase						
Hsp70NP	AAC47660	XP_002995188	NP_586360	BAB69033	XP_003073899	JN039393
Isoleucyl tRNA	AAC41564	XP_002996071	CAD26020	BAD83624	XP_003073958	JN039397
synthetase						
Mannose-1-	contig 1173	XP 002996275	NP 586375	JN039402	XP_003073916	JN039383
phosphate-		-	-		-	
guanylyltransferase						
Methionine	contig 868	XP_002996537	NP 586190	AAP51023	ADM12396	JN039385
aminopeptidase 2		-	-			
MCM2	contig 119	XP 002995530	CAD25272	JN039410	ADM11370	JN039396
Pyruvate	contig 369	XP_002996136	XP_955659	JN039403	XP 003073591	JN039384
dehydrogenase E1	<u>conug_505</u>	<u></u>	<u></u>	511057105	<u></u>	31(05)501
alpha subunit						
	contig 1060	XP 002994973	NP_597365	JN039401	XP 003072832	JN039381
Phosphomannomut	<u>contig_1000</u>	AI_002994973	NI_397303	JIN039401	XI_003072832	J11059581
ase	contig 493	XP 002996514	XP 955618	JN039404	XP_003073549	JN039387
Pyruvate kinase	AAT12325	—	—		—	
RNA polymerase I	AA112525	XP_002996654	NP_584825	JN039411	XP_003073214	JN039398
largest subunit		VD 000005005	NID 504000	D1020400	ND 0000707(2	B 1020200
Pyruvate	contig_369	XP_002995305	NP_584800	JN039400	XP_003072763	JN039380
dehydrogenase E1						
beta subunit						
RNA polymerase II	AAD12605	XP_002995402	CAD26175	JN039412	XP_003072524	JN039399
largest subunit						
Trehalose-6-	AAT12365	XP_002996623	XP_965922	JN039406	XP_003072299	JN039395
phosphate						
phosphatise						
Translation	contig_559	XP_002995330	NP_584794	JN039407	XP_003072757	JN039391
elongation factor 1						
alpha						
Tubulin alpha	AAC47419	XP_002995388	NP_586048	P92120	XP_003073238	JN039390
Tubulin beta	AAG48935	XP_002995929	NP_597591	Q24829	XP_003072575	JN039389
Transcription	contig_106	XP_002996560	NP_585866	JN052740	XP_003073070	JN039382
initiation factor						
TFIIB						
	1	1 0 1 1		11 1 / • 1 •		0.1

*Contigs from A. locustae can be found at http://forest.mbl.edu/cgi-bin/site/antonospora01.

Extended acknowledgements

We would also like to thank Sara Selman, Douglas Whitman, Magne Osteras and Loïc Baerlocher for help with sequencing, genome assembly and handling of microsporidian material, and Stephane Aris-Brosou, Toni Gabaldon and two anonymous reviewers for important comments on a previous version of this manuscript. We acknowledge access to the *Allomyces* *macrogynus* and *Rhizopus oryzae* genome data generated by the Broad Institute and to the *Batrachochytrium dendrobatidis* and *Mucor circinelloides* genome data provided by the US Department of Energy Joint Genome Institute. We thank Hilary Morrison and acknowledge the Josephine Bay Paul Center for Comparative Molecular Biology and Evolution for the use of data included in the *Antonospora locustae* Genome Project funded by NSF.

Supplemental References

- S1. Rutherford, K., Parkhill, J., Crook, J., Horsnell, T., Rice, P., Rajandream, M.A., and Barrell, B. (2000). Artemis: sequence visualization and annotation. Bioinformatics (Oxford, England) *16*, 944-945.
- S2. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res *25*, 3389-3402.
- S3. Edgar, R.C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res *32*, 1792-1797.
- S4. Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol *17*, 540-552.
- S5. Capella-Gutierrez, S., Silla-Martinez, J.M., and Gabaldon, T. (2009). trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics (Oxford, England) *25*, 1972-1973.
- S6. Guindon, S., and Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol *52*, 696-704.
- S7. Huelsenbeck, J.P., and Ronquist, F. (2001). MR BAYES: Bayesian inference of phylogenetic trees. Bioinformatics (Oxford, England) *17*, 754-755.
- S8. Lartillot, N., Lepage, T., and Blanquart, S. (2009). PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics (Oxford, England) *25*, 2286-2288.