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Supplementary Methods

General Methods for Synthesis. All chemicals were obtained from Sigma Aldrich or Acros Chemical
Companies unless otherwise stated. Cul (99.99%) was purchased from Strem Chemicals. NHS-
activated-PEGylated-lipid (Supplementary Scheme 4) was purchased from NOF Corporation. Cg
columns were obtained from Waters Corp. Reactions were monitored by thin-layer chromatography on
60F pre-coated TLC plates (EMD Chemicals, Inc.). Compounds were visualized by UV light and/or
dipping in 5% sulfuric acid in EtOH followed by charring on a hot plate. NMR spectra were obtained on
a Bruker DRX-600 MHz instrument at 25°C. Spectra obtained in D,O were referenced to external
acetone ('H 8 2.225 and "*C § 29.9). ESI-TOF high-accuracy mass spectrometry was recorded with an
LC MSD TOF (Agilent Technologies). Silica gel column chromatography was performed with 60-200
mesh silica gel or latrobeads (Mitsubishi Kagaku latron Inc.), as indicated below, under medium
pressure. Gel filtration was carried out with P-2 resin (Bio-Rad) as previously described with solvents
degassed prior to use. Dialysis cassettes, used for the purification of the G35-lipid, 135-lipid, and K35-
lipid, were obtained from Pierce. Tris((1-tert-butyl-1H-1,2,3-triazolyl)methyl)amine (TTTA) and tris(3-
hydroxypropyltriazolylmethyl)amine (THPTA) was synthesized according to literature.’

Synthesis of the Alkyne-Sialoside Library — Synthesis of Sialosides A-F, K-L
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Supplementary Scheme 1| a) CTP, N. Meningitidis CMP-NeuAc Synthetase, P. Damsella (2,6
Sialyltransferase (91% yield). b) CTP, N. Meningitidis CMP-NeuAc Synthetase, P. Multocida (2,3
Sialyltransferase (72% yield). c) CH,Cl,:MeOH (1:1, v/v), NEt;. d) PMes, THF:H,O (1:1) (~70% vyield over
2 steps)
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Synthesis of Compound M

(B-O-ethylazide)-lactoside* (50 mg, 121.5 umol, 1 eq.), 9-amino NeuAc® (45 mg, 146 umol, 1.2 eq.),
CTP (99.4 mg, 182 umol, 1.5 eq) were combined in 10 mls of 100 mM Tris, 20 mM MgCl; (pH 9.0) to
which N. Meningitidis CMP-NeuAc Synthetase® (12.5 U) and P. Damsella 02,6 sialyltransferase’ (1.1
U) were added and the reaction was left to proceed at 37°C at 220 rpm. After 4 hrs the reaction was
complete and was immediately frozen and lyophilized. The material was then taken up in 4 mls of H,0,
centrifuged to remove insoluble precipitate, and loaded onto a Biogel P-2 column (2.5 x 100 cm)
running in 100 mM NH,CO3;. Fractions containing the product were then pooled, lyophilized, and
repurified once more to yield Compound M (80 mg, 110.6 umol, 91% yield),

HRMS: C,5H43NsO4s, [M+H]": Expected: 702.2676, Found: 702.2679.

"H NMR (600 MHz, D,0) & 4.40 (d, J = 8.0 Hz, 1H), 4.30 (d, J = 7.9 Hz, 1H), 3.98 — 3.89 (m, 2H), 3.88
—3.78 (m, 3H), 3.75 — 3.61 (m, 5H), 3.57 — 3.36 (m, 10H), 3.30 — 3.21 (m, 2H), 2.86 (dd, J = 13.1, 9.5
Hz, 1H), 2.57 (dd, J = 12.4, 4.6 Hz, 1H), 1.89 (s, 3H), 1.60 (dd, J = 12.2 Hz, 12.2 Hz, 1H).

3C NMR (151 MHz, D,0) & 175.75, 174.20, 104.00, 102.84, 101.16, 80.32, 75.43, 75.37, 74.44, 73.47,
73.10, 73.07, 71.56, 71.11, 69.33, 69.31, 69.06, 68.96, 64.44, 60.97, 52.48, 51.30, 43.12, 40.86, 22.83.

Synthesis of Compound N

The reaction was carried out essentially as described above, however, P. Multocida 0.2,3
sialyltransferase® (1.1 U) was used as the sialyltransferase. After ~ 3hrs, the reaction was frozen and
lyophilized. Purification as above yielded Compound N (63 mg, 87.5 umol, 72% yield).

HRMS: C,5H43NsO4s, [M+H]": Expected: 702.2676, Found: 702.2674.

"H NMR (600 MHz, D,0) & 4.402 (d, J = 7.9, 1H), 4.399 (d, J = 7.9, 1H) 3.96 (dd, J = 9.8, 3.1 Hz, 1H),
3.95 — 3.89 (m, 2H), 3.86 (dd, J = 12.4, 2.2 Hz, 1H), 3.83 (d, J = 3.1 Hz, 1H), 3.74 — 3.66 (m, 3H), 3.66
~3.39 (m, 12H), 3.25 (dd, J = 13.1, 2.9 Hz, 1H), 3.22 — 3.18 (m, 1H), 2.86 (dd, J = 13.2, 9.5 Hz, 1H),
2.62 (dd, J = 12.5, 4.6 Hz, 1H), 1.89 (s, 3H), 1.67 (dd, J = 12.1,12.1 Hz, 1H).

3C NMR (151 MHz, D,0) & 175.85, 174.62, 103.40, 102.97, 100.82, 79.05, 76.32, 75.88, 75.54, 75.12,
73.54,73.35, 70.75, 70.26, 69.35, 69.02, 68.99, 68.20, 61.77, 60.88, 52.40, 51.31, 42.99, 40.36, 22.81.

Synthesis of NHS-Esters

4-ethynylbenzoic acid (Alfa Aesar), 3-ethynylbenzoic acid (Chem Impex), and 4-pentynoic acid (Acros)
were purchased commercially. 5-ethynylthiophene-2-carboxylic acid was synthesized as previously
described.® These acids (1 eq.) were then dissolved in EtOAc to which N-Hydroxysuccinimide (1 eq.)
was added and the solution was cooled to O°C. Then, dicyclohexylcarbodimide (1 eq.) was added (as
a solid, in portions) and the solution was left to stir overnight and warm to room temperature. After
filtration, these were purified by silica gel column chromatography and obtained in good yields (>70%).

General Procedure for Synthesis of Alkyne-Sialosides A, C, E, K

Compound M (7.5 mgs, 10.4 umol, 1 eq.), was dissolved in MeOH (750 ul), NEt; was added (2 drops),
and the desired NHS-ester (20.4 umol, 2 eq.) dissolved in CH,Cl; (750 ul) was added. Reactions were
left to proceed for 30 min-1 hr after which time reactions were typically complete. The solvent was
evaporated, the residue redissolved in H,O (1 ml), and purified on a C18 column (2g, Waters Corp) by
first washing with H,O, and then eluting the desired material with MeOH/H,O mixtures in the range of
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15-20% MeOH in H,O. The azido-intermediates were then dissolved in THF/H,O (1 ml, 1:1 v/v) to
which a 1M PMej solution in THF (1.5 eq.) was added. Reactions were left to proceed for 2 hrs at
room temperature at which time TLC indicated the conversion to be complete. The solvent was
evaporated and the crude material was taken up in H,O (500 ul), and loaded onto a P-2 column (0.625
x 42.5 cm) eluting with 100 mM NH,COj; to afford Sialosides A, C, E, K in ~70% yields over two steps.

Compound A: HRMS: C33H47N;046S, [M+H]": Expected: 810.2597, Found: 810.2590.

"H NMR (600 MHz, D,0) 8 7.46 (d, J = 4.0 Hz, 1H), 7.21 (d, J = 4.0 Hz, 1H), 4.37 (d, J = 7.9 Hz, 1H),
4.27 (d, J = 7.8 Hz, 1H), 3.98 — 3.93 (m, 1H), 3.92 — 3.87 (m, 1H), 3.85 — 3.71 (m, 5H), 3.68-3.57 (m,
4H), 3.54 — 3.45 (m, 6H), 3.43 — 3.36 (m, 3H), 3.23 (t, J = 8.4 Hz, 1H), 3.05 (t, J = 5.0 Hz, 2H), 2.58 (d,
J = 1.0 Hz, 1H), 2.57 (dd, J = 12.4, 4.6 Hz), 1.86 (s, 3H), 1.60 (dd, J = 12.2, 12.1 Hz, 1H).

3C NMR (151 MHz, D,0) 5 175.66, 174.24, 164.53, 139.35, 135.01, 129.97, 127.05, 103.97, 102.65,
101.13, 80.33, 76.41, 75.44, 75.29, 74.55, 73.41, 73.20. 73.13, 71.52, 70.94, 70.91, 69.32, 69.09,
67.77,64.57, 60.95, 52.54, 43.51, 40.89, 40.34, 39.49, 22.81.

Compound C: HRMS: C34H49N3019, [M+H]": Expected: 804.3033, Found: 804.3042.

"H NMR (600 MHz, D,0) & 7.80-7.76 (m, 1H), 7.69 — 7.63 (m, 1H), 7.63 — 7.58 (m, 1H), 7.39 (t, J = 7.8
Hz, 1H), 4.36 (d, J = 8.0 Hz, 1H), 4.27 (d, J = 7.9 Hz, 1H), 3.98 — 3.90 (m, 2H), 3.85 — 3.72 (m, 5H),
3.69 — 3.63 (m, 4H), 3.56 — 3.37 (m, 10H), 3.23 (dd, J = 9.1, 8.2 Hz, 1H), 3.06-2.98 (m, 2H), 2.59 (s,
1H), 2.57 (dd, J = 12.4, 4.6 Hz, 1H), 1.87 (s, 3H), 1.61 (dd, J = 12.2, 12.2 Hz, 1H).

3C NMR (151 MHz, D,0) 5 175.66, 174.27, 171.10, 136.09, 134.97, 131.52, 129.82, 128.51, 122.81,
103.97, 102.65, 101.15, 83.18, 80.33, 75.42, 75.29, 74.56, 73.42, 73.20, 73.14, 71.52, 70.93, 70.86,
69.33, 69.10, 67.95, 64.59, 60.95, 52.56, 43.64, 40.88, 40.36, 39.48, 22.82.

Compound E: HRMS: C34H49N30+9, [M+H]": Expected: 804.3033, Found: 804.3019

"H NMR (600 MHz, D,0) 8 7.63 (d, J = 8.5 Hz, 2H), 7.52 (d, J = 8.6 Hz, 2H), 4.36 (d, J = 8.0 Hz, 1H),
4.27 (d, J = 7.9 Hz, 1H), 3.99 — 3.89 (m, 2H), 3.86 — 3.80 (m, 2H), 3.79-3.71 (m, 3H), 3.69 — 3.62 (m,
4H), 3.55 — 3.37 (m, 9H), 3.23 (t, J = 8.5 Hz 1H), 3.05 (t, J = 5.1 Hz, 2H), 2.57 (dd, J = 12.4, 4.6 Hz,
1H), 1.86 (s, 3H), 1.60 (dd, J = 12.4, 12.2 Hz, 1H).

Note: Terminal acetylene not seen due to deuterium exchange.

3C NMR (151 MHz, D,0) & 175.65, 174.26, 171.20, 134.75, 133.13, 132.71, 129.56, 128.08, 125.88,
103.97, 102.64, 101.14, 83.25, 80.32, 75.43, 75.28, 74.55, 73.41, 73.19, 73.13, 71.52, 70.97, 70.87,
69.32, 69.10, 67.70, 67.69, 64.57, 60.94, 52.55, 43.67, 40.89, 40.33, 22.81.

Compound K: HRMS: C3oH49N3019, [M+H]": Expected: 756.3033, Found: 756.3030

"H NMR (600 MHz, D,0) 8 4.41 (d, J = 8.0 Hz, 1H), 4.29 (d, J = 7.9 Hz, 1H), 3.99 (ddd, J = 10.1, 4.7,
4.7 Hz, 1H), 3.87 — 3.78 (m, 5H), 3.72 (dd, J = 10.1, 10.1 Hz, 1H), 3.69-3.65 (m, 2H), 3.60 (dd, J = 10.5,
1.7 Hz, 1H), 3.58 — 3.44 (m, 8H), 3.40 (dd, J = 9.9, 7.9 Hz, 1H), 3.34 (dd, J = 9.1, 1.7 Hz, 1H), 3.26 (dd,
J =92, 8.1 Hz, 1H), 3.22 (dd, J = 14.1, 7.4 Hz, 1H), 3.11 (t, J = 5.1 Hz, 2H), 2.56 (dd, J = 12.4, 4.7 Hz,
1H), 2.40 — 2.32 (m, 4H), 2.25 (t, J = 2.3 Hz, 1H), 1.89 (s, 3H), 1.59 (dd, J = 12.2, 12.2 Hz, 1H).

3C NMR (151 MHz, D,0) 5 175.79, 175.66, 174.25, 103.95, 102.62, 101.07, 84.14, 80.27, 75.44,

75.26,74.57,73.43,73.16. 73.13, 71.52, 71.08, 70.82, 70.54, 69.35, 69.11, 66.95, 64.58, 60.91, 52.56,
42.77,40.88, 40.23, 35.28, 22.89, 15.47, 15.44.
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3C NMR (151 MHz, D,0) 5 175.80, 175.78, 174.66, 103.45, 102.79, 100.63, 84.16, 78.90, 76.26,
76.00, 75.58, 75.01, 73.55, 73.49, 72.50, 71.09, 70.76, 70.36, 70.20, 69.07, 68.24, 67.10, 61.85, 52.50,
42.69, 40.41, 40.26, 35.29, 22.87, 15.50, 15.47.

General Procedure for Synthesis of Alkyne-Sialosides B, D, F, L

These were synthesized as above with the exception that compound N was used instead of compound
M.

Compound B: HRMS: C3,H47N304¢S, [M+H]": Expected: 810.2597, Found: 810.2598.

"H NMR (600 MHz, D,0) 8 7.47 (d, J = 4.0 Hz, 1H), 7.22 (d, J = 4.0 Hz, 1H), 4.37 (d, J = 8.0 Hz, 1H),
4.34 (d, J = 7.9 Hz, 1H), 3.95 (dd, J = 9.9, 3.1 Hz, 1H), 3.94 — 3.89 (m, 1H), 3.87 (ddd, J = 8.5, 8.5, 2.9
Hz, 1H), 3.80 (d, J = 3.0 Hz, 1H), 3.77-3.69 (m, 3H), 3.69 — 3.46 (m, 9H), 3.45 — 3.39 (m, 3H), 3.36 (dd,
J=14.2,7.8 Hz, 1H), 3.20 (t, J = 8.6 Hz, 1H), 2.99 (t, J = 5.1 Hz, 2H), 2.62 (dd, J = 12.4, 4.6 Hz, 1H),
2.59 (s, 1H), 1.87 (s, 3H), 1.66 (dd, J = 12.2, 12.2 Hz, 1H).

3C NMR (151 MHz, D,0) 5 175.77, 174.51, 164.46, 139.38, 135.04, 129.96, 127.10, 103.42, 102.84,
100.73, 78.79, 76.51, 76.41, 76.04, 75.55, 74.99, 73.65, 73.52, 71.21, 70.51, 70.10, 69.02, 68.57,
68.26, 61.83, 60.66, 52.48, 43.43, 40.56, 40.47, 39.49, 22.78.

Compound D: HRMS: C34H49N3019, [M+H]": Expected: 804.3033, Found: 804.3019

"H NMR (600 MHz, D,0) & 7.82 — 7.76 (m, 1H), 7.69 — 7.64 (m, 1H), 7.63 — 7.58 (m, 1H), 7.39 (t, J =
7.8 Hz, 1H), 4.36 (d, J = 8.0 Hz, 1H), 4.34 (d, J = 8.1 Hz, 1H), 3.96 (dd, J = 9.8, 3.1 Hz, 1H), 3.94-3.87
(m, 2H), 3.81 (d, J = 3.0 Hz, 1H), 3.73 (t, J = 10.1 Hz, 2H), 3.68 (dd, J = 13.8, 2.4 Hz, 2H), 3.63 — 3.53
(m, 6H), 3.53 — 3.46 (m, 2H), 3.46 — 3.37 (m, 4H), 3.19 (t, J = 8.4 Hz, 1H), 3.02-2.98 (m, 2H), 2.62 (dd,
J=12.4, 4.6 Hz, 1H), 1.87 (s, 3H), 1.66 (dd, J = 12.2,12.2 Hz, 1H).

Note: Terminal acetylene not seen due to deuterium exchange.

3C NMR (151 MHz, D,0) 8 175.77, 174.54, 171.02, 136.11, 134.94, 131.51, 129.84, 128.49, 122.82,
103.40, 102.81, 100.75, 83.17, 78.77, 76.51, 76.02, 75.52, 74.98, 73.64, 73.51, 71.13, 70.50, 70.13,
69.04, 68.37, 68.25, 61.82, 60.64, 52.49, 43.55, 40.54, 40.43, 22.80.

Compound F: HRMS: C34H49N3019, [M+H]": Expected: 804.3033, Found: 804.3022

"H NMR (600 MHz, D,0) & 7.69 — 7.60 (m, 2H), 7.57 — 7.48 (m, 2H), 4.36 (d, J = 8.0 Hz, 1H), 4.34 (d, J
= 7.9 Hz, 1H), 3.95 (dd, J = 9.9, 3.1 Hz, 1H), 3.94 — 3.87 (m, 2H), 3.81 (d, J = 3.0 Hz, 1H), 3.78 — 3.64
(m, 4H), 3.64 — 3.37 (m, 11H), 3.20 (t, J = 8.6 Hz, 1H), 3.03 (t, J = 4.9 Hz, 2H), 2.62 (dd, J = 12.4, 4.6
Hz, 1H), 2.58 (s, 1H), 1.86 (s, 3H), 1.66 (dd, J = 12.4, 12.2 Hz, 1H).

3C NMR (151 MHz, D,0) & 175.76, 174.53, 171.09, 134.72, 133.13 (2C’s), 128.07 (2C’s), 125.93,
103.40, 102.79, 100.75, 83.25, 78.75, 76.50, 76.03, 75.51, 74.98, 73.62, 73.49, 71.12, 70.53, 70.13,
69.03, 68.26, 67.98, 61.83, 60.62, 52.49, 43.58, 40.53, 40.39, 39.49, 22.79.

Compound L: HRMS: C3oH49N3019, [M+H]": Expected: 756.3033, Found: 746.3028

"H NMR (600 MHz, D,0) 8 4.41 (d, J = 8.0 Hz, 1H), 4.38 (d, J = 7.9 Hz, 1H), 4.00 — 3.93 (m, 2H), 3.86

(dd, J = 12.3, 2.1 Hz, 1H), 3.83 — 3.77 (m, 3H), 3.73 — 3.68 (m, 2H), 3.65 — 3.41 (m, 14H), 3.38 (dd, J =
9.0, 1.8 Hz, 1H), 3.27 — 3.17 (m, 2H), 3.10 (t, J = 5.1 Hz, 2H), 2.61 (dd, J = 12.4, 4.6 Hz, 1H), 2.40-2.32
(m, 4H), 2.25 (t, J = 2.2 Hz, 1H), 1.90 (s, 3H), 1.66 (dd, J = 12.2, 12.1 Hz, 1H).
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3C NMR (151 MHz, D,0) & 175.80, 175.78, 174.66, 103.45, 102.79, 100.63, 84.16, 78.90, 76.26,
76.00, 75.58, 75.01, 73.55, 73.49, 72.50, 71.09, 70.76, 70.36, 70.20, 69.07, 68.24, 67.10, 61.85, 52.50,
42.69, 40.41, 40.26, 35.29, 22.87, 15.50, 15.47

Synthesis of the Alkyne-Sialoside Library — Synthesis of Sialosides | and J
O
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Supplementary Scheme 2 | a) DMF, 45°C (73% Yield). b) l,, H,O (93% Yield)

Synthesis of N'-(Prop-2-yn-1-yl)-1H-imidazole-1-carboxamide

Under Ny, propargyl amine (3.9 g, 0.07 mol) in CH,CI;, (50 mL) was added dropwise to a ice-cooled
solution of 1,1-carbonyldiimidazole (17.56 g, 0.11 mol, 1.5 equiv) in THF (100 mL). After complete
addition of the amine, the mixture was stirred at room temperature for 16 hrs. The solvent was removed
and the crude product was purified on silica (4% MeOH in CHCI;) to afford the product as a white solid
(8.19,77 %).

HRMS: C;HgNO3, [M+H]" Expected = 150.0662, Found = 150.0658.

"H NMR (300 MHz, DMSO-ds) 5 9.04 (br s, NH, 1H), 8.26, 7.68, 7.04 (s, imidazole H, 3H), 4.07 (d, J =
2.7 Hz, CH,, 2H), 3.25 (tr, J = 2.4 Hz, C=CH, 1H).

3C NMR (75 MHz, DMSO-dq) & 148.7 (C=0), 136.1, 1298.8, 116.6 (imidazole C), 80.3 (C=CH), 73.4
(C=CH), 29.6 (CH>).

Synthesis of Compound O

The 9-NH,-NeuAc thioglycoside® (40 mg, 96.5 umol, 1 eq.) was dissolved in DMF and N'-(Prop-2-ynyl)-
1H-imidazole-1-carboxamide (43.2 mg, 289.5 umol, 3 eq.) was added, and the reaction solution was
left to proceed under argon at 45°C overnight. After this time, the solvent was evaporated and the
intermediate was purified on latrobeads eluting with EtOAc:MeOH:AcOH:H,0 (25:3:3:2, v/viv/v) to yield
a purified, but not completely pure compound O. This was then further purified on a P-2 column (0.625
x 42.5 cm) eluting in 100 mM NH4CO; to yield pure compound O as a mixture of anomers (34.7 mg, 70
umol, 73% yield)

Compound O: HRMS: C,,H29N30sS, [M+H]": Expected: 496.1746, Found: 496.1743
p-anomer:

"H NMR (600 MHz, D,0) 8 7.27 (d, J = 7.9 Hz, 2H), 7.07 (d, J = 7.9 Hz, 2H), 4.23 (d, J = 10.5 Hz, 1H),
4.03 (ddd, J = 10.9, 10.9, 4.7 Hz, 1H), 3.81 — 3.76 (m, 1H), 3.76 — 3.74 (m, 2H), 3.71 (dd J = 10.4, 10.4
Hz, 1H), 3.58 — 3.54 (m, 1H), 3.34 (d, J = 8.5 Hz, 1H), 3.28
(dd, J = 13.7, 2.8 Hz, 1H), 3.03 (dd, J = 14.4, 6.5 Hz, 1H), 2.52 (dd, J = 13.7, 4.7 Hz, 1H), 2.45 (t, J =
2.3 Hz, 1H), 2.19 (s, 3H), 1.93 (s, 3H), 1.86 — 1.81 (dd, J = 12.2, 12.1 Hz, 1H).
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p-anomer:

3C NMR (151 MHz, D,0) & 175.49, 175.00, 161.09, 140.68, 135.38 (2 C’s), 130.54 (2 C’s), 127.31,
91.49, 81.99, 72.49, 72.12, 70.65, 70.32, 68.08, 53.16, 43.73, 41.33, 30.22, 22.95, 21.13.

Synthesis of Compound P

Compound O (34.7 mg, 70 umol, 1 eq.) was dissolved in H,O (5 mLs) and |, (27 mg, 106.2 umol, 1.1
eq.) was added followed by vigorous stirring overnight. After repeated extraction with EtOAc (4 x 5
mLs), the aqueous layer was frozen and lyophilized. Compound P was obtained as a yellow solid and

was used without further purification (25.3 mg, 65 umol, 93% vyield)
0

HJANH OH

C02Na
a) ACH%
% %O\/\NH
0 o\/\NH

oH H b)
AcHN OH H(‘k/o\/\,\m2

Supplementary Scheme 3| a) Compound P, CTP, N. Meningitidis CMP-NeuAc Synthetase, P. Damsella
(2,6 Sialyltransferase (88% yield). b) Compound P, CTP, N. Meningitidis CMP-NeuAc Synthetase, P.
Multocida (2,3 Sialyltransferase (52% yield).

\X

\x

Synthesis of Compound |

(B-O-ethylamine)-lactoside® (5 mg, 13.0 umol, 1 eq.), compound P (6.1 mg, 15.5 umol, 1.2 eq.), and
CTP (10.7 mg, 19.5 umol, 1.5 eq.) were dissolved in 1 ml of 100 mM Tris, 20 mM MgCl, (pH 9.0) to
which N. Meningitidis CMP-NeuAc Synthetase (1.25 U) and P. Damsella 02,6 sialyltransferase (0.1 U)
were added and the reaction was left to proceed at 37°C with end-over-end rotation overnight. The
reaction was then frozen, lyophilized, and the crude material redissolved in H,O (0.5 mL). After
removing the insoluble precipitate by centrifugation the supernatant was loaded onto a P-2 column
(0.625 x 42.5 cm) running in 100 mM NH4CO;. Pure fractions were then pooled and lyophilized to
afford compound | (8.9 mg, 11.4 umol, 88% yield).

Compound I: HRMS: CygH4sN4O1g, [M+H]": Expected: 757.2985, Found: 757.2994

"H NMR (600 MHz, D,0) 8 4.42 (d, J = 8.0 Hz, 1H), 4.29 (d, J = 7.9 Hz, 1H), 4.00 (ddd, J = 11.6, 4.9,
4.9 Hz, 1H), 3.86-3.77 (m, 4H), 3.75 (d, J = 1.4 Hz, 2H), 3.72 (t, J = 9.9 Hz, 1H), 3.70 — 3.65 (m, 2H),
3.60 (dd, J = 10.5, 1.5 Hz, 1H) 3.58-3.54 (m, 2H) 3.54-3.48 (m, 4H), 3.46 (dd, J = 10.4, 3.4 Hz, 1H),
3.40 (ddd, J = 7.8, 4.1, 4.1 Hz, 2H), 3.33 (dd, J = 8.9, 1.5 Hz, 1H), 3.27 (dd, J = 9.0, 8.3 Hz, 1H), 3.14
(t, J = 5.1 Hz, 2H), 3.12-3.06 (m, 1H), 2.56 (dd, J = 12.4, 4.6 Hz, 1H), 2.45 (t, J = 2.4 Hz, 1H), 1.89 (s,
3H), 1.59 (dd, J = 12.2, 12.2 Hz, 1H).
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3C NMR (151 MHz, D,0) & 175.64, 174.27, 161.07, 103.94, 102.61, 101.11, 80.22, 75.45, 75.24,
74.55,73.43,73.22,73.13, 72.08, 71.53, 71.30, 70.48, 69.33, 69.14, 66.56, 64.51, 60.90, 60.22, 52.56,
43.34, 40.87, 40.18, 30.23, 22.87.

Synthesis of Compound J

Synthesis was carried out as for compound I, with the exception that the P. Multocida a.2,3
sialyltransferase® (0.1 U) was used as the sialyltransferase and the reaction was stopped after 4 hrs by
freezing and lyophilizing. It was noted that the reaction stalled and only proceeded to ~60%
completion. Two rounds of purification on a P-2 column (0.625 x 42.5 cm) yielded compound J (5.3
mg, 6.8 umol, 52% yield).

Compound J: HRMS: CgH4sN4O19, [M+H]": Expected: 757.2985, Found: 757.2994

"H NMR (600 MHz, D,0) 8 4.41 (d, J = 8.0 Hz, 1H), 4.38 (d, J = 7.8 Hz, 1H), 4.01 — 3.94 (m, 2H), 3.86
(dd, J = 12.3, 2.0 Hz, 1H), 3.84 — 3.79 (m, 2H), 3.76 (s, 2H), 3.73-3.68 (m, 2H), 3.65 — 3.59 (m, 2H),
3.59 — 3.50 (m, 5H), 3.49-3.46 (m, 1H), 3.45 — 3.39 (m, 2H), 3.37 (dd, J = 8.8, 1.4 Hz, 1H), 3.24 (t, J =
8.5 Hz, 1H), 3.15-3.07 (m, 3H), 2.61 (dd, J = 12.5, 4.6 Hz, 1H), 2.45 (t, J = 2.4 Hz, 1H), 1.89 (s, 3H),
1.65 (dd, J = 12.2, 12.1 Hz, 1H).

3C NMR (151 MHz, D,0) & 175.74, 174.63, 161.03, 103.42, 102.77, 100.66, 78.80, 76.32, 76.01,
75.59,74.97,73.62, 73.49, 72.09, 71.41, 70.14, 69.08, 68.23, 66.69, 61.85, 60.65, 52.50, 43.23, 40.45,
40.21, 39.48, 30.20, 22.84.

Synthesis of Lipid-Linked Siglec-7 Hits

0
Zz X*NH oH o™ Q Coa
CO;Na /Y\XJ(
COzNa N NH OH co Na
AcHN

O

)L

O\/\N R

X = O (Compound G0), NH (Compound 10), CH, (Compound K0) X =0 (Compound G35-Lipid), NH (Compound I35-Lipid), CH, (Compound K35-Lipid)

R= gMNMO/\/O}?j(N\/\O /?/ \>"C17H35

(e}
Ci7H3s

Supplementary Scheme 4 | a) Cul, TTTA, Ascorbate, DMF/H,0 (72-78% Yields). b) CH,Cl,, DMSO, DIEA
(90-95% Yields)

Synthesis of Compounds G35, K35, and 135

GO, KO, or 10 (5 mg, 6.6 umol, 1 eq.) was dissolved in H,O (250 ul) and added to a solution of 5-azido-
fluorescein in 200 wl DMF (4.2 mg, 11.2 umol 1.7 eq.). A precomplexed solution of Cul/TTTA" in DMF
was added (50 ul: (0.5 mg Cul, 2.6 umol, 0.4 eq) and (2.2 mg TTTA, 5.3 umol, 0.8 eq)) and left to stir
for 1 hr at RT. After this time, 50 ul of 100 mM sodium ascorbate (5 umol, 0.76 eq.) was added and left
to proceed for another 2 hrs after which time TLC indicated the reaction was complete and quantitative.
The reaction mixture was then centrifuged and loaded directly onto a P-2 column (0.625 x 42.5 cm)
running in 100 mM NH,COs;. Fractions containing the desired product were pooled, lyophilized,
redissolved in H20 (1 ml) and centrifuged to remove insoluble precipitate. The resulting supernatant
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was loaded onto a C18 column (2g) which was washed with H,O (20 mLs) followed by eluting the
desired product with 50% MeOH in H,O. Yields ranged from 72-78%.

Compound G35: HRMS: C,gHssNsOs2s, [M+H]": Expected: 1131.3524, Found: 1131.3521

"H NMR (600 MHz, MeOD/D,0) & 8.70 (s, 1H), 8.37 (s, 1H), 8.11 (d, J = 8.3 Hz, 1H), 7.50 (d, J = 8.0
Hz, 1H), 7.18 (d, J = 9.1 Hz, 2H), 6.86 (s, 2H), 6.78 (d, J = 9.2 Hz, 2H), 5.32 (s, 2H), 4.48 (d, J = 7.9
Hz, 1H), 4.39 (d, J = 7.7 Hz, 1H), 4.15 — 4.05 (m, 1H), 3.99 — 3.87 (m, 5H), 3.84 (t, J = 9.9 Hz, 1H), 3.79
(dd, J = 11.4, 4.1 Hz, 2H), 3.73 (d, J = 10.1 Hz, 1H), 3.67 — 3.50 (m, 8H), 3.44 (d, J = 9.0 Hz, 1H), 3.38
(t, J = 8.5 Hz, 1H), 3.29 — 3.21 (m, 3H), 2.69 (dd, J = 12.3, 4.4 Hz, 1H), 2.00 (s, 3H), 1.71 (t, J = 12.2
Hz, 1H).

3C NMR (151 MHz, MeOD/D,0) & 173.87, 172.49, 170.43, 157.10, 156.27, 143.74, 136.83, 130.37
(2C’s), 129.81, 122.73, 122.06, 119.77, 119.03 (2C’s) 113.42, 102.59, 102.33 (2C’s), 101.36, 99.64,
78.81,74.13,73.92,73.23,72.13,71.98, 71.82, 70.18, 69.60, 69.55, 67.99, 67.66, 64.95, 62.99, 59.50,
56.80, 51.31, 47.80, 42.92, 39.76, 38.76, 21.20.

Compound K35: HRMS: CsoHgoNeO24, [M+H]": Expected: 1129.3732, Found: 1129.3736

"H NMR (600 MHz, MeOD/D,0) & 8.47 (s, 1H), 8.32 (s, 1H), 8.04 (d, J = 8.1 Hz, 1H), 7.45 (d, J = 8.2
Hz, 1H), 7.18 (d, J = 9.1 Hz, 2H), 6.71-6.66 (m, 4H), 4.43 (d, J = 7.9 Hz, 1H), 4.36 (d, J = 7.7 Hz, 1H),
4.06 (ddd, J = 11.4, 4.8, 4.8 Hz, 1H), 3.96 (t, J = 9 Hz, 1H), 3.94 — 3.85 (m, 4H), 3.83 — 3.74 (m, 3H),
3.71(d, J = 10.5 Hz, 1H), 3.65 - 3.55 (m, 6H), 3.52 (t, J = 8.8 Hz, 2H), 3.40 (d, J = 9.3 Hz, 1H), 3.35 (t,
J = 8.6 Hz, 1H), 3.29 — 3.24 (m, 1H), 3.20 (t, J = 4.9 Hz, 2H), 3.14 (t, J = 7.5 Hz, 2H), 2.74 (t, J = 7.5
Hz, 2H), 2.70 (dd, J = 12.3, 4.4 Hz, 1H), 2.01 (s, 3H), 1.69 (dd, J = 12.1, 12.1 Hz, 1H).

3C NMR (151 MHz, MeOD/D;0) & 175.42, 174.05, 172.71, 159.22, 158.40, 148.51, 142.53, 138.24,
133.70, 132.36, 132.11 (2C’s), 123.05 (3C’s), 122.28, 122.16, 121.79, 114.40, 104.18, 104.16, 102.94,
101.20, 80.35, 75.68, 75.47, 74.73, 73.69, 73.54, 73.33, 71.75, 71.29, 70.88, 69.52, 69.25, 66.54,
64.48, 61.02, 52.89, 49.37, 43.28, 41.32, 40.31, 35.81, 22.79, 22.07.

Compound 135: HRMS: C49H49N;O24, [M+H]": Expected: 1130.3684, Found: 1130.3681

"H NMR (600 MHz, MeOD/D,0) & 8.54 (s, 1H), 8.37 (d, J = 2.0 Hz, 1H), 8.07 (dd, J = 8.2, 2.1 Hz, 1H),
7.42 (d,J = 8.2 Hz, 1H), 7.12 (d, J = 9.1 Hz, 2H), 6.77 (d, J = 2.0 Hz, 2H), 6.73 (dd, J = 9.2, 2.2 Hz,
2H), 4.53 (s, 2H), 4.46 (d, J = 8.0 Hz, 1H), 4.37 (d, J = 7.8 Hz, 1H), 4.09 (ddd, J = 11.4, 4.8, 4.8 Hz,
1H), 3.97 (t, J = 9 Hz, 1H), 3.95 — 3.87 (m, 4H), 3.83 (t, J = 10.1 Hz, 1H), 3.81 — 3.75 (m, 2H), 3.73 (d, J
= 11.8 Hz, 1H), 3.64 (t, J = 8.9 Hz, 2H), 3.62 — 3.50 (m, 6H), 3.44 (d, J = 9.2 Hz, 1H), 3.37 (dd, J = 9.0,
8.2 Hz, 1H), 3.29 — 3.24 (m, 1H), 3.23 (t, J = 5.0 Hz, 2H), 2.71 (dd, J = 12.3, 4.6 Hz, 1H), 2.00 (s, 3H),
1.70 (dd, J = 12.2, 12.1 Hz, 1H).

3C NMR (151 MHz, MeOD/D,0) & 173.85, 172.54, 170.48, 159.47, 156.05, 146.74, 136.94, 130.29
(2C’s), 129.62, 122.19, 121.13, 119.52, 118.72 (2C’s), 113.25, 102.55, 102.33 (2C’s), 101.33, 99.64,
78.75,74.10, 73.87, 73.19, 72.10, 71.92, 71.83, 70.16, 69.87, 69.48, 67.97, 67.67, 64.97, 62.97, 59.45,
51.29, 47.82, 42.19, 39.70, 38.75, 38.10, 34.36, 21.23.

Synthesis of Compounds G35-Lipid, K35-Lipid, and I135-Lipid

NHS-PEG-Lipid (8.0 mg, 2.61 umol, 1 eq.) and G35, K35, or I35 (3.8 mg, 3.4 umol, 1.3 eq.) were
dissolved in DMSO/CH,CI, (900 ul, 5.5:3.5 v/v) to which DIEA (50 ul) was added. The reaction was left
to proceed overnight and then CH,Cl, was removed by rotary evaporation. The resulting solution was
diluted to with H,O (total volume 3 mLs), added to a 10,000 MWCO Dialysis Cassette (Pierce), and

dialyzed against H,O (2 x 2L). After lyophilization, a yellow solids were obtained, with yields typically
S9



~90-95%. Due to the complexity of these molecules (and the fact that they are a mixture of compounds
because of the average molecular weight PEG unit), purity and identity was confirmed by analyzing
three characteristic peaks: the terminal methyl groups of the lipid chain, the N-Acetyl from the sialic
acid, and the triazole peak.

G35-Lipid

'"H NMR (600 MHz, DMSO) & 9.05 (triazole-H, s, 1H), 1.85 (N-Acetyl-, s, 3H), 0.82 (lipid methyl groups,
t, J = 6.9 Hz, 6H).

K35-Lipid

'"H NMR (600 MHz, DMSO) & 8.78 (triazole-H, s, 1H), 1.85 (N-Acetyl-, s, 3H), 0.82 (lipid methyl groups,
broad s, 6H).

135-Lipid

'"H NMR (600 MHz, DMSO) & 8.85 (triazole-H, s, 1H), 1.83 (N-Acetyl-, s, 3H), 0.82 (lipid methyl groups,
t, J = 6.9 Hz, 6H).
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Supplementary Results

Supplementary Figure 1 - On-chip click reactions proceed via canonical Cu(l)-catalyzed click
chemistry (CuAAC). The proof-of-principle array in Figure 1 was used to show that all traditional
components of CUAAC are required for the on-chip click reactions. Reactions were set up with 50 mM
5-azido-fluorescein, 10 mM Sodium Ascorbate, 1 mM CuSQO,, and 5 mM THPTA in DMF/H,0 (3:1 v/v)
(bottom right), or by leaving out 5-azido fluorescein (top left), CuSO4 (top right), or sodium ascorbate
(bottom left). After 2 hr reactions, the arrays were washed 3x each with DMF, PBS-Tween, and H,O
before being dried and scanned.

No Azide Fluor No CuSO,

No Na Ascorbate
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Supplementary Figure 2 — A 2-Step Click-reaction to monitor On-Chip Reaction Progress. To
monitor on-chip reaction progress, the proof-of-principle array from Figure 1 was used with two model
azides: (azidomethylene)dibenzene and 1-azidoadamantane. On-chip click reactions were carried out
in duplicate with 50 mM azide, 10 mM ascorbate, 1 mM CuSQO,, and 5 mM THPTA in DMF/H20 (3:1,
v/v) for the indicated amount of time, before the arrays were washed 3x with DMF, PBS-Tween, and
H,O before being centrifuged to dry. To one set of arrays, Siglec-Fc chimeras (Siglec 9 for
(azidomethylene)dibenzene, and Siglec-E for 1-azidoadamantane) were applied to read out reaction
progress, since the on-chip click products would generate known high-affinity ligands for these Siglecs.
To the other set of arrays, a second click reaction with 5-azido-fluorescein (using the reaction
conditions above, 1 hr) was carried out to detect any remaining alkynes on the chip surface. The
results show that the reaction with (azidomethylene)dibenzene (left) is essentially complete in 5 mins as
shown by the robust binding of Siglec-9 and the lack of reaction with 5-azido-fluorescein in the second
click reaction. In contrast, the much more sterically hindered 1-azidoadamantane (right) reacts more
slowly, but reaction can be seen at 5 minutes as detected by Siglec-E detection and is nearly complete
after 2 hrs as shown by both Siglec-E detection and the second click reaction.

a b @Ns

Siglec-9 Detect " Fluor-N, Detect Siglec-E Detect Fluor-N, Detect
(555 nm) (488 nm) (555 nm) (488 nm)
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Supplementary Figure 3 — On-chip click reactions with diverse azides are rapid and quantitative
as shown using the 2-Step click reaction. To show that the reaction conditions utilized lead to
efficient ‘on-chip’ reactions for diverse azides, the experiments in Supplementary Figure 2 were
repeated with a diverse set of 6 azides. Briefly, individual azides were clicked onto the proof-of-
principle array (Figure 1) using the standard reactions conditions: 50 mM azide, 10 mM ascorbate, 1
mM CuSOy4, and 5 mM THPTA in DMF/H20 (3:1, v/v) for either 15 mins (left) or 2 hrs (right) before the
arrays were washed 3x with DMF, PBS-Tween, and H,O. 5-azido-fluorescein was then clicked onto all
of the arrays (using the reaction conditions above, 1 hr) and the slides were similarly washed and then
scanned. The lack of any reaction with 5-azido-fluorescein in the second step (except with the
untreated slide, far right) shows that the conditions utilized give rapid reaction kinetics with quantitative
coupling in 15 minutes.

Azide 15 min Rxn 2 hr Rxn No Initial Rxn

N3

S13



Supplementary Figure 4 — Structure of azides 1-48 used in the high-throughput on-chip
synthesis.
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Supplementary Figure 5 — Structure of azides 49-94 used in the high-throughput on-chip
synthesis.
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Supplementary Figure 6 — Set-up for the large scale on-chip library construction. Schott-
Nexterion MPX-48 slides (see image) were used to construct the microarray. The library of 12
sialosides (Figure 2, compounds AO0-LO) and a control compound (Figure 1, Compound VII), were
printed into each well of the 48 wells. To facilitate alignment, 3 fluorescent grid markers (Atto-555) were
printed at the top-right, and two at the bottom-left. Each individual well was then reacted with a unique
azide (as depicted below). In order to construct the full library, two arrays were used wherein azides 1-
47 were reacted with array 1 (one well was left unreacted) and the second array was reacted with
azides 48-94 (one well was left unreacted).

Atto- | Atto- | Atto-
555 555 555

il il il il
Array of Alkyne KO Lo Vil Vil Vil vil
Sialosides Ko | Lo | ko | Lo | kKo | Lo
10 Jo 10 Jo 10 Jo
GO HO GO0 Ho GO HO GO HO 10 Jo
EO Fo EO FoO EO0 Fo EO Fo
co DO co DO
N3
/ co DO co DO
HO A0 BO A0 BO A0 BO A0 BO
Atto- | Atto-
555 | 555
O
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Supplementary Figure 7 — High-throughput Screening Results for Siglec-E. The arrays in Figure
2 were probed with Siglec-E Fc chimera. The binding intensity in each well was normalized to
Compound VII (a known high affinity ligand of Siglec-E) and the structures of various hits are shown.
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Supplementary Figure 8 — Arrays are reusable and can be stripped and reprobed without loss of
signal. Array image used to create some of the data in Supplementary Figure 7. After probing the
array with Siglec-E Fc chimera (left), bound protein was stripped by incubating in a 10% SDS solution
in PBS for 1 hr at 37°C. The array was then extensively washed with PBS, H,0, dried and scanned
(middle). The array was then reprobed with Siglec-E Fc chimera (right). For clarity, the identities of the
array signals are depicted on the far right. Each subarray, as described above in Supplementary
Figure 6, was reacted with a different azide and the identities of these are shown on the far left.

Azide Initial Probe  Strip Reprobe

Atto 555
“Grid Markers

Known High
Affinity
Siglec-E Ligand VII

Scaffolds G/H
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Supplementary Figure 9 — K35 is a high-affinity ligand for Siglec-10. K35, one of the top hits in the
Siglec-10 screen (Figure 2), was coupled to a PEGylated lipid (Supplementary Scheme 4) and
formulated into 1% ligand displaying liposomes. These liposomes showed robust binding to Siglec-10
CHO cells (left), but also displayed cross-reactivity to Jurkat Siglec-7 cells (right) as expected based on

the microarray results (Figure 2).

100 100
Siglec-10 Siglec-7 .

x 80 80 1 Key:
> 0 ] Cells Only
S — Naked
R 40 40 1 = K35

20 20

0 N e - 0

100 10! 102 103 104 100 10! 102 103 104
Liposome Binding
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Supplementary Figure 10 — G35 Liposomes do not cross-react with Siglec-9 expressing cells.
G35 was coupled to a PEGylated lipid (Supplementary Scheme 4) and formulated into 1% ligand
displaying liposomes. These liposomes showed robust binding to Siglec-7 Jurkat cells cells (/eft), but do
not bind to Siglec-9 CHO cells (right). As a positive control, a previously identified Siglec-9 ligand
(Compound IV, Figure 1a)’ was coupled to a PEGylated lipid and formulated into 2% ligand liposomes
and these show selective binding to Siglec-9 CHO cells (right) consistent with our previous
observations”®.

Siglec-7 Jurkat Siglec-9 CHO
100 } Naked
] ==  G35-Liposomes
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S ] _
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Liposome Binding
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Supplementary Figure 11 — The proposed binding contacts of Siglec-7 with the fluorescein
moiety of G35 are similar to that observed in a crystal structure of a fluorescein-binding
engineered lipocalin flua protein. (/eff) The two primary proposed interactions between Siglec-7 and
the fluorescein moiety include H-bonding (white arrows) to the carboxylate (GIn138 and Arg120) and
the stacking interaction between the Arg and the xanthene ring (red arrow). The latter interaction is
correctly oriented by hydrogen bonding (white arrows) interactions of Arg120 with the carboxylate of
fluorescein and the carbonyl of GIn138. (right) Similarly, in the engineered lipocalin flua protein
structure (PDB ID: 1NOS) one can see H-bonding (white arrows) to the carboxylate and an Arg60
stacking interaction with the xanthene ring (red arrow). Note that the Arg58 is similarly oriented in the
correct way by hydrogen bonding (white arrows) interactions with the carboxylate of fluorescein and the
Glu60 residue.
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Supplementary Table 1 — Complete Siglec 7 Microarray Data (Normalized to Compound VIl in
each subarray as 100). Subarrays which showed no apparent binding (as analyzed by eye) were not
processed by IMAGENE and all compounds from that subarray were assigned a 0 value.

Sialoside Scaffold

Azide A B C D E F G H I J K L
o 0 0 0 0 0 0 0 0 0 0 0 0
1 1 -1 1 -1 3 1 165 1 4 -2 1 1
2 -1 -1 0 1 1 -1 16 11 0 0 1 0
3 -1 6 1 -1 2 1 1330 66 2 -2 -1 -1
4 -1 2 -2 2 1 3 1301 97 0 0 1 0
5 0 1 0 0 1 -1 17 0 0 0 -1 3
6 -1 1 1 0 1 0 998 56 -1 0 3 2
7 0 2 1 -1 1 3 205 16 1 1 -2 -2
8 2 4 -2 0 1 1 6 2 -1 1 -1 0
9 1 2 2 3 1 2 4 2 1 3 0 0

10 5 -1 1 6 1 3 1401 153 2 -1 6 0
11 0 1 0 2 1 2 1494 26 -1 1 0 0
12 1 3 1 0 0 0 1300 60 -1 3 0 -1
13 -3 1 1 0 0o -2 281 5 -2 2 14 0
14 0 0 0 1 0 0 9 7 0 -1 -1 2
15 -2 0 0 1 1 1 17 8 -1 0 3 3
16 1 3 8 0 1 -1 726 43 0 1 5 -1
17 1 3 8 0 1 -1 726 43 0 1 5 -1
18 0 2 0o -1 1 3 1 0 2 1 4 3
19 -1 o 12 -1 4 3 4921 149 5 2 6 2
20 0 0 0 0 0 0 0 0 0 0 0 0
21 1 6 2 1 0 2 684 76 -1 0 6 2
22 0 0 0 0 1 2 71 4 -1 0 0 1
23 1 3 1 5 4 1 299 45 1 2 0 1
29 -1 2 -2 4 1 4 1276 21 10 2 2 0
25 -1 0 1 0 2 1 671 26 -1 1 0 2
26 0 0 0 0 0 0 0 0 0 0 0 0
27 3 41 0 3 2 2 767 15 4 2 1 2
28 152 -1 1 -2 2 0 1021 144 0 0 2 0
29 0 0 0 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0 0 0 0
31 2 1 0o -1 -1 0 2895 719 -1 3 19 2
32 -1 1 0 0 1 3 262 30 2 3 13 1
33 0 0 0 0 1 1 991 63 0 1 2 2
34 0 1 0 1 1 1 441 65 1 0 0 1
35 0 0 0 0 0 0 7309 4620 930 916 2476 1813
36 0 0 0 0 0 0 0 0 0 0 0 0
37 o -1 0 0o -1 1 587 80 -1 1 1 4
38 0 0 1 2 0o -1 759 6 0 1 2 -1
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Supplementary Table 2 — Complete Siglec-10 Microarray Data (Normalized to Compound VIl in

each subarray as 100). Subarrays which showed no apparent binding (as analyzed by eye) were not

processed by IMAGENE and all compounds from that subarray were assigned a 0 value.
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Sialoside Scaffold

A

each subarray as 100). Subarrays which showed no apparent binding (as analyzed by eye) were not

Supplementary Table 3 — Complete Siglec-E Microarray Data (Normalized to Compound VIl in
processed by IMAGENE and all compounds from that subarray were assigned a 0 value.
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