

Cost-effectiveness of HCV case-finding for people who inject drugs via dried blood spot testing in specialist addiction services and prisons

Journal:	BMJ Open
Manuscript ID:	bmjopen-2013-003153
Article Type:	Research
Date Submitted by the Author:	04-May-2013
Complete List of Authors:	Martin, Natasha; University of Bristol, Department of Social Medicine; London School of Hygiene and Tropical Medicine, Social and Mathematical Epidemiology Group Hickman, M; Bristol Miners, Alec; London School of Hygiene and Tropical Medicine, Department of Health Services Research and Policy Hutchinson, Sharon; Health Protection Scotland, ; Glasgow Caledonian University, School of Health and Life Sciences Taylor, Avril; University of the West of Scotland, Vickerman, Peter; London School of Hygiene & Tropical Medicine, Social and Mathematical Epidemiology Group
Primary Subject Heading :	Infectious diseases
Secondary Subject Heading:	Health economics, Public health
Keywords:	HEALTH ECONOMICS, Public health < INFECTIOUS DISEASES, Hepatology < INTERNAL MEDICINE, Substance misuse < PSYCHIATRY

SCHOLARONE[™] Manuscripts

1		
2		
3	1	Title: Cost-effectiveness of HCV case-finding for people who inject drugs via
4	2	dried blood spot testing in specialist addiction services and prisons
5	- 3	
6	1	Authors: Natasha K. Martin ^{1,2} Matthew Hickman ¹ Alec Miners ² Sharon J
7	4 F	Authors. Natasha K. Watth , Watthew Hickman, Alec Willers, Sharon J.
8	5	HUICHINSON , AVIII TAYIOF, PELEF VICKETHAN
9	6	
10	7	Affiliations: 'Department of Social and Community Medicine, University of Bristol,
11	8	Bristol, UK. Faculty of Public Health and Policy, London School of Hygiene and
12	9	Tropical Medicine ³ Health Protection Scotland, UK. ⁴ School of Health and Life
13	10	Sciences, Glasgow Caledonian University, Glasgow, UK. ⁵ University of the West of
14	11	Scotland, Glasgow, UK.
15	12	
16	13	Corresponding author contact: Natasha Martin@bristol.ac.uk. Department of
17	14	Social and Community Medicine, 39 Whatley Road, Bristol, BS8 2PS
18	14	Social and Community Medicine, 39 Whatley Road, Bristol, BSO 21 S.
19	15	Abbreviatione: happitize Chirus (LIC)(), people who inject drugs (DM/ID), dried blood
20	16	Abbreviations. hepatilis C virus (HCV), people who inject drugs (PWID), dhed blood
21	17	spot (DBS), incremental cost-effectiveness ratio (ICER), quality-adjusted life-year
22	18	(QALY), willingness-to-pay (WTP), hepatocellular carcinoma (HCC), liver transplant
23	19	(LT), pegylated interferon (pegIFN), ribavirin (RBV), sustained viral response (SVR),
24	20	95% confidence interval (CI), antibody (Ab)
25	21	
26	22	Funding: The funders had no role in study design, data collection and analysis,
27	23	decision to publish, or preparation of the manuscript, NM: This work is produced by
28	24	NM under the terms of the postdoctoral research training fellowship issued by the
29	24	NIHR. The views expressed in this publication are those of the author and not
30	25	non-construction and not
31	26	Department of Legith D) (Medical Department Operation Research of the
32	27	Department of Health. PV: Medical Research Council New Investigator Award
33	28	G0801627. MHickman: NIHR School of Public Health, Nationally Integrated
34	29	Quantitative Understanding of Addiction Harm (NIQUAD) MRC addiction research
35	30	cluster, and support of The Centre for the Development and Evaluation of Complex
36	31	Interventions for Public Health Improvement (DECIPHer), a UKCRC Public Health
37	32	Research: Centre of Excellence. Funding from the British Heart Foundation, Cancer
38	33	Research UK. Economic and Social Research Council (RES-590-28-0005). Medical
39	34	Research Council the Welsh Assembly Government and the Wellcome Trust
40	35	(WT087640MA) under the auspices of the LIK Clinical Research Collaboration is
41	36	aratefully acknowledged
42	30 27	grateruny acknowledged.
43	27	Word county 2110
45	38	
40 46	39	
40 47	40	Figures/Tables: 3 figures, 4 tables
48	41	
49	42	Key words: hepatitis C, testing, mathematical modelling, economic evaluation
50	43	
51	44	
52		
53		
54		
55		
56		
57		
58		
59		

60

2 3 4	ABSTRACT (265 words)			
5 6	46 47	Objectives: People who inject drugs (PWID) are at high-risk for acquiring hepatitis		
7 8	48	C virus (HCV), but many are unaware of their infection. HCV dried blood spot (DBS)		
9 10	49	testing increases case-finding in addiction services and prisons. We determine the		
11 12 12	50	cost-effectiveness of increasing HCV case-finding among PWID by offering DBS		
13 14 15	51	testing in specialist addiction services or prisons as compared to using		
16 17	52	venepuncture.		
18 19	53	Design: Cost-utility analysis using a dynamic HCV transmission model among		
20 21	54	PWID, including: disease progression, diagnosis, treatment, injecting status,		
22 23 24	55	incarceration, and addition services contact.		
25 26	56	Setting: United Kingdom		
27 28	57	Participants: N/A		
29 30	58	Intervention: DBS testing in specialist addiction services or prisons. Intervention		
31 32	59	impact was determined by a meta-analysis of primary data		
33 34 35	60	Primary and secondary outcome measures: Costs (in UK \pounds , \pounds 1=\$1.60 USD) and		
36 37	61	utilities (quality adjusted life years, QALYs) were attached to each state and the		
38 39	62	incremental cost effectiveness ratio (ICER) determined. Multivariate uncertainty and		
40 41	63	one-way sensitivity analyses were performed.		
42 43 44	64	Results: For a £20,000 per QALY gained willingness-to-pay threshold, DBS testing		
45 46	65	in addiction services is cost-effective (ICER of £14,600 per QALY gained). Under the		
47 48	66	base-case assumption of no continuity of treatment/care when exiting/entering		
49 50	67	prison, DBS testing in prisons is not cost-effective (ICER of £59,400 per QALY		
51 52	68	gained). Results are robust to changes in HCV prevalence; increasing PWID		
53 54 55	69	treatment rates to those for ex-PWID considerably reduces the ICER (\pounds 4,500 and		
56 57 58	70	\pounds 30,000 per QALY gained for addiction services and prison, respectively). If		

71	continuity of care is >40%, the prison DBS ICER falls below \pounds 20,000 per QALY
72	gained.
73	Conclusions: Despite low PWID treatment rates, increasing case-finding can be
74	cost-effective in specialist addiction services, and in prisons if continuity of
75	treatment/care is ensured.
76	Trial Registration: N/A
77	
78	ARTICLE SUMMARY
79	Article focus
80	We perform a cost-utility analysis of increasing HCV case-finding among
81	PWID by offering dried blood spot testing in specialist addiction services or
82	prisons.
83	Key messages
84	Despite low PWID treatment rates, increasing case-finding for PWID can be
85	cost-effective in specialist addiction services.
86	In prisons, the cost-effectiveness of HCV case-finding depends on adequate
87	continuity of treatment/care between prison and the community, as many
88	treatments are discontinued due to short incarceration times.
89	Strengths and limitations of this study
90	We use a dynamic mathematical model of HCV transmission to capture the
91	potential prevention benefits of treatment, which has been shown to increase
92	cost-effectiveness of HCV treatment for PWID.
93	Key limitations are the limited empirical data on PWID health utilities,
94	treatment rates, and intervention impact.
95	

3	
4	
5	
6	
7	
1	
8	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
21	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
20	
30	
39	
40	
41	
42	
43	
44	
45	
46	
47	
<u>7</u> 2	
40	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	
09	
60	

96 INTRODUCTION

In developed countries, the hepatitis C virus (HCV) is spread primarily through
injecting drug use, with over 90% of new infections among people who inject drugs
(PWID) and approximately 10 million PWID infected worldwide[1 2]. However,
diagnosis rates are low, with only half of infected PWID in the US and UK

101 diagnosed[3 4], putting many at risk of cirrhosis, liver cancer, and death.

102

The majority of HCV testing performed in the US and UK is through venepuncture,
which is available in virtually all prisons[5 6] and addiction services (structured
programs providing pharmacological or nonpharmacological drug treatment in the
community) either on site or by referral. However, testing opportunities among PWID
still may be limited. This is because venous access can be poor and specialist staff
(who may not be available at all potential testing sites) are required to take blood,
which if only available in hospital phlebotomy services can increase stigma[7].

Dried blood spot (DBS) testing is non-invasive and can be performed by clinical and non-clinical staff. Two UK studies[8 9] showed offering DBS testing within specialist addiction services and prisons led to a 3 to 6-fold increase in HCV testing, and a recent systematic review identified DBS as the best available targeted intervention for increasing HCV case-finding amongst PWID[10]. Hence, DBS testing could be an important component of any strategy attempting to scale-up treatment provision for PWID, for both care and prevention[11].

118

119 We perform a cost-utility analysis of introducing DBS testing amongst current and 120 former PWID in specialist addiction services and prisons in the UK[8]. Unlike

Page 5 of 60		BMJ Open	
1			
2 3 1	121	previous economic evaluations of HCV testing in these settings[12 13], we	
5	122	incorporate a dynamic mathematical model to capture the potential prevention	
7 8	123	benefits of treatment, which can substantially increase the cost-effectiveness of HCV	
9 10	124	treatment for PWID[14]. Our model is also the first to explore the importance of	
11 12	125	continuity of care between prison and the community.	
13 14 15	126		
16 17	127	METHODS	
18 19	128	Mathematical model	
20 21	129	An existing dynamic, deterministic model of HCV transmission, progression and HCV	
22 23	130	treatment was adapted to project the impact of introducing DBS testing in prisons	
24 25 26	131	and addiction services[14]. See appendix for details and model schematics. Briefly,	
27 28	132	the model stratifies by: injecting state (never PWID/PWID/ex-PWID); incarceration	
29 30	133	status (never/currently/formerly); contact with addiction services (in contact/not in	
31 32	134	contact); age ([15-19],[20-24],[25-29],[30-54],[55-64],[65-74],[75+]); HCV infection	
33 34 25	135	and disease progression (never infected, spontaneously cleared, mild HCV,	
36 37	136	moderate HCV, compensated cirrhosis, decompensated cirrhosis, hepatocellular	
38 39	137	carcinoma, liver transplant, post-transplant). HCV disease stages are further	
40 41	138	subdivided into undiagnosed or diagnosed, where those who are diagnosed can	
42 43	139	either be lost to follow-up, in referral (early/late), on antiviral treatment, sustained	
44 45 46	140	viral response (SVR), or non-SVR.	
40 47 48	141		
49 50	142	All PWID can acquire and transmit HCV, but imprisoned PWID only transmit HCV to	
51 52	143	other prisoners. We define ex-PWID as those who have permanently ceased	
53 54	144	injecting, and assume no ongoing transmission from non/ex-PWID. An individual's	
55 56	145	risk of acquiring HCV is proportional to the setting-specific HCV prevalence	
57 58 59			
60		5	

3	
4	
5	
6	
7	
, 8	
g	
10	
11	
12	
12	
1/	
14	
16	
17	
18	
10	
20	
20 21	
∠ I 22	
22	
20	
24	
20	
20	
21 28	
20	
29	
21	
22	
ວ∠ າາ	
აა ე∕≀	
34 25	
20	
20	
31 20	
30 20	
39	
40	
41 10	
42	
43 11	
74 15	
40	
40 17	
47	
40	
79 50	
50	
52	
52	
53	
55	
50	
57	
50	
50	
59	
00	

1 2

> 146 (prison/community). The model assumes a background rate of HCV testing for all 147 PWID and ex-PWID in the community/prison, and in addiction services for PWID. 148 149 No UK data exist regarding continuity of care (treatment or referral) on prison 150 entry/exit, but experts described difficulty in ensuring continuity on release (Eamonn 151 O'Moore[Offender Health, UK Department of Health], Iain Brew[HMP Leeds] 152 personal communication). Therefore, in our base-case we assume those in 153 treatment or referral become lost to follow-up upon entering/exiting prison, but can 154 be re-tested/re-treated. 155 156 Model fitting and base-case projections 157 For the probabilistic uncertainty analysis, 1000 parameter sets were sampled from 158 each parameter uncertainty distribution in tables 1-3. For each of these parameter sets, the model was calibrated to UK epidemiological data on incarceration, injecting 159 160 drug use, HCV prevalence, and diagnosis. This was achieved through a multi-step 161 parameter sampling and model calibration process, utilizing simplified models where 162 possible to reduce computational time and to verify the full model predictions against 163 simplified models. For details on the model calibration (including schematics and 164 equations) and initialization, see **appendix**. 165 166 After calibration, for each of the 1000 parameter sets, the model was run with and

without the intervention ('intervention' and 'baseline', respectively). We model an
intervention of offering DBS testing in prison, compared to a baseline of current
testing with venepuncture only. Additionally, we evaluate an intervention of offering
DBS in specialist addiction services, compared to a baseline of current testing with

BMJ Open

171	venepuncture. The economic analysis was performed from a UK National Health
172	Service perspective. Costs (in 2011 GBP, \pounds 1= $\$1.55$ USD) and health utilities (in
173	quality-adjusted life years, QALYs) were attached to each model compartment.
174	Costs and QALYs were discounted 3.5% per annum as per NICE guidelines, with a
175	100 year time horizon (to accrue individual and population benefits). The mean
176	incremental cost-effectiveness ratio (ICER) was calculated and cost-effectiveness
177	determined using the UK willingness-to-pay (WTP) threshold, estimated between
178	£20,000 and £30,000 per QALY gained[15]. Cost-effectiveness acceptability curves
179	were constructed and univariate sensitivity analyses undertaken. Analysis of
180	covariance (ANCOVA) methods were used to summarize the proportion of the
181	variability in the incremental costs and QALYs explained by the uncertainty in input
182	parameters[16].
183	
184	Parameters

Health state utilities: Uninfected utility values were taken from UK population

186 norms[17] for non-PWID, and a large cross-sectional study of injectors in

187 Scotland[18] for current PWID. We assumed equal utilities for ex-PWID and non-

188 PWID[13]. Utilities for HCV disease and treatment stages came from UK HCV trials

and economic evaluations[19-21] and used for ex-PWID (table 1). To derive PWID

190 HCV utilities, non-PWID HCV utilities were rescaled by multiplying by the ratio of the

191 uninfected PWID utility to the uninfected ex-PWID utility for the youngest age group.

All states included disutilities with age[17].

No disutility was associated with testing in the base-case. However, some evidence
suggests PWID may experience a disutility after positive HCV diagnosis[18 22]. We

explored the impact of a disutility (0.09[18], see **appendix**) on diagnosis, which wasfully regained with treatment SVR.

> Health state and testing costs: Health care costs for HCV disease stages, antiviral treatment (pegylated interferon-alfa and ribavirin, pegIFN+RBV), and testing were taken from UK economic analyses [19 20 23 24] (table 1 and appendix). Data on the yield (proportion tests Ab+) and prevalence in each setting were used to calculate the number of non-PWID tested for each PWID/ex-PWID (see **appendix**). Costs were inflated to 2011 GBP using the Health and Community Hospital Service pay and prices index[25]. Additional PWID treatment delivery costs were applied[14]. We assumed undiagnosed individuals do not incur HCV-related health care costs unless progressing to decompensated disease[12].

HCV disease progression parameters: Transition rates between disease stages
were taken from UK economic evaluations[19-21] (table 1). Although estimates were
not PWID specific, a recent meta-analysis suggests little evidence for differences in
progression between PWID and non-PWID[26].

HCV prevalence: PWID HCV chronic prevalence was estimated from HCV antibody
prevalence among PWID in England (45% [41-49%, 95% confidence interval
(CI)][27]), with spontaneous clearance of 26% of acute infections[28] resulting in
35% chronic infection.

Testing rates: The overall baseline PWID testing rate was estimated through fitting
the model to the current proportion of diagnosed PWID (approximately 50%[4]), and

BMJ Open

2 3 1	221	used to calculate setting-specific testing rates (prison, addiction services, other) (see
5 6	222	appendix). We assume ex-PWID are tested at equal rates to PWID in prison and in
7 8	223	general community settings. We assumed all diagnostic tests are 100% accurate
9 10	224	due to the high sensitivity and specificity of DBS and venepuncture [29 30] and
11 12	225	because those who receive an initial positive test will receive additional tests before
13 14 15	226	treatment.
16 17	227	
18 19	228	Referral and treatment transition rates: The referral rate from testing services to
20 21	229	secondary care (35%) was estimated from a UK study[31]. Those not referred or not
22 23 24	230	attending referral were considered 'lost to follow-up'.
25 26	231	
27 28	232	Approximately 50% of diagnosed ex-PWID in referral are treated within 2 years[31-
29 30	233	33]. Since many delay treatment, we assume that after 2 years, 10% of those in
31 32 22	234	referral initiate treatment annually. Within prison, treatment rates are much lower
34 35	235	than in the community[31 34], although a recent UK prison audit found 24% of those
36 37	236	diagnosed were treated (Iain Brew[HMP Leeds], unpublished data). We therefore
38 39	237	estimated half the treatment initiation rate in prison as compared to the community.
40 41	238	
42 43	239	PWID treatment rates are unknown, but thought to be similarly low to other
44 45 46	240	countries[35 36], with an estimated <1% of PWID treated annually (Graham
47 48	241	Foster[Consultant Hepatologist], personal communication). Hence, if we assume 1%
49 50	242	of infected PWID are treated within 2 years, this equates to treating approximately
51 52	243	5.5% of those who attend referral (35% of the 50% diagnosed) within 2 years. After
53 54 55	244	2 years, 1% of those in referral are treated annually thereafter. Testing and treatment
56 57 58	245	rates are shown in table 1 .

246	
247	Intervention: The effect of introducing DBS was modelled by assuming a 3.6-fold
248	increase in testing [2.2-5.8 CI] in addiction services, and 2.6-fold increase in testing
249	[0.1-34.9 CI] in prison, based on two multicentre studies (table 2 and appendix).
250	Intervention costs were determined from the study methods[8] and in consultation
251	with the authors (table 2).
252	
253	Sensitivity analyses
254	We performed one-way sensitivity analyses on: time horizon (50/200 years),
255	discount rates (3.5% costs/1.5% QALYs), PWID treatment rates (increased in each
256	setting), PWID SVR rates (reduced by 20%), PWID HCV chronic prevalence
257	(20%/50%), antiviral treatment (telaprevir/boceprevir for genotype 1 patients, see
258	appendix), and continuity of care for treatment/referral on entry/exit from prison
259	(varied from 0% to 100%). We also explored the effect of assuming no prevention
260	benefit (but allowing for reinfectiopg n), by permanently fixing the force of infection.
261	
262	
263	RESULTS
264	
265	Case finding in addiction services
266	The incremental cost effectiveness ratio (ICER) of increasing case-finding in
267	addiction services, by introducing DBS testing, was an estimated £14,600 (\$22,630
268	USD) per QALY gained in the base-case (table 4). At a £20,000 or £30,000 WTP
269	threshold, the intervention is likely to be cost-effective in 69% or 93% of the
270	simulations, respectively (figure 1a). Uncertainty in the intervention effect

BMJ Open

271	contributed to 86% and 58% of the variation in incremental costs and QALYs,
272	respectively. The remaining variation in incremental QALYs was mainly due to
273	uncertainty in treatment rates (22%) and health utilities (17%).
274	
275	For most sensitivity analyses, the ICER remained below a \pounds 30,000 WTP threshold
276	(figure 2a). Reducing the time horizon to 50 years increased the estimated ICER to
277	£22,900 per QALY gained because fewer prevention benefits were accrued,
278	whereas lengthening to 200 years increased cost-effectiveness. Changing the
279	discount rates to 3.5% costs/1.5% QALYs or no discounting decreased the
280	estimated ICER to £5,100 or £6,700 per QALY gained, respectively. Variations in
281	baseline HCV chronic prevalence had little effect (<10%). At lower prevalence (20%),
282	identifying cases was more expensive but prevention impact was greater due to
283	reduced reinfection risk, whereas the opposite occurred at higher prevalence (50%).
284	
285	Increasing treatment rates increased the intervention's cost-effectiveness. If 50%
286	(compared to 5.5% for base-case) of PWID in referral initiated treatment within 2
287	years (a treatment rate achieved by one UK service[37]) the ICER fell to £4,500 per
288	QALY gained. If SVR rates amongst PWID were 20% lower than in ex-PWID, the
289	ICER increased by 14% (£16,700 per QALY gained). Using telaprevir/boceprevir for
290	genotype 1 patients minimally altered the ICER. Ignoring any prevention benefit
291	doubled the ICER to £29,900 per QALY gained.
292	
293	Only one sensitivity analysis substantially altered the cost-effectiveness conclusion.
294	If a disutility was attached to diagnosis, the intervention resulted in negative
295	incremental QALYs (due to low treatment rates) and was dominated (more
	11

1	
4	
ວ	
6	
7	
8	
9	
10)
11	
10	,
12	-
13)
14	-
15)
16	;
17	•
18	;
19)
20)
21	
∠ I 20	,
22	
23	5
24	-
25	;
26	;
27	,
28	1
20	
23 20	,
30	,
31	
32	-
33	}
34	-
35	;
36	;
27 27	,
ວາ ວດ	,
აი იი)
39)
40)
41	
42	2
43	5
44	-
45	5
10	
40	,
41	
48	5
49)
50)
51	
52	2
53	5
5/	
55	
00 50	
26	
57	
58	}
59)
60)

expensive with fewer health benefits). However, even with this disutility, if treatment

rates were increased to 50% of PWID in referral initiating treatment within 2 years,

then the estimated ICER was £20,100 per QALY gained.

299

1
2
2

300 Case finding in prison

301 The ICER of increasing case-finding in prison, by introducing DBS testing, was

302 estimated at £59,400 (\$92,070 USD) per QALY gained (21% likely to be cost-

303 effective at a £30,000 WTP threshold) in the base-case (**table 4** and **figure 1b**).

304 Uncertainty in the intervention effect contributed to most (>85%) of the variation in

305 incremental costs and QALYs.

306

The base-case conclusion was robust to most one-way sensitivity analyses (figure
2b) – including time horizon, discount rates, HCV prevalence, and use of new
treatments. If 50% of PWID in referral initiated treatment within 2 years, the ICER

310 halved to just below £30,000 per QALY gained.

311

312 Introducing continuity of care (which measures the proportion of initiated 313 treatments/referrals that are continued when entering/exiting prison) led to an 314 increase in cost-effectiveness: from an ICER of £59,400 per QALY gained with 0% 315 continuity to £10,400 per QALY gained with 100% continuity (figure 3). The ICER fell below £20,000 when >40% continuity of care was ensured; at 40% continuity the 316 intervention was 57% and 83% likely to be cost-effective at the £20,000 and £30,000 317 318 WTP thresholds, respectively. The level of continuity required for prison case-finding 319 to be cost-effective also depended on treatment rates. If prison treatment rates were 320 increased to equal those in the community (50%/5.5% of ex-PWID/PWID treated

BMJ Open

321	within 2 years of referral), then 35% continuity results in an ICER just below £20,000
322	per QALY gained. Increasing treatment rates further so 50% of all referred prisoners
323	initiate treatment within 2 years lowers the required continuity to 20% for an ICER
324	below £20,000.
325	
326	DISCUSSION
327	Main findings
328	Our results indicate the introduction of dried blood spot testing for HCV case-finding
329	is likely to be cost-effective under commonly used willingness-to-pay thresholds in
330	the UK (£20,000-£30,000/QALY gained[15]) and US (\$50,000/QALY gained[38]) in
331	addiction services, but not in prison unless a minimum level of continuity of care in
332	treatment or referral between prison and the community can be ensured. Ignoring
333	the prevention benefit doubles the ICER of the intervention in addiction services. In
334	the base-case, most PWID treatments initiated in prison were interrupted due to the
335	lack of continuity of care and short PWID incarceration times (~4 months) in the UK.
336	Consequently, little prevention benefit was achieved from the prison intervention,
337	with the results approaching the 'static' model. With the low base-case PWID
338	treatment rates, the continuity required for DBS to be cost-effective was
339	approximately 35-40% of the estimated treatment/referral rates, but if
340	treatment/referral rates increased then lower levels of continuity would be cost-
341	effective. Crucially, not all treatments need to be initiated or completed in prison, as
342	only maintaining treatment or referral contact is necessary. Finally, both interventions
343	are most cost-effective at higher treatment rates.
344	
345	Strengths and Limitations

The key strength of this analysis is that the model is dynamic, therefore capturing the prevention impact of case-finding and treatment. The main limitations are concerned with parameter uncertainty and lack of model heterogeneity. First, we based our increase in case-finding on the DBS intervention, which though empirically founded, was informed by relatively small UK studies, resulting in wide uncertainty around the effect estimates.

Second, the base-case assumed comparatively low treatment rates for PWID, partly because UK data on PWID treatment numbers are not available, although similar rates have been reported in the US[36] and Canada[35]. This information is critical, as higher treatment rates increase the intervention's cost-effectiveness. This is especially important for prisons where information on treatment completion was unavailable, yet these factors strongly influenced cost-effectiveness. Additionally, even if treatment is interrupted, some may benefit from shortened treatment, which we did not incorporate. However, the rapid development of resistance observed with new treatments[39] indicates treatment continuity will become an increasingly crucial issue.

Third, more data are needed to quantify PWID health utilities, which can be below the general population[40]. Especially important is whether any transient or permanent disutility on HCV diagnosis occurs, as current data are weak and not based on prospective studies. No consensus exists regarding diagnosis utilities in other diseases[41 42]. Our projections indicate if a disutility occurs then higher treatment rates are required for case-finding to be cost-effective.

BMJ Open

2	
3	
4	
5	
6	
7	
פ	
0	
3	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
2U	
21	
22	
23	
24	
25	
26	
27	
28	
20	
20	
24	
20	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
12	
72 10	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
50	
20	
ວ/ ເດ	
58	
59	
60	

371	Fourth, the model did not incorporate other interventions or behaviours that may
372	influence HCV risk or treatment uptake. For example, case-finding and treatment of
373	PWID is targeted towards those on opiate substitution therapy[43] who may
374	contribute fewer secondary infections[44]. However, modelling work has shown
375	introducing risk heterogeneity does not substantially reduce intervention impact if
376	PWID circulate between risk states[45] which is likely to occur as individuals move
377	in/out of drug treatment and prison.

378

Fifth, the model was parameterized to UK data, so our results are not necessarily applicable to other settings. However, our conclusions are robust to changes in HCV prevalence. Continuity of care could also be an issue in Australia, where PWID incarceration duration is similar to the UK[46]. However, sentences are longer in the US[47], so fewer treatments may be interrupted, and therefore case-finding in US prisons could be more cost-effective than our results indicate.

385

Our modelled UK treatment and HCV health care costs are within the range of those presented by recent US studies[48 49], with the exception of approximately 3-fold higher liver transplantation costs, which would increase the cost-effectiveness of case-finding in the US. Finally, the higher proportion of genotype 1 (75%) in the US would reduce the population average SVR by approximately 15%, but we show case-finding is still cost-effective in addiction services with a reduction in PWID SVR by 20%.

393

394 Comparison with other studies

Two publications evaluated the cost-effectiveness of testing ex-PWID in prison, with ICERs varying from about £20,000[13] to £55,000[12] per QALY gained. Our results are consistent with Sutton et al.[12], which used the same discount rates as our study. However, we included the possible prevention impact of treating PWID, and unlike the previous studies, show how continuity of care between prison and the community can make case-finding cost-effective.

Three papers evaluated testing PWID in drug services[13 24 50]. Differences in baseline assumptions led to varying ICERs from £28,100[24] to £17,500[13 50] per QALY gained. Our results for addiction services support those found in the latter studies[13 50]. However, the intervention examined in these studies[13 24 50] was one-off testing using a cohort model (with no evidence based intervention effect) and neglected any prevention benefit.

Several US studies examined birth cohort screening for all people born in 1945-1965[49 51] or 1946-1970[48] as compared to risk based screening, reporting ICERs of \$38,000 per QALY gained with direct-acting antivirals[48 49] and \$5,400-16,000 per QALY gained with pegIFN+RBV[49 51]. Critically, the cost-effectiveness varies substantially by HCV prevalence[51], and the estimated US prevalence is higher than many other developed countries. Additionally, the ICERs were generated given assumptions of higher treatment rates, as well as greater utility gains with SVR than we consider. Importantly, our intervention targets PWID with a risk of transmitting infection to others, whereas birth cohort screening is likely to identify infections among ex-injectors and non-injecting populations which will have little primary prevention impact.

BMJ Open

420	
421	Implications
422	Our cost-effectiveness work indicates increasing HCV case-finding in addiction
423	services can be cost-effective. However, the cost-effectiveness of prison case-
424	finding interventions depends on adequate continuity of care with the community.
425	Few settings have developed comprehensive strategies to address this issue,
426	though New York state recently initiated the Hepatitis C Continuity Program[52]. In
427	all settings, treatment uptake is critical: higher treatment rates prevent more disease
428	transmission and increase the cost-effectiveness of case-finding interventions. If a
429	disutility on diagnosis occurs, higher treatment rates would be necessary to ensure
430	cost-effectiveness. Further empirical data are required on treatment uptake and
431	changes in utilities following diagnosis and treatment in order to compare targeted
432	case-finding with cohort models.
433	
434	AUTHOR CONTRIBUTIONS
435	NKM contributed to the study design, model development, analysis, manuscript
436	drafting and editing. MH contributed to the study design, model development,
437	analysis, and manuscript editing. AM contributed to the analysis and manuscript
438	editing. SJH contributed to the model parameterization, analysis, and manuscript
439	editing. AT contributed to the model parameterization and manuscript editing. PV
440	contributed to the study design, model development, analysis, and manuscript
441	editing.
442	Acknowledgements

3 ⊿	
4 5	
6	
7	
8	
9	
10	
11	
12	
13 14	
15	
16	
17	
18	
19	
20	
∠ı 22	
23	
24	
25	
26	
27	
28 20	
30	
31	
32	
33	
34	
35	
37	
38	
39	
40	
41	
42	
43	
45	
46	
47	
48	
49	
50 51	
51 52	
53	
54	
55	
56	
57	
58	
59 60	
58 59 60	

443	We thank the following	for their	r insights and/c	or data:	lain Brew,	Eamonn (D'Moore,
-----	------------------------	-----------	------------------	----------	------------	----------	----------

- 444 Sarah Collins, Noel Craine, Graham Foster, Anjan Ghosh, Cathie Gillies, Vivian
- 445 Hope, Scott McDonald, Fortune Ncumbe, Mary Ramsay, Katy Turner.

446 **Competing Interests**

- NM has received an honorarium for speaking at a conference sponsored by 447
- 448 Janssen. SH has received honoraria for speaking at conferences sponsored by
- unor. 449 MSD, Janssen, Gilead, and Roche. MH, AM, AT, PV have no competing interests.
- 450

451

452

454

1		
2		
3	455	
4	456	1. Nelson PK, Mathers BM, Cowle B, et al. Global epidemiology of hepatitis B and hepatitis C
5	457	in people who inject drugs: results of systematic reviews. The Lancet 2011; 378 :571-
0	458	83
8	459	2. De Angelis D, Sweeting M, Ades AE, et al. An evidence synthesis approach to estimating
9	460	Henatitis C Prevalence in England and Wales, Statistical Methods in Medical
10	461	Research 2009 ·18 (4)·361-79 doi: 10 1177/0962280208094691[nublished Online
11	161	First: Enub Date]]
12	402	2 Hagan H. Campholl I. Thiada H. at al. Solf reported honatitic Chirus antihody status and
13	405	s. nagari n, Campbell J, Thiede n, et al. Self-reported hepatitis C virus antibody status and
14	464	hisk behavior in young injectors. Addiction 2006;121(6):710-9
15	465	4. Health Protection Agency Colindale. Hepatitis C in the UK 2011, July 2011.
16	466	5. Department of Health, HPA Prison Infection Prevention Team, Liver Strategy Team.
17	467	National Survey of hepatitis C services in prisons (Draft report). 2011
10	468	6. Taxman FS, Perdoni ML, Harrison LD. Drug treatment services for adult offenders: The
20	469	state of the state. Journal of Substance Abuse Treatment 2007; 32 :239-54
20	470	7. Harris M, Rhodes T. Venous access and care: harnessing pragmatics in harm reduction for
22	471	people who inject drugs. Addiction 2011: doi:10.1111/j.1360-0443.2011.03749.x
23	472	8. Hickman M. McDonald T. Ali L et al. Increasing the uptake of hepatitis C virus testing
24	473	among injecting drug users in specialist drug treatment and prison settings by using
25	473	dried blood spots for diagnostic testing: a cluster randomized controlled trial. Journal
26	474	of Viral Henetitic 2008:1E(4):2E0 E4
27	475	Of Viral Repairus 2008;15(4).250-54
28	476	9. Craine N, Parry J, O Toole J, et al. Improving blood-borne viral diagnosis; clinical audit of
29	477	the uptake of dried blood spot testing offered by a substance misuse service. Journal
30	478	of Viral Hepatitis 2009; 16 :219-22
30 30	479	10. Jones L, Bates G, McCoy E, et al. A systematic review of the effectiveness & cost-
32	480	effectiveness of interventions aimed at raising awareness and engaging with groups
34	481	who are at an increased risk of hepatitis B and C infection.
35	482	http://www.nice.org.uk/nicemedia/live/11957/5946/5946.pdf, 2012.
36	483	11. Martin NK, Vickerman P, Foster GR, et al. Can antiviral therapy for hepatitis C reduce the
37	484	prevalence of HCV among injecting drug user populations? A modelling analysis of its
38	485	prevention utility Journal of Henatology 2011; 54 :1137-44
39	185	12 Sutton AL Edmunds WI Sweeting ML et al. The cost-effectiveness of screening and
40	400	troatment for honatitic C in prisons in England and Waloc: a cost utility analysis
41	407	lournal of Viral Hanatitis 2000 1 [1307 202
4Z 43	488	
43	489	13. Castelnuovo E, Thompson-Coon J, Pitt M, et al. The cost-effectiveness of testing for
45	490	hepatitis C in former injecting drug users. Health Technology Assessment
46	491	2006; 2006 (10):32
47	492	14. Martin NK, Miners A, Vickerman P, et al. The cost-effectiveness of HCV antiviral
48	493	treatment for injecting drug user populations. Hepatology 2012; 55 (1):49-57
49	494	15. NICE. Guide to the methods of technology appraisal, 2008.
50	495	16. Briggs A, Claxton K, Sculpher M. Decision Modelling for Health Economic Evaluation.
51	496	Oxford: Oxford University Press, 2006.
52	497	17. Kind P. Hardman G. Macran S. UK Population Norms for FO-5D: University of York 2008
つう 54	498	18. McDonald S. Hutchinson SI. Palmateer N. et al. Decrease in health-related quality of life
54 55	100	associated with awareness of henatitis C virus infaction among neonle who inject
56	499 500	drugs in Scotland, Journal of Hanatalagy (in prace) 2012
57	500	ulugs in Scotianu. Journal of Hepatology (III press) 2012
58		
59		
60		19

3	501	19. Shepherd J, Jones J, Hartwell D, et al. Interferon alfa (pegylated and non-pegylated) and
4	502	ribavirin for the treatment of mild chronic hepatitis C: a systematic review and
5	503	economic evaulation. Health Technology Assessment 2007; 11 (11):1-224
6	504	20. Wright M. Grieve R. Roberts I. et al. Health benefits of antiviral therapy for mild chronic
7	505	henatitis C: randomised controlled trial and economic evaluation. Health Technol
8	505	Accord 2006:10(21)
9	500	Assess 2000; $10(21)$
10	507	21. Hartwell D, Jones J, Baxter L, et al. Peginterferon alfa and ribavirin for chronic hepatitis C
12	508	in patients eligible for shortened treatment, re-treatment, or in HCV/HIV co-
12	509	infection: a systematic review and economic evaluation. Health Technol Assess
14	510	2011; 15 (17):1-210
15	511	22. Dalgard O. Egeland A. Skaug K. et al. Health-related Quality of Life in Active Injecting
16	512	Drug Users With and Without Chronic Hepatitis C Virus Infection, Hepatology
17	512	2004- 20 /1)-74 80
18	212	2004, 55 (1).74-60
19	514	23. British Medical Association. British National Formulary, humber 62: Bivij Publishing
20	515	Group, 2011.
21	516	24. Stein K, Dalziel K, Walker A, et al. Screening for Hepatitis C in injecting drug users: A cost
22	517	utility analysis. Journal of Public Health 2004; 26 (1):61-71
23	518	25. Personal Social Services Research Unit. Unit Costs of Health and Social Care 2011:
24	519	University of Kent. 2011.
25	520	26 John-Bantiste & Krahn MD. Heathcote L et al. The natural history of henatitis C infection
26	520	acquired through injection drugues: Mota analysis and mota regression. Journal of
27	521	acquired through injection of guse. Weta-analysis and meta-regression. Journal of
28	522	Hepatology 2010; 53 (2):245-51
29	523	27. Harris RJ, Ramsay M, Hope VD, et al. Hepatitis C prevalence in England remains low and
30	524	varies by ethnicity: an updated evidence synthesis. European Journal of Public Health
31	525	2011;Epub ahead of print
32	526	28. Micallef JM, Kaldor JM, Dore GJ. Spontaneous viral clearance following hepatitis C
34	527	infection: a systematic review of longitudinal studies. J Viral Hepat 2006:13:34-41
35	528	29 Judd A Parry I Hickman M et al. Evaluation of a modified commercial assay in detecting
36	520	antibody to benatitis Civirus in oral fluids and dried blood spots. I Med Virol
37	529	
38	530	
39	531	30. Colin C, Lanoir D, Touzet S, et al. Sensitivity and specificity of third-generation hepatitis C
40	532	virus antibody detection assays: an analysis of the literature. J Viral Hepat
41	533	2001; 8 (2):87-95
42	534	31. Irving WL, Smith S, Cater R, et al. Clinical pathways for patients with newly diagnosed
43	535	hepatitis C - What actually happens. Journal of Viral Hepatitis 2006;13(4):264-71
44	536	32. Jowett SL. Agarwal K. Smith BC. et al. Managing chronic hepatitis C acquired through
45	537	intravenous drug use O I Med 2001: 94 :153-58
46	537	22 Easter C. Coldin PD. Main L et al. Management of chronic henatitis C: clinical audit of
47	520	55. Foster G, Goldin KD, Main J, et al. Management of chrome nepatitis C. chinical addit of
48	539	bipsy based management algorithm. Bivij 1997; 315 :453-8
49	540	34. Skipper C, Guy JM, Parkes J, et al. Evaluation of a prison outreach clinic for the diagnosis
50	541	and prevention of hepatitis C: implications for the national strategy. Gut
51	542	2003; 52 :1500 - 04
52	543	35. Grebely J, Raffa JD, Lai C, et al. Low uptake of treatment for hepatitis C virus infection in
54	544	a large community-based study of inner city residents. J Viral Hepat 2009: 16 (5):352-
55	545	8
56	545	26 Mehta SH Genherg RL Astemborski Latal Limited Untaka of Hanatitis C Trastment
57	540 F 47	Among Injection Drug Hoors, I Course Hooks 2000, 22(2) 426, 22
58	547	Among injection Drug Users. J Comm Health 2008; 33 (3):126-33
59		
60		20

BMJ Open

эв 59 60		21
57	555	2007, 122 (3αμμι 2).05-00
56	592	2007-122(Sunnl 2)-83-88
54 55	507	Inmates: New York State's Henatitis C Continuity Drogram Dublic Health Poports
53 54	591	52 Klein SL Wright LN Birkhead GS et al Promoting HCV Treatment Completion for Prison
52	500	2012-5 4 (1259-1271)
51	589	General Population Screening for Henatitis C Clinical Infectious Diseases
50	588	51 Coffin PO Scott ID Golden MR et al Cost-effectiveness and Population Outcomes of
49	587	10.1093/fampra/cml032[published Online First: Epub Date]]
48	586	care: a cost utility analysis. Family Practice 2006: 23 (4):393-406 doi:
46 47	585	50. Thompson Coon J, Castelnuovo E, Pitt M, et al. Case finding for hepatitis C in primary
45	584	2012; 156 (4):263-70
44	583	Hepatitis C Antibody in U.S. Primary Care Settings. Annals of Internal Medicine
43	582	49. Rein D, Smith B, Witenborn J, et al. The Cost-Effectiveness of Birth-Cohort Screening for
42	581	10.1002/hep.25510[published Online First: Epub Date] . 🛛 🗾 📃
41	580	program for hepatitis C virus. Hepatology 2012; 55 (5):1344-55 doi:
40	579	48. McGarry LJ, Pawar VS, Parekh HH, et al. Economic model of a birth cohort screening
39	578	http://bjs.ojp.usdoj.gov/content/pub/pdf/p09.pdf, 2010.
<i>ও।</i> ३८	577	47. West H, Sabol W, Greenman S. Bureau of Justice Statistics Bulletin: Prisoners in 2009.
36	576	Diseases 2009; 13 :201-08
35	575	seroprevalence, seroconversion, and risk factors. International Journal of Infectious
34	5/4	46. Miller E, BI P, Ryan P. Hepatitis C virus infection in South Australian prisoners:
33	5/3	projections for all erent epidemic settings. Addiction 2012; 107 :1984-95
32	572	projections for different opidemic settings Addiction 2012:107:1084.05
31	572	substitution therapy achieve substantial reductions in HCV prevalence? Model
30	571	45. Vickerman P. Martin N. Turner K. et al. Can needle and svringe programmes and opiate
29	570	users; pooling of UK evidence. Addiction 2011: 106 (11):1978-88
21 28	569	opiate substitution therapy on the incidence of Hepatitis C virus in injecting drug
∠o 27	568	44. Turner K, Hutchinson S, Craine N, et al. The impact of needle and syringe provision and
25	567	doi:10.1086/600304[published Online First: Epub Date] .
24	566	Review of the Available Evidence. Clinical Infectious Diseases 2009;49(4):561-73 doi:
23	565	43. Hellard M, Sacks-Davis R, Gold J. Hepatitis C Treatment for Injection Drug Users: A
22	564	Oncology 2006; 24 (18):2822-27
21	563	Carcinoma-in-Situ: Results From the Nurses' Health Study. Journal of Clinical
20	562	42. Nekhlyudov L, Kroenke C, Jung I, et al. Prospective Changes in Quality of Life After Ductal
19	561	2012; bb (5):504-14
18	500	anxiety, mood and quality of life of patients: a prospective study. Int J Clin Pract
17	559	41. Iviatia 10221 N, Vignatelli L, Baluin E, et al. Effect of the disclosure of IVIS diagnosis on
15 16		EPUD Dalej. 11. Mattarozzi K. Vignatolli I. Baldin E. et al. Effect of the disclosure of MC discressions.
14		Treatment. Bivis 2010, 540 .C5172 doi: 10.1150/binj.C5172[published Online First.
13	550	trootmont, RMI 2010;240;c2172 doi: 10.1126/hmi.c2172[nublichod Opling Eirct:
12	556	prospective observational study of outcomes and effect of oniate substitution
11	555	40. Kimber J. Copeland L. Hickman M. et al. Survival and cessation in injecting drug users:
10	554	Hepatology 2011; 55 (1):192-206
9	553	39. Halfon P, Locarnini S. Hepatitis C virus resistance to protease inhibitors. Journal of
8	552	threshold. Expert Rev Pharmacoecon Outcomes Res 2008;8(2):165-78
ס 7	551	38. Grosse SD. Assessing cost-effectiveness in healthcare: history of the \$50,000 per QALY
5	550	use. Alimentary Pharmacology & Therapeutics 2009;29(1):29-37
4	549	hepatitis C in drug users: high rates of compliance with therapy despite ongoing drug
3	548	37. Wilkinson M, Crawford V, Tippet A, et al. Community-based treatment for chronic
2		

3	594	53. Health Protection Agency. Data tables of the Unlinked Anonymous Monitoring Survey of
4	595	HIV and Hepatitis in Injecting Drug Users Surveillance Update: July 2011, 2011.
5	596	54. NICE. Peginterferon alfa and ribavirin for the treatment of mild chronic hepatitis C.
6	597	Technology appraisal guidance 106: National Institute for Health and Clinical
/ Q	598	Excellence, 2006.
9	599	55 Hadzivannis SI Sette H. Morgan TR, et al. Peginterferon-Î+2a and Ribavirin Combination
10	600	Therapy in Chronic Henatitis C. Annals of Internal Medicine 2004: 140 (5):346-55
11	601	56 McHutchison IG, Lawitz EL, Shiffman ML, et al. Deginterferon Alfa-2h or Alfa-2a with
12	602	Dibayirin for Troatmont of Honatitis C Infoction, New England Journal of Modicine
13	002 CO2	2000.2 C1 (C), 520,02 doi: doi:10.105C(NEIMoo0808010[mublished Online First: Fouh
14	603	
15	604	Datejj. EZ Chiffron Mil Charf, Brann BB, shel Breisterform Alfa 2a and Bihavisis for 46 as 24
10	605	57. Shiftman IVIL, Suter F, Bacon BK, et al. Peginterferon Alfa-2a and Ribavirin for 16 or 24
18	606	Weeks in HCV Genotype 2 or 3. N Engl J Med 2007; 357 (2):124-34 doi:
19	607	10.1056/NEJMoa066403[published Online First: Epub Date] .
20	608	58. Bruno S, Shiffman M, Roberts SK, et al. Efficacy and Safety of Peginterferon Alfa-2D
21	609	(40KD) Plus Ribavirin in Hepatitis C Patients with Advanced Fibrosis and Cirrhosis.
22	610	Hepatology 2010; 51 (2):388-97
23	611	59. Sweeting MJ, De Angelis D, Ades AE, et al. Estimating the prevalence of ex-injecting drug
24	612	use in the population. <mark>Stats Meth Med Res 2009;18(4):381-95 doi:</mark>
25	613	10.1177/0962280208094704[published Online First: Epub Date] .
20 27	614	60. Vickerman P, Miners A, Williams J. Assessing the cost-effectiveness of interventions
28	615	linked to needle and syringe programmes for injecting drug users. In: NICE, ed.
29	616	London, 2008.
30	617	61. Cornish R. Macleod J. Strang J. et al. Risk of death during and after opiate substitution
31	618	treatment in primary care: prospective observational study in UK General Practice
32	619	Research Database BMI 2010: 341 doi: 10.1136/bmi c5475[published Online First:
33	620	Enub Date]]
34 35	621	62 Sutton AL Gay NL Edmunds WL et al. Modelling the benatitis B vaccination programme
36	622	in prisons. Enidemial Infect 2006: 124 :231 - 42
37	622	62. Covernment Actuary's Department. Interim life tables 1980 82 to 2004 06: Office for
38	624	National Statistics
39	024	National Statistics.
40	625	64. Ministry of Justice. Population in Custody Tables August 2010, 2010.
41	626	65. Office for National Statistics. Population Estimates for UK, England and Wales, Scotland
42	627	and Northern Ireland, Mid-2010, 2010.
43 44	628	66. Hay G, Gannon M, MacDougall J, et al. Capture-recapture and anchored preavlence
45	629	estimation of injecting drug users in England: national and regional estimates.
46	630	Statistical Methods in Medical Research 2009; 18 (4):323-39
47	631	67. Prime J, White S, Liriano S, et al. Criminal careers of those born between 1953 and 1978,
48	632	England and Wales: Home Office, Statistical Bulletin, 2001.
49	633	
50	634	
51	635	
52		
54		
55		
56		
57		
58		

1		
2		
3	636	
4	637	Figure Legends:
5	628	
6	620	Figure 1. Pass each affectiveness accentability surves for the dried blood
7	039	Figure 1. Dase-case cost-effectiveness acceptability curves for the uneu blood
8	640	spot intervention. Results shown for the (a) addiction services and (b) prison
9	641	interventions for various willingness-to-pay thresholds.
10	642	
10	643	Figure 2. Univariate sensitivity analyses on the mean incremental cost-
12	644	effectiveness ratio (ICER). Results shown for the dried blood spot intervention in
14	645	(a) addiction services and (b) prison. Vertical line represents the base-case ICER,
15	646	estimated at (a) £14,600 per QALY gained and (b) £59,400 per QALY gained.
16	647	
17	648	
18	649	Figure 3. Incremental cost-effectiveness ratios for the prison intervention with
19	650	varving continuity of care assumptions. Base-case scenario assumed 0%
20	651	continuity.
21	652	
22	652	
23	033	
24		
25		
26		
27		
28		
29		
3U 21		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44 1E		
40 16		
40 17		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
59		
60		2.

	Mean value	Distribution	Reference					
Transition probabilities per year (all probabilities converted to instantaneous rates)								
Mild to moderate Moderate to cirrhosis Cirrhosis to decompensated cirrhosis Cirrhosis/decomp. cirrhosis to HCC Decompensated cirrhosis/HCC to LT Decompensated cirrhosis to death HCC to death LT to death	0.025 0.037 0.039 0.014 0.03 0.13 0.43 0.21	Beta(α =38.0859, β =1485.3516) Beta(α =26.905, β =700.2582) Beta(α =14.6168, β =360.1732) Beta(α =1.9326, β =136.1074) Beta(α =6.5256, β =210.9945) Beta(α =147.03, β =983.97) Beta(α =117.1033, β =155.23) Beta(α =16.2762, β =61.2294) Deta(α =22.0017, β =270.9825)	[19] [19] [19] [19] [19] [19] [19] [19]					
Health state utilities/disutilities per year	0.057	Beta(u=22.9017, p=378.8823)	[19]					
Health state utilities/disutilities per year								
Ex-PWID age 15-19 Uninfected Mild Moderate Cirrhosis Decompensated cirrhosis Hepatocellular carcinoma Liver transplant Post transplant Mild - on treatment Moderate - on treatment Cirrhosis - on treatment Mild SVR Moderate SVR Cirrhosis SVR PWID age 15-19 Uninfected HCV disease states Disutility with age 20-24 25-29 30-54 55-64 65-74 75+	0.94 0.77 0.66 0.55 0.45 0.45 0.45 0.45 0.67 0.66 0.55 0.46 0.82 0.72 0.61 0.74 As in ex- 0 0.005 0.049 0.14 0.21	Beta(α =521.2375, β =155.6943) Beta(α =168.2461, β =86.6723) Beta(α =47.1021, β =38.5381) Beta(α =123.75, β =151.25) Beta(α =123.75, β =151.25) Beta(α =123.75, β =151.25) Beta(α =59.2548, β =29.1852) Beta(α =115.706, β =59.6063) Beta(α =47.1021, β =38.5381) Beta(α =3953, β =4641) Beta(α =65.8678, β =14.4588) Beta(α =58.0608, β =22.5792) Beta(α =58.0476, β =37.1124) Uniform(0.67,0.8) PWID, but reduced by PropPWID [†]	[17] [19 20] [19 20] [19 20] [19 20] [19 20] [20 21] [19 20] [12 19 20] [12] [19 20] [12] [19 20] [12] [17] [17] [17] [17] [17] [17]					
Costs (£ per year, except where noted)								
Mild diagnosed Moderate diagnosed Cirrhosis diagnosed Decompensated cirrhosis Hepatocellular carcinoma Liver transplant (per transplant) Cost of care in year of liver transplant Post transplant Mild SVR Moderate SVR Cirrhosis SVR Undiagnosed states PegIFN+RBV drug only	169 880 1,397 11,199 9,980 33,561 11,614 1,701 318 880 1,397 0	PPI [‡] ×Gamma(k =25.6995, θ =5.3698) PPI [‡] ×Gamma(k =88.8502, θ =8.0698) PPI [‡] ×Gamma(k =24.2342, θ =46.9584) PPI [‡] ×Gamma(k =36.0249, θ =253.1582) PPI [‡] ×Gamma(k =18.1081, θ =448.8045) PPI [‡] ×Gamma(k =89.7536, θ =304.5004) PPI [‡] ×Gamma(k =13.7788, θ =686.4168) PPI [‡] ×Gamma(k =15.2189, θ =91.0053) PPI [‡] ×Gamma(k =28.8141, θ =8.9887) PPI [‡] ×Gamma(k =88.8502, θ =8.0698) PPI [‡] ×Gamma(k =24.2342, θ =46.9584)	[19 20] [19 20] [19 20] [19 20] [19] [19] [19] [19] [19] [19] [19] [19					
24 weeks, halved/doubled for 12/48 wks Treatment delivery Ex-PWID 12 weeks	5,320 1 912	Uniform (4788, 5852) Varied, see appendix	[23] See appendix[19]					
	1,012							

BMJ Open

2								
3	Ex-PWID, 24 weeks	2,057	Varied, see appendix	See appendix[19]				
4	Ex-PWID, 48 weeks	2,326	Varied, see appendix	See appendix[19]				
5	PWID. 12 weeks	2.193	Varied, see appendix	See appendix				
5	PWID, 24 weeks	2,435	Varied, see appendix	See appendix				
0	PWID, 48 weeks	2,900	Varied, see appendix	See appendix				
1	Testing costs in all settings except prison	115 21	Uniform $\pm -50\%$	See appendix				
8	Testing costs in prison	144 21	Uniform $\pm - 60\%$	See annendix				
9	PCR RNA test (if antibody positive)	73 67		[24]				
10	Testing and the strengt a superstand	10.01		[27]				
11	lesting and treatment parameters							
12	Proportion PWID diagnosed (initial)	50%		[4]				
13	Proportion PWID treated (initial)	0%		Assumption				
14	Proportion ex-PWID diagnosed (initial)	30%	Uniform (24%, 36%)	Assumption [53]				
15	Proportion of diagnosed ex-PWID	10%	Uniform (5%, 15%)	Estimated <10%				
16	treated (initial)			diagnosed chronic				
17				infections treated				
10				[4]				
18	Proportion HCV genotype 1	50%		[4 54]				
19	Sustained viral response(SVR)							
20	Genotype 1 mild/moderate	0.45	Uniform (0.4, 0.5)	[54-56]				
21	Genotype 2/3 mild/mod	0.8	Uniform (0.75, 0.85)	54 57				
22	Genotype 1 cirrhosis	0.25	55% reduction from mild/mod	[58]				
23	Genotype 2/3 cirrhosis	0.6	75% reduction from mild/mod	[58]				
24	Antiviral treatment duration (weeks)							
25	Genotype 1 SVR	48		[54]				
26	Genotype 1 non-SVR	12		[54]				
27	Genotype 2/3	24		[54]				
20	Distribution of PWID HCV tests			L- J				
20	GP	38.4%		§				
29	Prison	11.5%		§				
30	Addiction services	29.4%		§				
31	Other	20.7%		§				
32	Proportion who are referred and	35%	Uniform (25%, 45%)	[13 31]				
33	attend referral			[]				
34	Proportion in referral who initiate							
35	treatment within 2 years (excl. prison)							
36	Fx-PWID	50%	Uniform(40%, 60%)	[13 31-33]				
37	PWID	5.5%	Uniform(1%, 10%)	Assumption				
38	Treatment initiation rate after 2 years	0.070		, 1000111pt1011				
30	in referral (excl. prison) per year							
39 40	Fx-PWID	10%	Uniform(5% 15%)	Assumption				
40	PWID	3%	Uniform(1%, 5%)	Assumption				
41	Treatment rates in prison	Half out-	of- prison rates	Assumption				
42	Yield (proportion tests Ab+)	Than out		/ loodinption				
43	GP	27%		§				
44	Prison	14 7%		§				
45	Addiction services	17 7%		Š				
46	Other	1.7%		§				
47 ^I		1.7 /0						

Table61. Model parameters. [†]PropPWID=(uninfected PWID utility value for age 15-19) ((5) ninfected ex-PWID utility for age 15-19). [‡]PPI=Hospital and Community Health Services Pay6a8d Prices Index inflation factor. [§]Health Protection Agency (HPA) unpublished data from the 20010 Sentinel Surveillance. "Iain Brew, HMP Leeds, unpublished data. HCC= hepatocellular carcinoma; LT=liver transplant; SVR=sustained viral response; pegs5N=pegylated interferon; RBV= ribavirin

	Mean	Distribution	Units	Re
	value			
Intervention effect (proportional change i	n testing rate)			
Addiction services	3.6	Lognormal		[8
	[2.3-5.8]	(μ=1.285, σ=0.239)	-	
Prison	2.6	Lognormal	-	[8]
	[0.2-34.9]	(μ=0.968, σ=1.317)		
Intervention costs (addiction services)				
Organization/coordination of training*	2,005.71		per health board	†
Training session [‡]	135		per training session	†
Attendees time ^s	1,620		per training session	Ť
Travel reimbursement for training leader"	90.86		per training session	Ť
Total cost per addiction services training	3851.57		per training session	t
Mean number tested	40.3		per addiction service [®]	[8
Total intervention cost per test	95.57	Uniform +/-50%	per test	
Intervention costs (prison)				
Organization/coordination of training**	7020		per prison	†
Training session [‡]	135		per prison	†
Attendees time ^{TT}	405		per prison	Ť
Travel reimbursement for training leader ^{‡‡}	127.20		per prison	Ť
Total cost per prison training	7687.20		per prison	1
Mean number tested per prison	116		per prison	[8
Total intervention cost per test	66.27	Uniform +/- 50%	per test	

Table 2. Intervention parameters. All cost estimates assume a staff-nurse cost per hour of £3664 median estimate for band 5 general practice nurse [25]). *1 nurse 2 days/week for 6 most hs for 7 health boards. One training session per health board. [†]Noel Craine, personal **communication**. [‡]1 nurse, half day. [§]12 nurses, half day. ^{"1200} miles (£0.53 per mile) for trade to 7 health boards. [¶]Assumed 1 addiction service per health board. ^{#1} nurse full time for the formation of the period. The period of the period of the period. ^{#1} nurse full time for the period. ^{#1} nurse full time full time for the period. ^{#1} nurse full time full time full time full time for the period. ^{#1} nurse full time full ti (£6653 per mile) for 5 prisons.

	Mean value	Sample	d values		Units	Ref.
Average duration of injecting	11	62.86	11 134	15.8	vears	[59 60]
until cessation	11	0.2, 0.0,	, 11, 13.4,	10.0	years	[00 00]
PWID overdose rate	0.01	0 007 0	01 0 013		Per vear	[61]
Duration in addiction services	9	7.9.11			months	Estimated from OST
	U	., 0,				duration[61]
Incarceration duration						
PWID						
All ages	4	2.67, 4,	5.33		Months	[62]
Ex-PWID						
15-19	2.75				Months	[62]
20-24	6.26				Months	[62]
25-29	8.42				Months	[62]
30-54	9.76				Months	[62]
55-64	11.92				Months	[62]
65+	12.49				Months	[62]
Age of first injection distribution						
15-19	41%				-	Combined UK data from [4
20-24	30%				-	Combined UK data from [4
25-29	16%				-	Combined UK data from [4
30-54	13%				-	Combined UK data from [4
55+	0%				-	Combined UK data from [4
Death rate by age						
15-19	0.0003				Per year	[63]
20-24	0.0005				Per year	[63]
25-29	0.0006				Per year	[63]
30-54	0.0019				Per year	[63]
55-64	0.0073				Per year	[63]
65-74	0.0200				Per year	[63]
75+	0.165				Per year	[63]
Proportion of England population	0.2%				•	[64 65]
currently imprisoned aged 15-59						-
Proportion of population	0.65%					[66]
who are PWID aged 15-59						r - 1
Proportion PWID in contact	50%					[44]
with addiction services						r
Proportion PWID diagnosed	50%					[4]
PWID HCV chronic prevalence	35%					1271
Proportion infections leading to	0.26	Uniform	(0.22. 0.2	9)	-	1281
spontaneous clearance			,, - .	,		
	Age distribution				Reference	
	15-19	20-24	25-29	30-54	55+	
	1.00/	0.50/	20/	40/		[67]
with a custodial septence	1.3%	2.5%	3%	4%	-	[0/]
Age distribution of prisoners	8%	200/	100/	170/	70/	[64]
Proportion PWID over in prison	0 70 1 80/-	20%	67%	4170 730/	/ 70	[U+] *
Proportion prisoners over BMD	40%	40%	360/	1370	- Q0/	†
	5%	10 %	30%	44 70	0 70	

Table23. Epidemiological/prison input parameters for model fitting *Unlinked Anonymous Montitoring Survey of PWID, Health Protection Agency, London, unpublished data. [†]Scottish prison data7Avril Taylor, unpublished data.

Intervention location	Discounted Costs (2011 £) [95% interval]	Discounted QALYs [95% interval]	Incremental costs [95% interval]	Incremental QALYs [95% interval]	ICER (£ per QALY gained)		
Addiction							
services Baseline	37,181,582 [19,384,816– 67,271,249]	5,354,331 [4,867,168– 5,960,766]	-	-	-		
Intervention	38,099,060 [20,140,578– 68,378,488]	5,354,393 [4,867,206– 5,960,853]	917,478 [481,174– 1,664,430]	63 [19–153]	14,632		
Prison							
Baseline	37,181,582 [19,384,816– 67,271,249]	5,354,331 [4,867,168– 5,960,766]	-	-	-		
Intervention	38,245,293 [19,852,634– 68,601,970]	5,354,349 [4,867,184– 5,960,823]	1,063,710 [-225,101 – 6,060,267]	18 [-12 – 75]	59,418		

Table 4. Cost-effectiveness results from the base-case intervention analyses.

(b)

Figure 1

Base-case cost-effectiveness acceptability curves for the dried blood spot intervention. Results shown for the (a) addiction services and (b) prison interventions for various willingness-to-pay thresholds. 396x529mm (72 x 72 DPI)

APPENDIX

Mathematical model

A dynamic, deterministic compartmental model of injecting drug use, HCV transmission, progression, treatment, and diagnosis amongst PWID was developed, to project the impact of interventions to increase HCV testing of PWID. Schematics for the model components can be found in **appendix figures 1 and 2**. The HCV transmission, antiviral treatment, and disease progression model was based on a coupled system of ordinary differential equations previously published by the authors[1]. Susceptible PWID can become acutely infected with HCV by sharing injecting equipment with other infected PWID. We model a frequency dependent force of infection, such that an individual's risk of infection is proportional to the overall prevalence of infection. This model assumes a proportion (26%) of acutely infected PWID progress to chronic infection, with the remainder resolving their acute infection after a number of months and developing an antibody (Ab) response, thus becoming Ab+/RNA-. Those that develop chronic infection (Ab+/RNA+) remain infected and, unless successfully treated. progress through the various HCV disease stages (mild, moderate, compensated cirrhosis, decompensated cirrhosis, hepatocellular carcinoma (HCC), liver transplant, and post transplant). Death occurs from all stages, but elevated mortality rates were used from the decompensated cirrhosis, HCC, liver transplant, and post-transplant stages. If treated, infected PWID can achieve sustained viral response (SVR) whereby they are cured and are not at risk of progressing to a more advanced disease state, but remain at their current stage of liver progression (mild, moderate, or compensated cirrhosis), and are susceptible to reinfection. If reinfected after achieving SVR, the PWID re-enters the infected compartment of their associated HCV disease stage. If a PWID fails treatment (non-SVR), they remain infected and can progress to more severe disease stages. Successfully treated PWID can be reinfected and retreated, but those who do not achieve SVR are ineligible for retreatment. Due to reduced viral loads during treatment (even amongst those who relapse and do not achieve SVR), we assume PWID are not infectious during treatment[2, 3]. Current injectors are at risk of infection, but after permanent cessation of injecting do not have any infection risk. For simplicity, the model does not assume any behavioural heterogeneity among the PWID population

(such as high/low risk), as modelling indicated introducing heterogeneity in risk does not have an undue influence on prevention intervention effectiveness as long as individuals circulate between high risk and intervention states[4].

For this analysis, the model was adapted in the following ways. First, the model compartments were subdivided to allow for a distinction between naïve uninfected (Ab-/RNA-) or spontaneously cleared individuals (Ab+/RNA-), as well as the following diagnosis stages for chronic infection: undiagnosed, diagnosed but lost to follow-up and not in referral, diagnosed and in the first 2 years of referral, and diagnosed and in referral after 2 years. For ex-PWID, an additional compartment was added to represent those who were uninfected and tested (hence who would not be re-tested as they do not have a continuing infection risk).

In order to appropriately model incarceration, the model structure was replicated to track the flow of PWID and ex-PWID between never incarcerated, currently incarcerated, and formerly incarcerated states. In addition, compartments for never-PWID were added (never incarcerated, currently incarcerated, formerly incarcerated) to enable model calibration to general population incarceration data. This model structure was based on previously published mathematical models of PWID incarceration[5, 6], and it was assumed that incarceration and re-incarceration rates of ex-PWID were equal to that of never-PWID.

Additionally, for PWID not imprisoned (never imprisoned and formerly imprisoned) we further stratified movement by contact with addiction services (in contact/not in contact). We assumed only those in contact with addiction services could be tested in addiction services. We also assumed that on release from prison, PWID were not immediately in contact with addiction services.

Finally, the model was split into 7 age compartments ([15-19],[20-24],[25-29],[30-54],[55-64],[65-74],[75+]), with individuals entering the model at age 15-19 as never-

BMJ Open

PWID. In total, the model consists of 222 states and 7 age stratifications, leading to 222 x 7=1,554 compartments.

The model assumes that prisoners only share with other prisoners. Similarly, outside prison, we did not assume any difference in sharing behaviour between those who are never imprisoned or previously imprisoned, and these individuals share between each other.

The dynamic transmission aspect of the model is similar to our previously published mathematical models. Let $P_{\pi,c,l}^{el}$ represent the number of PWID, where the superscript *m* represents incarceration status (m=0,1,2 for never, currently, formerly incarcerated, respectively), the superscript n represents addiction services status (*n=out* for out of contact and n=in in contact, and noting that n=out for all incarcerated states when m=1), subscript a represents the age group, with a=1,2...7 for each age group. The subscript I represents the HCV state, where $I=x_i$ for susceptible where i represents the different susceptible stages (never infected, spontaneously cleared), $I=y_i$ for chronic infected undiagnosed (including mild, moderate, compensated cirrhosis), $I=z_i$ for chronic infected diagnosed (including mild, moderate, compensated cirrhosis, decompensated cirrhosis, HCC, liver transplant, post-transplant and in early referral, late referral, or lost to followup states), $I=v_i$ for on treatment (including mild, moderate, compensated cirrhosis), $I=s_i$ for SVR (mild, moderate, compensated cirrhosis) and *I=f_i* for treatment failure/non-SVR (mild, moderate, compensated cirrhosis). For example, Part represents a PWID who has never been imprisoned and is not in contact with addiction services, is in age group 1 (15-19), and is undiagnosed mild chronically infected. We assume proportionate mixing by age. Using this notation, the force of infection for a PWID who is not imprisoned (m=0 or 2) is:

$$\pi \frac{\sum\limits_{\text{all } a,n,y_i,z_i,j_i} \left(P_{0,a,y_i}^n + P_{0,a,z_i}^n + P_{0,a,f_i}^n + P_{2,a,y_i}^n + P_{2,a,z_i}^n + P_{2,a,z_$$

where π represents the infection rate, which is fit to the HCV prevalence among PWID.
While incarcerated, PWID can only transmit to other incarcerated PWID, so the force of infection for a susceptible PWID in prison (m=1) is:

$$\pi \frac{\sum\limits_{\text{all } a, y_i, z_i, f_i} (P_{1, a, y_i} + P_{1, a, z_i} + P_{1, a, f_i})}{\sum\limits_{\text{all } a, x_i, y_i, z_i, v_i, s_i, f_i} (P_{1, a, x_i} + P_{1, a, y_i} + P_{1, a, z_i} + P_{1, a, v_i} + P_{1, a, s_i} + P_{1, a, f_i})}$$

As stated before, all PWID in never infected (Ab-/RNA-), spontaneously cleared (Ab+/RNA-), and SVR states are susceptible for infection as described above.

Model Parameters

Intervention impact

The intervention impact was modelled a proportional increase in setting-specific testing rates, determined by a random effects meta-analysis of the primary data[7] for each setting (addiction services and prisons) separately. The results of the meta-analysis can be found in **appendix figure 3**.

SVR rates

Sustained viral response (SVR) rates for pegIFN+RBV were sampled by genotype, with mean values in the mild/moderate HCV disease stages of 45% for genotype 1 and 80% for genotype 2/3[8]. Patients with compensated cirrhosis exhibit proportional reductions in SVR values by about 45% and 25% for genotypes 1 and 2/3, respectively[9]. Preliminary studies indicate SVR rates are equal between PWID and ex/non-PWID[10], which we assumed in our base-case.

Calculation of testing rates

The HPA collects comprehensive yearly data of HCV testing in their sentinel surveillance, which includes a question on PWID as a risk factor. However, only a very small proportion of tests are coded with PWID status as a risk factor, and current or former PWID status is not recorded. Therefore, we were unable to use the HPA data to estimate the yearly testing rates of current and ex-PWID.

To circumvent this problem, we fitted an overall PWID annual testing rate to calibrate the model to the estimated proportion of PWID who are diagnosed (approximately 50%[11]). This rate varied for each sampled group of parameters, but the mean annual testing rate was 12% per year among undiagnosed PWID. This annual testing rate ensured the proportion of diagnosed PWID remained stable (at equilibrium) without any intervention.

As testing of PWID takes place in different locations (prison, addiction services, other settings) and the proportion of PWID in contact with these settings varies, it was necessary to calculate setting-specific testing rates from the overall testing rate. This was done using three pieces of information: 1) the overall testing rate, 2) the fraction of tests attributable to each location, and 3) the proportion of the population in contact with each location. We obtained the fraction of tests attributable to each location from the HPA sentinel surveillance of hepatitis testing data, using the tests coded with an PWID risk only (Mary Ramsay and Sara Collins[Health Protection Agency], unpublished data.). Although these data underestimate the number of tests given to PWID, it is reasonable to assume the HPA distribution between sites would be representative of the testing administered to PWID as a whole. Finally, we ran the model to obtain steady state values of the proportion of population found in each testing location based on the input parameters (some of which were previously fitted, such as the proportion of PWID in contact with addiction services and in prison). We assume all ex-PWID are in contact with a GP. These three components were then combined to obtain setting specific testing rates for each parameter set simulation. The setting specific testing rates for PWID and ex-PWID were assumed equal, with the exception that the model assumes ex-PWID are not in contact with addiction services, so no testing occurs from this scenario for this group.

Testing costs

Costs associated with testing were calculated as follows. The numbers of PWID tested in each setting were calculated, and associated with setting specific test costs. Two additional costs were added: RNA testing (for all Ab+ tests) and non-PWID testing. The

number of non-PWID tested in order to test one PWID was calculated from the settingspecific test yield (proportion of tests Ab+) and 'true' baseline prevalence. A setting with a low yield indicates more non-PWID are tested for every PWID; if yield equals baseline prevalence, this indicates only PWID are tested.

Contact with addiction services rates

The proportion of PWID in contact with addiction services at any given time was difficult to estimate. 92% of PWID report ever accessing a needle exchange in the HPA Unlinked Anonymous Survey, though the proportion currently accessing services is not asked[12]. However, it is estimated that 50% of PWID are currently on opiate substitution therapy[13, 14], and we therefore estimated that the same proportion is currently in contact with addiction services. Similarly, the average duration of time in contact with addiction services was estimated from data of average time PWID are on OST[15].

Model fitting

Overview of model fitting and baseline projections

A multi-step parameter sampling and model calibration/fitting method was used with simplified models to reduce computational time and allow for verification of full model predictions against the simplified models. For each fitting process (5 separate model fits in total), **appendix table 3** details the model used, input parameters, calibration data used to fit the model, and parameters estimated through model fitting. The seven-step sampling and calibration process is as follows:

- Values were randomly sampled for four parameters (cessation rate, overdose rate, PWID prison release rate, and addiction services duration), yielding a total of 135 possible parameter combinations, or 'calibration scenarios'. Due to the heavy computational burden of fitting the many incarceration parameters, the model was fitted to a limited range of sampled 'calibration scenarios'.
- 2) Fit #1: Simplified model 1 (appendix figure 4) was run for each sampled calibration scenario, in order to calibrate the simplified model to the (not

sampled) incarceration data shown in **table 3**. Inputs included the sampled scenario parameters, and non-sampled input parameters estimated from literature/sources (age-specific death rates, prison release rates for never PWID, distribution of ages of first injection, and a preliminary estimate of the entry rate of never-PWID aged 15-19 which will be refit in Fit #5). The parameters which were estimated through model calibration were the age-dependent incarceration rate, reincarceration rates, PWID incarceration rates, PWID reincarceration rates, and injecting initiation rate. Simplified model 1 neglected HCV transmission, testing, and treatment. More details can be found in the section '**Details of fit #1**' and model equations can be found the section entitled "**Model Equations: Simplified Model 1**".

- 3) Fit #2: Simplified model 2 (appendix figure 5) was run for each sampled calibration scenario, in order to calibrate the model to addiction services data. For fit #2, a simplified model of incarceration and movement in/out of addiction services was used. The inputs for these simulations were the sampled calibration scenarios and inputs from Simplified model 1, as well as the estimated incarceration parameters from Simplified model 1. The model was calibrated to data on the proportion of PWID in contact with addiction services, and the estimated parameter obtained through model fitting was the recruitment rate into addiction services. Model equations can be found in the section entitled "Model Equations: Simplified Model 2".
- 4) Fit #3: Simplified model 3 (appendix figure 6) was run for each sampled calibration scenario, in order to calibrate the model to the diagnosis data. For fit #3, a simple model of HCV transmission and testing among PWID was used to estimate the overall PWID testing rate by calibrating the model to the proportion of PWID who report being diagnosed for HCV. The model inputs were the sampled calibration scenarios and non-sampled inputs of age-specific death rates, distribution of injecting initiation age, and preliminary estimate of the entry rate of never-PWID aged 15-19. The model also required an input of the estimated injecting initiation rate from simplified model 1. Model equations can be found in the appendix section entitled "Model Equations: Simplified Model 3".

- 5) 1000 parameter sets were sampled from each parameter uncertainty distribution in from the full range of disease progression, intervention, cost, and utility parameters (**Tables 1-3**). For each of the 1000 parameter sets, one of the 135 fitted 'calibration scenarios' was selected.
- 6) Fit #4: For each of the 1000 parameter sets, the full model was calibrated to three separate HCV PWID chronic prevalences (35%[16], used in the base-case, as well as 20% and 50% for the sensitivity analyses) to estimate the infection rate, pi, associated with each chronic prevalence.
- 7) Fit #5: For each of the 1000 parameter sets, the full model was calibrated to a total PWID population size (fit to 1000 PWID at baseline), to estimate the entry rate of never-PWID in the 15-19 age group.

Model fitting was performed by using nonlinear least-squares methods using the MATLAB solver *Isqnonlin*.

Model Equations

Simplified model 1

For Simplified Model 1, the mathematical model tracks injecting drug use state (never/current/former PWID) and incarceration state (never/currently/formerly incarcerated). $N_{m,u}$ represents never PWID, with superscript *m* representing incarceration status (*m*=0,1,2 for never, currently, formerly incarcerated, respectively) and subscript *a* representing age group, with *a*=1,2...7 for each age group. Using the same subscript notation, $P_{n,u}$ represents PWID and $E_{m,u}$ represents ex-PWID. The full system of equation is as follows:

$$\begin{aligned} \frac{dN_{0,a}}{dt} &= \theta_a - (\rho_{0,a} + \xi_a + \gamma_a) N_{0,a} \\ \frac{dN_{1,a}}{dt} &= \rho_{0,a} N_{0,a} + \alpha_{0,a} N_{2,a} - (\beta_{0,a} + \xi_a + \gamma_a) N_{1,a} \\ \frac{dN_{2,a}}{dt} &= \beta_{0,a} N_{1,a} - (\alpha_{0,a} + \xi_a + \gamma_a) N_{2,a} \\ \frac{dP_{0,a}}{dt} &= \xi_a N_{0,a} - (\rho_{1,a} + \zeta + \gamma_a + \eta) P_{0,a} \\ \frac{dP_{1,a}}{dt} &= \xi_a N_{1,a} + \rho_{1,a} P_{0,a} + \alpha_{1,a} P_{2,a} - (\beta_{1,a} + \zeta + \gamma_a + \eta) P_{1,a} \\ \frac{dP_{2,a}}{dt} &= \xi_a N_{2,a} + \beta_{1,a} P_{1,a} - (\alpha_{1,a} + \zeta + \gamma_a + \eta) P_{2,a} \\ \frac{dE_{0,a}}{dt} &= \zeta P_{0,a} - (\rho_{0,a} + \gamma_a) E_{0,a} \\ \frac{dE_{1,a}}{dt} &= \zeta P_{1,a} + \rho_{0,a} E_{0,a} + \alpha_{0,a} N_{2,a} - (\beta_{0,a} + \gamma_a) E_{1,a} \\ \frac{dE_{2,a}}{dt} &= \zeta P_{2,a} + \beta_{0,a} E_{1,a} - (\alpha_{0,a} + \gamma_a) E_{2,a} \end{aligned}$$

where time is represented by the variable *t*. All populations experience age-specific death rates specified by rate γ_a and PWID have an additional death rate due to overdose of η . New never-PWID enter the system into the youngest age compartment at rate θ_1 ($\theta_a = 0$ for $a \neq 1$). Never or former PWID are incarcerated at an age specific rate $\rho_{0,a}$, are released at a rate $\beta_{0,a}$, and are reincarcerated at a rate $\alpha_{0,a}$. Similarly, PWID are incarcerated at an age specific rate $\rho_{1,a}$, are released at a rate $\beta_{1,a}$, and are reincarcerated at a rate $\beta_{1,a}$. Never PWID initiate injecting at an age-specific rate of ξ_a , and cessate from injecting at a rate ζ .

Simplified model 2

For Simplified Model 2, the mathematical model in Simplified Model 1 is extended to include flow in and out of addiction services for PWID who are not incarcerated. Using the same subscript notation as before, but adding a superscript with n=in if the PWID is in contact with addiction services, and n=out if they are not in contact, then $P_{n,e}^{1}$ represents PWID. The full system of equation is as follows:

$$\begin{array}{lll} \displaystyle \frac{dN_{0,a}}{dt} &= \theta_a - (\rho_{0,a} + \xi_a + \gamma_a) N_{0,a} \\ \\ \displaystyle \frac{dN_{1,a}}{dt} &= \rho_{0,a} N_{0,a} + \alpha_{0,a} N_{2,a} - (\beta_{0,a} + \xi_a + \gamma_a) N_{1,a} \\ \\ \displaystyle \frac{dN_{2,a}}{dt} &= \beta_{0,a} N_{1,a} - (\alpha_{0,a} + \xi_a + \gamma_a) N_{2,a} \\ \\ \displaystyle \frac{dP_{0,a}^{int}}{dt} &= \xi_a N_{0,a} + \sigma P_{0,a}^{int} - (\rho_{1,a} + \zeta + \gamma_a + \eta + \nu) P_{0,a}^{out} \\ \\ \displaystyle \frac{dP_{0,a}^{int}}{dt} &= \nu P_{0,a}^{out} - (\rho_{1,a} + \zeta + \gamma_a + \eta + \sigma) P_{0,a}^{int} \\ \\ \displaystyle \frac{dP_{1,a}}{dt} &= \xi_a N_{1,a} + \rho_{1,a} (P_{0,a}^{out} + P_{0,a}^{in}) + \alpha_{1,a} (P_{2,a}^{out} + P_{2,a}^{in}) - (\beta_{1,a} + \zeta + \gamma_a + \eta) P_{1,a} \\ \\ \\ \displaystyle \frac{dP_{2,a}^{int}}{dt} &= \xi_a N_{2,a} + \beta_{1,a} P_{1,a} + \sigma N_{2,a}^{out} - (\alpha_{1,a} + \zeta + \gamma_a + \eta + \nu) P_{2,a}^{out} \\ \\ \\ \\ \displaystyle \frac{dP_{2,a}^{int}}{dt} &= \nu N_{2,a}^{out} - (\alpha_{1,a} + \zeta + \gamma_a + \eta + \sigma) P_{2,a}^{int} \\ \\ \\ \\ \displaystyle \frac{dE_{0,a}}{dt} &= \zeta (P_{0,a}^{out} + P_{0,a}^{in}) - (\rho_{0,a} + \gamma_a) E_{0,a} \\ \\ \\ \\ \displaystyle \frac{dE_{1,a}}{dt} &= \zeta P_{1,a} + \rho_{0,a} E_{0,a} + \alpha_{0,a} N_{2,a} - (\beta_{0,a} + \gamma_a) E_{1,a} \\ \\ \\ \\ \\ \displaystyle \frac{dE_{2,a}}{dt} &= \zeta (P_{2,a}^{out} + P_{2,a}^{in}) + \beta_{0,a} E_{1,a} - (\alpha_{0,a} + \gamma_a) E_{2,a} \end{array}$$

where the variables are as in Simplified Model 1, with the addition that PWID enter addiction services at a rate v, and exit at a rate σ . The model assumes that when people initiate injecting, or are released from prison, they are not immediately in contact with addiction services (but can subsequently be recruited into contact at rate v.

Simplified model 3

Simplified model 3 is used to fit the PWID diagnosis rate to the overall proportion of PWID diagnosed at a given time. Hence, it includes never PWID, uninfected PWID, infected undiagnosed PWID, and infected diagnosed PWID. As in the other simplified models, N_a represents never PWID, with *a* representing age group, with *a*=1,2...7 for each age group. Here, $P_{a,r}$ represents susceptible PWID, $P_{a,r}$ represents infected but undiagnosed PWID, and $P_{a,r}$ represents infected and diagnosed PWID. The full system of equation is as follows:

BMJ Open

$$\begin{aligned} \frac{dN_a}{dt} &= \theta_a - (\xi_a + \gamma_a)N_a \\ \frac{dP_{a,x}}{dt} &= \xi_a N_a - \pi P_{a,x} \frac{P_{a,y} + P_{a,z}}{P_{a,x} + P_{a,y} + P_{a,z}} - (\zeta + \gamma_a + \eta)P_{a,x} \\ \frac{dP_{a,y}}{dt} &= \pi P_{a,x} \frac{P_{a,y} + P_{a,z}}{P_{a,x} + P_{a,y} + P_{a,z}} - (\kappa + \zeta + \gamma_a + \eta)P_{a,y} \\ \frac{dP_{a,z}}{dt} &= \kappa P_{a,y} - (\zeta + \gamma_a + \eta)P_{a,z} \end{aligned}$$

where the parameters are as in Simplified Model 1 with the addition that κ represents the diagnosis rate, and π is the infection rate.

Details of fit #1

In fit #1, the simplified incarceration model was calibrated to age-structured data on the proportion of the general population with a custodial sentence[17], proportion of PWIDs previously imprisoned, age distribution of current prisoners[18], proportion of prisoners ever PWID, proportion of the population currently imprisoned[19, 20], and the prevalence of PWID in the general population[16]. The epidemiological and prison parameters sampled for this fitting algorithm can be found in **table 3**.

As the prison data varied over several orders of magnitude (for example, the proportion of PWID previously incarcerated was around 60%, while the proportion of the England population currently imprisoned between the ages of 15-59 is 0.2%), a log-transformation of the calibration data was used in order to minimize relative error in the least-squares regression[21]. Furthermore, the error measure was re-weighted with more weight given to the error from the non-age structured parameters to provide a better fit to those parameters. Specifically, the error measure associated with each individual age-specific parameter of the 7 age-groups was weighted 1/7th as much as a non-age specific parameter. **Appendix figure 7** provides an example of the data and calibrated model projections with the median values chosen for each parameter; all other fits were similar to this. The model fitted well to the data, with the notable exception of the proportion of PWID previously incarcerated in the 15-19 age group, which the model consistently underestimates. This was due to the low proportion of

prisoners who admit ever-injecting in this age group, along with the low general rates of ever incarceration in this age group. It was decided *a posteriori* that this deviation was acceptable given the goodness of fit to the rest of the data and also because it is unlikely that the data sources are consistent.

Initial conditions

The steady-state values of the full model without testing and treatment were used as initial conditions for the baseline/intervention simulations, with the following alterations. At baseline, the proportion of diagnosed ex-PWID was not thought to be at steady-state. This was because recent testing initiatives have mainly targeted PWID; it is estimated the proportion of diagnosed PWID (50%[11]) is currently likely higher than that of ex-PWID (estimated at 30% based on proportion PWID diagnosed in 2000 who are likely to be ex-PWID[12]). Hence, the steady-state values for infected populations were divided between undiagnosed/diagnosed states for the initial conditions. As treatment rates of PWID are extremely low, we assume none of the PWID population have been treated at baseline, and sample the proportion of ex-PWID previously treated (mean sampled value 10%[11]) from the range found in **table 1**.

We calculate the initial conditions as follows. The full model without any testing and treatment was run, and the number of people in all compartments was stored after the system reached steady-state. This vector of initial condition values was then edited as follows to account for the current proportion of diagnoses estimated in the PWID and ex-PWID populations, as well as the proportion of ex-PWID already treated. As it is unknown what proportion of previously diagnosed PWID are currently in referral for treatment, we made the conservative assumption that all previously-diagnosed are lost-to-follow-up at the beginning of the model if they have not been treated, and hence need retesting in order to enter the referral and treatment pathway. We assume that no PWID have been treated at baseline. Ex-PWID who have been treated are not eligible for retesting and retreatment, and hence were removed from the model as they did not change the cost-effectiveness of testing strategies.

Hence, half of the chronically infected PWID population were placed in the diagnosed compartment of their relative disease state, with the remaining placed in the 'diagnosed and lost-to-follow-up' compartment of their relative disease state. For the ex-PWID population, a proportion will have been treated, and of the remaining untreated proportion, 30% were considered diagnosed and were placed in the 'diagnosed and lost to follow-up' compartment. As a result of this initialisation procedure, the proportion of diagnosed ex-PWID was not at steady state at the start of the simulation. As stated in the main text of the paper, this was deemed appropriate, as recent testing initiatives have mainly targeted PWID, and therefore it is assumed that diagnosis rates among ex-PWID are low. However, over time those who are PWID will become ex-PWID, and therefore the proportion of diagnosed ex-PWID will increase over time.

Results

The incremental costs and incremental QALYs are shown on a cost-effectiveness plane in **appendix figure 8**.

- 59
- 60

Model is stratified by age ([15-19, [20-24], [25-29], [30-54], [55-64], [65-74], [75+]), includes death from all compartments, overdose death from PWID compartments, and inflow to the youngest 'Never PWID, never imprisoned' compartment.

Appendix figure 2. General model flow schematic (each PWID and ex-PWID compartment includes HCV infection sub-compartments).

Appendix figure 3. Random effects meta-analysis results for the dried blood spot intervention effect on testing rate (proportional increase in testing rate). Results shown for (a) addiction services and (b) prison.

Model is stratified by age ([15-19, [20-24], [25-29], [30-54], [55-64], [65-74], [75+]), includes death from all compartments, overdose death from PWID compartments, and inflow to the youngest 'Never PWID, never imprisoned' compartment.

Appendix figure 4. Simplified model #1 schematic.

Model is stratified by age ([15-19, [20-24], [25-29], [30-54], [55-64], [65-74], [75+]), includes death from all compartments, overdose death from PWID compartments, and inflow to the youngest 'Never PWID, never imprisoned' compartment.

Appendix figure 5. Simplified model #2 schematic.

Model is stratified by age ([15-19, [20-24], [25-29], [30-54], [55-64], [65-74], [75+]) and includes inflow to the youngest [15-19] 'Never PWID' compartment.

Appendix figure 6. Simplified model #3 schematic.

Appendix figure 7. Example of one characteristic model fit to the prison data (injecting duration 11 years, PWID incarceration duration 4 months, PWID overdose rate 1% per year). The top left shows the age-distributed proportion of general population with a custodial sentence. The bottom left shows the age-distribution within the prison population. The top right shows the proportion of PWID who have previously been incarcerated. The bottom right shows the proportion of prisoners who report ever PWID. Additionally, the model was fit to proportion of the general population imprisoned (simulated 0.21% as compared to 0.2%[19, 20]) and the proportion of population PWID (simulated 0.58% as compared to 0.65%[16])

2.5 x 10⁶ £30,000/QALY

gained

£20,000/QALY

gained

Appendix figure 8. Incremental costs and incremental QALYs for each of the 1000 simulation runs. Results shown for (a) addiction services and (b) prison interventions.

2	
3 ⊿	Γ
5	
6	
7	
8	
9	
10	
12	
13	
14	
15	
10	
18	
19	
20	
21	
22	
23 24	
25	
26	F
27	ż
28	r
29 30	ĉ
31	5
32	(
33	
34 25	
36	
37	
38	
39	
40	
41 42	
43	
44	
45	
46	
47 10	
40 49	
50	
51	
52	
53	
54 55	
56	
57	
58	
59	
60	

HCV testing costs baseling	Maanwalua	Distribution (notes	Unito	Dof
HOV testing costs- baseline	(in 2011 f)	Distribution /hotes	Units	Rei.
	(1120112)			
Assessment	1.78	1 minute (average nurse and consultant doctor cost [*])	Per test	[22]
Pre-test discussion and test	53.50	30 minutes (average nurse and consultant doctor cost)	Per test	[22]
Post-test results	44.58	25 minutes (average nurse and consultant doctor cost [*])	Per test	[22]
ELISA test	15.35	,	Per test	[22]
Additional assessment time (prison only)	29	Assuming 20 min. with nurse	Per test	Estimated from timings in [22]
Total test costs in all settings except prison	115.21	Uniform +/- 50%	Per test	
Total test costs in prison setting PCR RNA test (if antibody positive)	144.21 73.67	Uniform +/- 60% [†]	Per test Per year	[22]

Appendix table 1. Baseline HCV testing costs. *Assuming a consultant cost per hour of £127, and a staff-nurse cost per patient contact hour of £87 (median estimate for band 5 GP nurse, used as higher than estimate of £84 per hour for same band hospital day ward nurse) as found in the Unit Costs of Health and Social Care 2011[23]. *Greater uncertainty surrounding costs of testing in prison is due to uncertainty surrounding method of test offer (on prison entry, BBV/sexual health screening, or during routine health check).

2
3
4
5
6
-
1
8
q
10
10
11
12
12
10
14
15
16
17
17
18
19
20
20
21
22
23
24
27
25
26
27
28
20
29
30
31
22
32
33
34
35
200
30
37
38
30
40
40
41
42
<u>4</u> 3
44
45
46
<u>4</u> 7
10
48
49
50
51
51
52
53
- 4

HCV antiviral treatment costs	Mean value (in 2011 £)	Distribution	Ref.
PegIFN+RBV drug only			•
12 weeks	2,660 [*]	Halved from sampled cost at 24 wks	[24]
24 weeks	5,320 [*]	Uniform (4788, 5852)	[24]
48 weeks	10,640*	Doubled from sampled cost at 24 wks	[24]
Treatment delivery			
12 weeks			
Staff	307	Varied by staff cost variation [†]	[25]
Tests	1,605	Varied by test cost variation [‡]	1251
24 weeks		,	
Staff	374	Varied by staff cost variation [†]	[25]
Tests	1,683	Varied by test cost variation [‡]	[25]
48 weeks		,	
Staff	504	Varied by staff cost variation [†]	[25]
Tests	1,822	Varied by test cost variation [‡]	[25]
Additional treatment delivery for PWI	D	-	
PWID extra nurse time		Varied by staff cost variation [†]	
12 weeks	129	and PWID staff time	[1] "
24 weeks	159	variation [§]	[1] "
48 weeks	220		[1] "
PWID extra basic assessments		Varied by test cost variation [‡] ,	
12 weeks		staff cost variation [†] , and	
Staff	58	PWID staff time variation [§]	[1] "
Tests	43		[1] "
24 weeks			
Staff	97		[1] "
Tests	71		[1] "
48 weeks			
Staff	174		[1] "
Tests	129		[1] "
PWID psychiatric visits	51	Varied by staff cost variation [‡] and PWID staff time variation [§]	[1] "

Appendix table 2. HCV antiviral treatment costs. ^{*}Average peginterferon cost between alfa-2a (Pegasys) and alfa-2b(ViraferonPeg), and average ribavirin cost between Copegus and Rebetol. [†]Test value calculated by multiplying mean test cost with a test cost variation parameter, uniformly sampled between 0.8 and 1.2. [‡]Staff value calculated by multiplying mean staff cost by a staff cost variation parameter, uniformly sampled between 0.8 and 1.2. [§]PWID staff cost calculated by multiplying mean staff cost by a staff cost variation parameter and an extra PWID staff time variation parameter (both uniformly sampled between 0.8 and 1.2). "Graham Foster, Consultant Hepatologist, *personal communication*. pegIFN=pegylated interferon; RBV=ribavirin.

- 57 58
- 50 59

22

2 3 4 5	Model	Input parameters	Data used to fit model	Parameters estimated through model fitting
Fit #1	Simplified model 1 (Appendix figure 2)	 Sampled cessation rate Sampled overdose rate Sampled PWID prison release rate Death rates by age Prison release rate for never- PWID or ex-PWID by age Injecting initiation age distribution (Rough estimate) entry rate of never- pever-PWID aged 15-19 	 Proportion general population with a custodial sentence by age Proportion of PWID population previously imprisoned by age Age distribution of current prisoners Proportion of prisoners ever-PWID by age Proportion of the population currently imprisoned Prevalence of PWID in general population 	 Incarceration rates by age Re-incarceration rates by age PWID incarceration rates by age PWID re-incarceration rates by age Injecting initiation rate
7 Fit #2 9 20 21 22 23	Simplified model 2 (Appendix figure 4)	 Input and output parameters from Fit #1 Sampled addiction services duration (Rough estimate) entry rate of never-PWID aged 15-19. 	Proportion PWID in contact with addiction services	 Recruitment rate into addiction services
4 Fit #3 5 Fit #3 6 7 8 9 0 0	Simplified model 3 (Appendix figure 5)	 Sampled cessation rate Sampled overdose rate Death rates by age Injecting initiation age distribution Fit injecting initiation rate (Fit #1) (Rough estimate) entry rate of never-PWID aged 15-19. 	Proportion PWID diagnosed	Overall (not setting-specific) PWID testing rate
2 3 Fit #4 5 6	Full model (figures 1 and 2 of the main text) without ex- PWID	 All model parameters from Fits #1-3 and sampled sets. (Rough estimate) entry rate of never-PWID aged 15-19. 	HCV PWID chronic prevalence	 Infection rate, π
57 88 Fit #5	Full model	 All model parameters from Fits #1-4 and sampled sets. 	 Total population size (fit to 1000 PWID) 	• Entry rate of never-PWID in the 15-19 age group
4 Ap 2 3 4	pendix table 3. Mode	el fitting procedure summary		
15 16 17 18		For peer review only - htt	p://bmjopen.bmj.com/site/about/guidelines.x	html

Telaprevir/boceprevir scenario parameters	Value	Units	Notes	Ref.
Proportional increase in SVR for genotype 1 patients	68%	-		[26, 27]
Average duration of treatment for genotype 1	37	weeks	Assume 50% have a rapid viral response (RVR) and only require 26 weeks treatment (24 weeks telaprevir, 28 weeks boceprevir). The remaining 50% require 48 weeks. In trials, 58-65% achieve RVR.	[26, 27]
Telaprevir or boceprevir drug cost only (pegIFN+RBV cost additional)	£19,600	per treatment	Mean cost between telaprevir (12 weeks, £22,398) and boceprevir (24 weeks, £16,800). Cost in addition to 37 weeks pegIFN+RBV (sampled as in table 1 of main text)	[28, 29]

Appendix table 4. Telaprevir/boceprevir sensitivity analysis parameters. pegIFN=pegylated interferon; RBV=ribavirin; RVR=rapid viral response; SVR=sustained viral response.

Health state utilities/disutilities per year	Mean	Distribution	Ref.
Ex-PWID			
Mild diagnosed [age 15-19]	0.77	Beta(α=521.2375, β=155.6943)	[25, 30]
Moderate diagnosed [age 15-19]	0.66	Beta(α=168.2461, β=86.6723)	[25, 30]
Compensated cirrhosis diagnosed [age 15-19]	0.55	Beta(α=47.1021, β=38.5381)	[25, 30]
Undiagnosed stages		Diagnosed state utility value + 0.09	[31]
Mild SVR [age 15-19]	0.82	Beta(α=65.8678, β=14.4588)	[25, 30]
Moderate SVR [age 15-19]	0.72	Beta(α=58.0608, β=22.5792)	[6, 25, 30]
Compensated cirrhosis SVR [age 15-19]	0.61	Beta(α=58.0476, β=37.1124)	[32]
PWID			
HCV disease states	As in ex-	-PWID, but reduced by PropPWID [†]	Assumed

Appendix table 5. Disutility on diagnosis sensitivity analysis parameters [†]PropPWID=(uninfected PWID utility value for age 15-19)/(uninfected ex-PWID utility for age 15-19). SVR=sustained viral response.

[1] Martin NK, Miners A, Vickerman P, Foster G, Hutchinson S, Goldberg D, et al. The cost-effectiveness of HCV antiviral treatment for injecting drug user populations. Hepatology 2012;55:49-57.

[2] Martin NK, Vickerman P, Foster GR, Hutchinson SJ, Goldberg DJ, Hickman M. Can antiviral therapy for hepatitis C reduce the prevalence of HCV among injecting drug user populations? A modelling analysis of its prevention utility. Journal of Hepatology 2011;54:1137-1144.

[3] Martin NK, Vickerman P, Hickman M. Mathematical modelling of Hepatitis C Treatment for Injecting Drug Users. Journal of Theoretical Biology 2011;274:58-66.

[4] Vickerman P, Hickman M, May M, Kretzschmar M, Wiessing L. Can hepatitis C virus prevalence be used as a measure of injection-related human immunodeficiency virus risk in populations of injecting drug users? An ecological analysis. Addiction 2009;105:311-318.

[5] Sutton AJ, Gay NJ, Edmunds WJ, Andrews NJ, Hope VD, Gilbert RL, et al. Modelling the hepatitis B vaccination programme in prisons. Epidemiol Infect 2006;134:231 - 242.

[6] Sutton AJ, Edmunds WJ, Sweeting MJ, Gill ON. The cost-effectiveness of screening and treatment for hepatitis C in prisons in England and Wales: a cost-utility analysis. Journal of Viral Hepatitis 2008;15:797-808.

[7] Hickman M, McDonald T, Ali J, Nichols T, Hope V, Skidmore S, et al. Increasing the uptake of hepatitis C virus testing among injecting drug users in specialist drug treatment and prison settings by using dried blood spots for diagnostic testing: a cluster randomized controlled trial. Journal of Viral Hepatitis 2008;15:250-254.

[8] NICE. Peginterferon alfa and ribavirin for the treatment of mild chronic hepatitis C: National Institute for Health and Clinical Excellence; 2006.

[9] Bruno S, Shiffman M, Roberts SK, Gane EJ, Messinger D, Hadziyannis SJ, et al. Efficacy and Safety of Peginterferon Alfa-2D (40KD) Plus Ribavirin in Hepatitis C Patients with Advanced Fibrosis and Cirrhosis. Hepatology 2010;51:388-397.

[10] Hellard M, Sacks-Davis R, Gold J. Hepatitis C Treatment for Injection Drug Users: A Review of the Available Evidence. Clinical Infectious Diseases 2009;49:561-573.

[11] Health Protection Agency Colindale. Hepatitis C in the UK 2011; July 2011.

[12] Health Protection Agency. Data tables of the Unlinked Anonymous Monitoring Survey of HIV and Hepatitis in Injecting Drug Users Surveillance Update: July 2011; 2011.

[13] Turner K, Hutchinson S, Craine N, Hope V, Palmateer N, Vickerman P, et al. The impact of needle and syringe provision and opiate substitution therapy on the incidence of Hepatitis C virus in injecting drug users: pooling of UK evidence. Addiction 2011;106:1978-1988.

[14] Hickman M, Hope V, Brady T, Madden P, Jones S, Honor S, et al. Hepatitis C virus (HCV) prevalence, and injecting risk behaviour in multiple sites in England in 2004. Journal of Viral Hepatitis 2007;14:645-652.

[15] Cornish R, Macleod J, Strang J, Vickerman P, Hickman M. Risk of death during and after opiate substitution treatment in primary care: prospective observational study in UK General Practice Research Database. BMJ 2010;341.

[16] Harris RJ, Ramsay M, Hope VD, Brant L, Hickman M, Foster GR, et al. Hepatitis C prevalence in England remains low and varies by ethnicity: an updated evidence synthesis. European Journal of Public Health 2011;Epub ahead of print.

60

BMJ Open

2 3 [17] Prime J, White S, Liriano S, K P. Criminal careers of those born between 1953 and 4 1978, England and Wales: Home Office, Statistical Bulletin; 2001. 5 Ministry of Justice. Offender Management Statistics Quarterly Bulletin, April to June [18] 6 2011, England and Wales; 2011. 7 Ministry of Justice. Population in Custody Tables August 2010; 2010. [19] 8 Office for National Statistics. Population Estimates for UK, England and Wales, 9 [20] 10 Scotland and Northern Ireland, Mid-2010; 2010. 11 Carroll RJ, Ruppert D. Transformation and Weighting in Regression: Chapman and [21] 12 Hall; 1988. 13 [22] Stein K, Dalziel K, Walker A, Jenkins B, Round A, Royle P. Screening for Hepatitis C in 14 injecting drug users: A cost utility analysis. Journal of Public Health 2004;26:61-71. 15 16 [23] Personal Social Services Research Unit. Unit Costs of Health and Social Care 2011: 17 University of Kent; 2011. 18 British Medical Association. British National Formulary, number 62: BMJ Publishing [24] 19 Group; 2011. 20 Shepherd J, Jones J, Hartwell D, Davidson P, Price A, Waugh N. Interferon alfa [25] 21 22 (pegylated and non-pegylated) and ribavirin for the treatment of mild chronic hepatitis C: a 23 systematic review and economic evaulation. Health Technology Assessment 2007;11:1-224. 24 Jacobson IM, McHutchison JG, Dusheiko G, Di Bisceglie AM, Reddy KR, Bzowej NH, et [26] 25 al. Telaprevir for Previously Untreated Chronic Hepatitis C Virus Infection. New England 26 Journal of Medicine 2011;364:2405-2416. 27 Poordad F, McCone J, Bacon BR, Bruno S, Manns MP, Sulkowski MS, et al. Boceprevir [27] 28 29 for Untreated Chronic HCV Genotype 1 Infection. New England Journal of Medicine 30 2011:364:1195-1206. 31 [28] NELM.NHS.UK Press Release. Janssen Cilag launches telaprevir (Incivo) 375mg tablets 32 for the treatment of genotype 1 chronic hepatitis c. 2011 [cited; Available from: 33 http://www.nelm.nhs.uk 34 NELM.NHS.UK Press Release. MD launches boceprevir (Victrelis) for the treatment of [29] 35 36 chronic hepatitis C in the UK. 2011 [cited; Available from: http://www.nelm.nhs.uk 37 Wright M, Grieve R, Roberts J, Main J, HC T. Health benefits of antiviral therapy for [30] 38 mild chronic hepatitis C: randomised controlled trial and economic evaluation. Health 39 Technol Assess 2006;10. 40 [31] McDonald S, Hutchinson SJ, Palmateer N, Allen E, Cameron S, Goldberg D, et al. 41 Decrease in health-related quality of life associated with awareness of hepatitis C virus 42 43 infection among people who inject drugs in Scotland. Journal of Hepatology (in press) 2012. 44 Hartwell D, Jones J, Baxter L, Shepherd J. Peginterferon alfa and ribavirin for chronic [32] 45 hepatitis C in patients eligible for shortened treatment, re-treatment, or in HCV/HIV co-46 infection: a systematic review and economic evaluation. Health Technol Assess 2011;15:1-47 210. 48 49 50 51 52 53 54 55 56 57 58 59

- The CHEERS Checklist is part of the CHEERS Statement. The CHEERS Statement has been endorsed and co-published by the following journals:
- BJOG: An International Journal of Obstetrics and Gynaecology
- BMC Medicine 2013; 11:80
- BMJ 2013;346:f1049

- Clinical Therapeutics 27 March 2013 (Article in Press DOI: 10.1016/j.clinthera.2013.03.003)
- Cost Effectiveness and Resource Allocation 2013 11:6.
- The European Journal of Health Economics 2013 Mar 26. [Epub ahead of print]
- International Journal of Technology Assessment in Health Care
- Journal of Medical Economics 2013 Mar 25. [Epub ahead of print]
- Pharmacoeconomics 2013 Mar 26. [Epub ahead of print]
- Value in Health 2013 March - April;16(2):e1-e5

CHEERS Checklist

Items to include when reporting economic evaluations of health interventions

Section/item	Item No	Recommendation	Reported on page No/ line No
Title and abstract			
Title	1	Identify the study as an economic evaluation or use more specific terms such as "cost-effectiveness analysis", and describe the interventions compared	France 4, line 4, 0
Abstract	2	Provide a structured summary of objectives, perspective, setting, methods (including study design and inputs), results (including base case and uncertainty analyses), and	page 1, line 1-2
T (1)		conclusions.	pg 2-3, line 47-74
Introduction	2	Describe an amplicit statement of the land on sentent for the	
biectives	3	study	
objectives		Present the study question and its relevance for health policy practice decisions.	o. <mark>pg 4, line 110-124</mark>
Methods			ng 4 line 96-100
Target population and subgroups	4	Describe characteristics of the base case population and subgroups analysed, including why they were chosen.	pg 5 line 130-136, 140-143
Setting and location	5	State relevant aspects of the system(s) in which the decision(s need(s) to be made.	page 5, 128-130
Study perspective	6	Describe the perspective of the study and relate this to the costs being evaluated.	pg 7, lines 170-173
Comparators	7	Describe the interventions or strategies being compared and state why they were chosen	Da 6 line 165 170
Time horizon	8	State the time horizon(s) over which costs and consequences are being evaluated and say why appropriate.	pg 7, line 173-174
Discount rate	9	Report the choice of discount rate(s) used for costs and	pg 7, line 173

1			outcomes and source by annonmists	
2	Choice of health	10	Describe what outcomes were used as the measure(s) of	
3 4 5	outcomes	10	benefit in the evaluation and their relevance for the type of analysis performed.	pg 7, line 172-173 and 184-196
6 7 8 9	Measurement of effectiveness	11a	<i>Single study-based estimates:</i> Describe fully the design features of the single effectiveness study and why the single study was a sufficient source of clinical effectiveness data	
10 11 12 13		11b	<i>Synthesis-based estimates:</i> Describe fully the methods used for identification of included studies and synthesis of clinical effectiveness data	pg 10, lines 246-250 and
14 15	Measurement and	12	If applicable, describe the population and methods used to	appendix
16 17	based outcomes		encit preferences for outcomes.	n/a
18 19 20 21 22 23	Estimating resources and costs	13a	<i>Single study-based economic evaluation:</i> Describe approaches used to estimate resource use associated with the alternative interventions. Describe primary or secondary research method for valuing each resource item in terms of its unit cost. Describe any adjustments made to approximate to opportunity	s Is
24 25			costs.	
26 27 28		13b	<i>Model-based economic evaluation:</i> Describe approaches and data sources used to estimate resource use associated with model health states. Describe primary or secondary research	pg 8, line 198-206
29 30 31 32			methods for valuing each resource item in terms of its unit cost. Describe any adjustments made to approximate to	pg 10, line 249-250 and appendix
33 34	Currency price date	14	Report the dates of the estimated resource quantities and unit	
35 36 37 38	and conversion		costs. Describe methods for adjusting estimated unit costs to the year of reported costs if necessary. Describe methods for converting costs into a common currency base and the	pg 7, lines 171-172. pg 8, 202-204
39 40 41 42	Choice of model	15	Describe and give reasons for the specific type of decision- analytical model used. Providing a figure to show model	pg 5, lines 120-123 and 128-130.
43 44 45	Assumptions	16	Describe all structural or other assumptions underpinning the decision-analytical model.	pg 5, lines 128-153
40 47	Analytical methods	17	Describe all analytical methods supporting the evaluation. This	and appendix
48 49 50 51 52 53 54			could include methods for dealing with skewed, missing, or censored data; extrapolation methods; methods for pooling data; approaches to validate or make adjustments (such as half cycle corrections) to a model; and methods for handling population heterogeneity and uncertainty.	pg 6, lines f155-181. pg10 lines 252-259, appendix
55 56	Results			
56 57 58 59	Study parameters	18	Report the values, ranges, references, and, if used, probability distributions for all parameters. Report reasons or sources for distributions used to represent uncertainty where appropriate.	Tables 1-3, appendix
60			Providing a table to show the input values is strongly recommended.	

	Incremental costs and	19	For each intervention, report mean values for the main	
	outcomes		categories of estimated costs and outcomes of interest, as well	Table 4
			as mean differences between the comparator groups. If	
		•	applicable, report incremental cost-effectiveness ratios.	
	Characterising	20a	Single study-based economic evaluation: Describe the effects	
	uncertainty		of sampling uncertainty for the estimated incremental cost and	
)			incremental effectiveness parameters, together with the impact	t
1			of methodological assumptions (such as discount rate, study	Figure 2 and 3, pg
2		201	perspective).	10-12. lines
3 4		20b	Model-based economic evaluation: Describe the effects on the	267-297. pg 12-13.
5			results of uncertainty for all input parameters, and uncertainty	lines 303-323
6	~		related to the structure of the model and assumptions.	
7 2	Characterising	21	If applicable, report differences in costs, outcomes, or cost-	
3	heterogeneity		effectiveness that can be explained by variations between	Figuro 2
)			subgroups of patients with different baseline characteristics or	
1			other observed variability in effects that are not reducible by	
2 3			more information.	
4	Discussion			
5	Study findings,	22	Summarise key study findings and describe how they support	pa 13-17. lines
5 7	limitations,		the conclusions reached. Discuss limitations and the	326-431
3	generalisability, and		generalisability of the findings and how the findings fit with	
9	current knowledge		current knowledge.	
) 1	Other			
2	Source of funding	23	Describe how the study was funded and the role of the funder	pg 1, lines 22-36
3			in the identification, design, conduct, and reporting of the	
+ 5			analysis. Describe other non-monetary sources of support.	ng 18 linos
5	Conflicts of interest	24	Describe any potential for conflict of interest of study	1/15-1/18
7			contributors in accordance with journal policy. In the absence	440-440
3 ว			of a journal policy, we recommend authors comply with	
5			International Committee of Medical Journal Editors	
1			recommendations.	
2	For consistency the CI	IEERS	Statement checklist format is based on the format of the CONS	SORT

For consistency, the CHEERS Statement checklist format is based on the format statement checklist

The CHEERS Statement may be accessed by the publication links above.

The **ISPOR CHEERS Task Force Report** provides examples and further discussion of the 24-item CHEERS Checklist and the CHEERS Statement. It may be accessed via the *Value in Health* link or via the ISPOR Health Economic Evaluation Publication Guidelines – CHEERS: Good Reporting Practices webpage: <u>http://www.ispor.org/TaskForces/EconomicPubGuidelines.asp</u>

- The citation for the CHEERS Task Force Report is:
- Husereau D, Drummond M, Petrou S, et al. Consolidated health economic evaluation reporting standards
- (CHEERS)—Explanation and elaboration: A report of the ISPOR health economic evaluations publication
- ⁵⁹ guidelines good reporting practices task force. Value Health 2013;16:231-50.

Cost-effectiveness of HCV case-finding for people who inject drugs via dried blood spot testing in specialist addiction services and prisons

Journal:	BMJ Open
Manuscript ID:	bmjopen-2013-003153.R1
Article Type:	Research
Date Submitted by the Author:	28-Jun-2013
Complete List of Authors:	Martin, Natasha; University of Bristol, Department of Social Medicine; London School of Hygiene and Tropical Medicine, Social and Mathematical Epidemiology Group Hickman, M; Bristol Miners, Alec; London School of Hygiene and Tropical Medicine, Department of Health Services Research and Policy Hutchinson, Sharon; Health Protection Scotland, ; Glasgow Caledonian University, School of Health and Life Sciences Taylor, Avril; University of the West of Scotland, Vickerman, Peter; London School of Hygiene & Tropical Medicine, Social and Mathematical Epidemiology Group
Primary Subject Heading :	Infectious diseases
Secondary Subject Heading:	Health economics, Public health
Keywords:	HEALTH ECONOMICS, Public health < INFECTIOUS DISEASES, Hepatology < INTERNAL MEDICINE, Substance misuse < PSYCHIATRY

SCHOLARONE[™] Manuscripts

1		
2		
3	1	Title: Cost-effectiveness of HCV case-finding for people who inject drugs via
4	2	dried blood spot testing in specialist addiction services and prisons
5	- 3	
6	4	Authors: Natasha K. Martin ^{1,2} Matthew Hickman ¹ Alec Miners ² Sharon J
7	4 F	Authors. Natasha K. Watth , Watthew Hickman, Alec Willers, Sharon J.
8	5	HUICHINSON , AVIII TAYIOF, PELEI VICKEITTAN
9	6	
10	7	Affiliations: 'Department of Social and Community Medicine, University of Bristol,
11	8	Bristol, UK. 'Faculty of Public Health and Policy, London School of Hygiene and
12	9	Tropical Medicine ³ Health Protection Scotland, UK. ⁴ School of Health and Life
13	10	Sciences, Glasgow Caledonian University, Glasgow, UK. ⁵ University of the West of
14	11	Scotland, Glasgow, UK.
15	12	
16	13	Corresponding author contact: Natasha Martin@bristol.ac.uk. Department of
17	14	Social and Community Medicine 39 Whatley Road Bristol BS8 2PS
18	15	obelar and ophimianity medicine, of whatley road, bristol, boo 21 o.
19	15	Abbreviations: honotitic C virus (HCV), people who inject drugs (PW/ID), dried blood
20	10	Abbreviations. The patities C virus (TCV), people with inject drugs (FWID), dried blood
21	17	spot (DBS), incremental cost-effectiveness ratio (ICER), quality-adjusted life-year
22	18	(QALY), Willingness-to-pay (WTP), nepatocellular carcinoma (HCC), liver transplant
23	19	(LI), pegylated interferon (pegIFN), ribavirin (RBV), sustained viral response (SVR),
24	20	95% confidence interval (CI), antibody (Ab)
25	21	
26	22	Funding: The funders had no role in study design, data collection and analysis,
27	23	decision to publish, or preparation of the manuscript. NM: This work is produced by
28	24	NM under the terms of the postdoctoral research training fellowship issued by the
29	25	NIHR The views expressed in this publication are those of the author and not
30	25	necessarily those of the NHS. The National Institute for Health Research or the
31	20	Department of Health, DV: Modical Posearch Council New Investigator Award
ు∠ ఎఎ	27	C0001627 MHielemen: NIHD School of Dublic Health Nationally Integrated
33 24	28	Guou 1627. Minickman. Nink School of Public Health, Nationally Integrated
35	29	Quantitative Understanding of Addiction Harm (NIQUAD) MRC addiction research
36	30	cluster, and support of The Centre for the Development and Evaluation of Complex
37	31	Interventions for Public Health Improvement (DECIPHer), a UKCRC Public Health
38	32	Research: Centre of Excellence. Funding from the British Heart Foundation, Cancer
39	33	Research UK, Economic and Social Research Council (RES-590-28-0005), Medical
40	34	Research Council, the Welsh Assembly Government and the Wellcome Trust
41	35	(WT087640MA), under the auspices of the UK Clinical Research Collaboration, is
42	36	gratefully acknowledged.
43	37	
44	38	Word count: 3118
45	39	
46	40	Figures/Tables: 3 figures, 2 tables
47	40	
48	41	Key werder hanafitis C tasting mathematical modalling according overluction
49	42	Key words: hepatilis C, testing, mathematical modelling, economic evaluation
50	43	
51	44	
52		
53		
54		
55		
56		
5/		
58		
59		

60

45 46	ABSTRACT (265 words)
47 48	Objectives: People who inject drugs (PWID) are at high-risk for acquiring hepatitis
49	C virus (HCV), but many are unaware of their infection. HCV dried blood spot (DBS)
50	testing increases case-finding in addiction services and prisons. We determine the
51	cost-effectiveness of increasing HCV case-finding among PWID by offering DBS
52	testing in specialist addiction services or prisons as compared to using
53	venepuncture.
54	Design: Cost-utility analysis using a dynamic HCV transmission model among
55	PWID, including: disease progression, diagnosis, treatment, injecting status,
56	incarceration, and addition services contact.
57	Setting: United Kingdom
58	Participants: N/A
59	Intervention: DBS testing in specialist addiction services or prisons. Intervention
60	impact was determined by a meta-analysis of primary data
61	Primary and secondary outcome measures: Costs (in UK \pounds , \pounds 1=\$1.60 USD) and
62	utilities (quality adjusted life years, QALYs) were attached to each state and the
63	incremental cost effectiveness ratio (ICER) determined. Multivariate uncertainty and
64	one-way sensitivity analyses were performed.
65	Results: For a £20,000 per QALY gained willingness-to-pay threshold, DBS testing
66	in addiction services is cost-effective (ICER of £14,600 per QALY gained). Under the
67	base-case assumption of no continuity of treatment/care when exiting/entering
68	prison, DBS testing in prisons is not cost-effective (ICER of £59,400 per QALY
69	gained). Results are robust to changes in HCV prevalence; increasing PWID
70	treatment rates to those for ex-PWID considerably reduces the ICER (£4,500 and
71	£30,000 per QALY gained for addiction services and prison, respectively). If

72	continuity of care is >40%, the prison DBS ICER falls below £20,000 per QALY
73	gained.
74	Conclusions: Despite low PWID treatment rates, increasing case-finding can be
75	cost-effective in specialist addiction services, and in prisons if continuity of
76	treatment/care is ensured.
77	Trial Registration: N/A
78	
79	ARTICLE SUMMARY
80	Article focus
81	We perform a cost-utility analysis of increasing HCV case-finding among
82	PWID by offering dried blood spot testing in specialist addiction services or
83	prisons.
84	Key messages
85	Despite low PWID treatment rates, increasing case-finding for PWID can be
86	cost-effective in specialist addiction services.
87	In prisons, the cost-effectiveness of HCV case-finding depends on adequate
88	continuity of treatment/care between prison and the community, as many
89	treatments are discontinued due to short incarceration times.
90	Strengths and limitations of this study
91	We use a dynamic mathematical model of HCV transmission to capture the
92	potential prevention benefits of treatment, which has been shown to increase
93	cost-effectiveness of HCV treatment for PWID.
94	Key limitations are the limited empirical data on PWID health utilities,
95	treatment rates, and intervention impact.
96	

97	7
98	3 INTRODUCTION
99	In developed countries, the hepatitis C virus (HCV) is spread primarily through
100	injecting drug use, with over 90% of new infections among people who inject drugs
102	(PWID) [1]. However, diagnosis rates are low, with only half of infected PWID in the
102	2 US and UK diagnosed[2].
103	3
104	The majority of HCV testing performed in the US and UK is through venepuncture,
105	5 which is available in virtually all prisons[3] and addiction services (structured
106	5 programs providing pharmacological or nonpharmacological drug treatment in the
107	community) either on site or by referral. However, testing opportunities among PWID
108	still may be limited. This is because venous access can be poor and specialist staff
109	9 (who may not be available at all potential testing sites) are required to take blood,
110	which if only available in hospital phlebotomy services can increase stigma[4].
11:	
112	2 Dried blood spot (DBS) testing is non-invasive and can be performed by clinical and
113	non-clinical staff. Two UK studies[5 6] showed offering DBS testing within specialist
114	addiction services and prisons led to a 3 to 6-fold increase in HCV testing, and a
115	5 recent systematic review identified DBS as the best available targeted intervention
116	for increasing HCV case-finding amongst PWID[7]. Hence, DBS testing could be an
117	7 important component of any strategy attempting to scale-up treatment provision for
118	PWID, for both care and prevention[8].
119	\mathbf{i}
120	We perform a cost-utility analysis of introducing DBS testing amongst current and
122	former PWID in specialist addiction services and prisons in the UK[5]. Unlike

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2	
3	
4	
5	
6	
7	
1	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
10	
13	
20	
21	
22	
23	
24	
25	
20	
20	
21	
28	
29	
30	
31	
22	
22	
33	
34	
35	
36	
37	
38	
20	
39	
40	
41	
42	
43	
44	
45	
10	
40	
47	
48	
49	
50	
51	
52	
52	
53	
54	
55	
56	
57	
58	
50	
29	
$\mathbf{n}\mathbf{U}$	

previous economic evaluations of HCV testing in these settings[9 10], we incorporate
a dynamic mathematical model to capture the potential prevention benefits of
treatment, which can substantially increase the cost-effectiveness of HCV treatment
for PWID[11]. A dynamic model accounts for both individual and population benefits
of treatment, as well as the dynamic nature of incarceration, especially among
PWID._Our model is the first to explore the importance of continuity of care between
prison and the community.

129

130 METHODS

131 Mathematical model

132 An existing dynamic, deterministic model of HCV transmission, progression and HCV 133 treatment was adapted to project the impact of introducing DBS testing in prisons 134 and addiction services[11]. See **appendix** for details and model schematics. Briefly, the model stratifies by: injecting state (never PWID/PWID/ex-PWID); incarceration 135 136 status (never/currently/formerly); contact with addiction services (in contact/not in contact); age ([15-19],[20-24],[25-29],[30-54],[55-64],[65-74],[75+]); HCV infection 137 138 and disease progression (never infected, spontaneously cleared, mild HCV, 139 moderate HCV, compensated cirrhosis, decompensated cirrhosis, hepatocellular 140 carcinoma, liver transplant, post-transplant). HCV disease stages are further 141 subdivided into undiagnosed or diagnosed, where those who are diagnosed can 142 either be lost to follow-up, in referral (early/late), on antiviral treatment, sustained 143 viral response (SVR), or non-SVR.

144

All PWID can acquire and transmit HCV, but imprisoned PWID only transmit HCV to
 other prisoners. We define ex-PWID as those who have permanently ceased

0	
2 3 4	147
4 5 6	148
7 8	149
9 10	150
11 12	151
13 14 15	152
16 17	153
18 19	154
20 21	155
22 23 24	156
24 25 26	157
27 28	158
29 30	159
31 32	160
33 34 35	161
36 37	162
38 39	163
40 41	164
42 43 44	165
45 46	166
47 48	167
49 50	168
51 52	169
วง 54 55	170
56 57	171
58 59 60	

1

After calibration, for each of the 1000 parameter sets, the model was run with and without the intervention ('intervention' and 'baseline', respectively). We model an intervention of offering DBS testing in prison, compared to a baseline of current For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

injecting, and assume no ongoing transmission from non/ex-PWID. An individual's risk of acquiring HCV is proportional to the setting-specific HCV prevalence (prison/community). The model assumes a background rate of HCV testing for all PWID and ex-PWID in the community/prison, and in addiction services for PWID. No UK data exist regarding continuity of care (treatment or referral) on prison entry/exit, but experts described difficulty in ensuring continuity on release (Eamonn O'Moore[Offender Health, UK Department of Health], Iain Brew[HMP Leeds] personal communication). Therefore, in our base-case we assume those in treatment or referral become lost to follow-up upon entering/exiting prison, but can be re-tested/re-treated. Model fitting and base-case projections For the probabilistic uncertainty analysis, 1000 parameter sets were sampled from each parameter uncertainty distribution in table 1 and appendix tables 1-2. For parameter set, the model was calibrated to UK epidemiological data on incarceration, injecting drug use, HCV prevalence, and diagnosis. This was achieved through a multi-step parameter sampling and model calibration process, utilizing simplified models where possible to reduce computational time and to verify the full model predictions against simplified models. For details on the model calibration (including schematics and equations) and initialization, see **appendix**.

Page 7 of 87

BMJ Open

172	testing with venepuncture only. Additionally, we evaluate an intervention of offering
173	DBS in specialist addiction services, compared to a baseline of current testing with
174	venepuncture. The economic analysis was performed from a UK National Health
175	Service perspective. Costs (in 2011 GBP, \pounds 1=\$1.55 USD) and health utilities (in
176	quality-adjusted life years, QALYs) were attached to each model compartment.
177	Costs and QALYs were discounted 3.5% per annum as per NICE guidelines, with a
178	100 year time horizon (to accrue individual and population benefits). The mean
179	incremental cost-effectiveness ratio (ICER) was calculated and cost-effectiveness
180	determined using the UK willingness-to-pay (WTP) threshold, estimated between
181	£20,000 and £30,000 per QALY gained[12]. Cost-effectiveness acceptability curves
182	were constructed and univariate sensitivity analyses undertaken. Analysis of
183	covariance (ANCOVA) methods were used to summarize the proportion of the
184	variability in the incremental costs and QALYs explained by the uncertainty in input
185	parameters[13].
186	

Parameters

188 All parameters can be found in table 1 and **appendix tables 1-4**.

Health state utilities: Uninfected utility values were taken from UK population

- 190 norms for non-PWID, and a large cross-sectional study of injectors in Scotland[14]
- 191 for current PWID. We assumed equal utilities for ex-PWID and non-PWID[10].
- 192 Utilities for HCV disease and treatment stages came from UK HCV trials and
- 193 economic evaluations[15-17] and used for ex-PWID.To derive PWID HCV utilities,
- 194 non-PWID HCV utilities were rescaled by multiplying by the ratio of the uninfected
- 195 PWID utility to the uninfected ex-PWID utility for the youngest age group. All states
- 196 included disutilities with age.

197	
198	No disutility was associated with testing in the base-case. However, some evidence
199	suggests PWID may experience a disutility after positive HCV diagnosis[14 18]. We
200	explored the impact of a disutility (0.09[14], see appendix) on diagnosis, which was
201	fully regained with treatment SVR.
202	
203	Health state and testing costs: Health care costs for HCV disease stages, antiviral
204	treatment (pegylated interferon-alfa and ribavirin, pegIFN+RBV), and testing were
205	taken from UK economic analyses[15 16 19 20]. Data on the yield (proportion tests
206	Ab+) and prevalence in each setting were used to calculate the number of non-PWID
207	tested for each PWID/ex-PWID (see appendix). Costs were inflated to 2011 GBP
208	using the Health and Community Hospital Service pay and prices index[21].
209	Additional PWID treatment delivery costs were applied[11]. We assumed
210	undiagnosed individuals do not incur HCV-related health care costs unless
211	progressing to decompensated disease[9].
212	
213	HCV disease progression parameters: Transition rates between disease stages
214	were taken from UK economic evaluations[15-17]. Although estimates were not
215	PWID specific, a recent meta-analysis suggests little evidence for differences in
216	progression between PWID and non-PWID[22].
217	
218	HCV prevalence: PWID HCV chronic prevalence was estimated from HCV antibody
219	prevalence among PWID in England (45% [41-49%, 95% confidence interval
220	(CI)][23]). As one-quarter of acute infections spontaneously clear [24] we assume

BMJ Open

2
3
4
5
6
7
1
8
9
10
11
12
13
14
14
15
16
17
18
19
20
21
22
22
23
24
25
26
27
28
29
20
24
31
32
33
34
35
36
37
38
20
39
40
41
42
43
44
45
46
47
47
40
49
50
51
52
53
54
55
55
30
57
58
59

60

three-quarters of those who are ever exposed (antibody positive) are chronically
infected, resulting in 35% chronic infection among PWID.

223

Incarceration duration: Incarceration duration for non-PWID and ex-PWID was
age-stratified, with a mean of 8 months[25]. However, PWID have shorter durations
in custody than non-PWID[25-27]. We used a 4 month PWID incarceration duration,
based on an estimate for England and Wales[25]. A recent study in Scotland
reported a median sentence of 7.1 months in PWID[27] which given most prisoners
serve approximately half their sentence[28] would also equate to a duration of 4
months.

231

Testing rates: The overall baseline PWID testing rate (mean 12% undiagnosed) 232 233 PWID per year) was estimated through fitting the model to the current proportion of 234 diagnosed PWID (approximately 50%[2]). Data on the proportion of tests from each 235 setting was used in combination with the model projected annual numbers of PWID 236 in contact with each setting to calculate setting-specific testing rates (6% and 13% 237 per year of undiagnosed PWID in contact with addiction services and prisons, 238 respectively, see **appendix**). We assume ex-PWID are tested at equal rates to 239 PWID in prison and in general community settings. We assumed all diagnostic tests 240 are 100% accurate due to the high sensitivity and specificity of DBS (99.6%) 241 sensitivity, 100% specificity in a setting with 50% prevalence [29]) and venepuncture 242 assays[30], and because those who receive an initial positive test will receive 243 additional tests before treatment. 244

Referral and treatment transition rates: The referral rate from testing services to
secondary care (35%) was estimated from a UK study[31]. Those not referred or not
attending referral were considered 'lost to follow-up'.

BMJ Open

Approximately 50% of diagnosed ex-PWID in referral are treated within 2 years[31-33]. Since many delay treatment, we assume that after 2 years, 10% of those in referral initiate treatment annually. Within prison, treatment rates are lower than in the community[31 34], although a recent UK prison audit found 24% of those diagnosed were treated (lain Brew[HMP Leeds], unpublished data). We therefore estimated halved treatment initiation rates in prison as compared to the community. PWID treatment rates are unknown, but thought to be similarly low to other

250 TWD treatment rates are unknown, but thought to be similarly low to other

countries[35 36], with an estimated <1% of PWID treated annually (Graham

258 Foster[Consultant Hepatologist], *personal communication*). Hence, if we assume 1%

of infected PWID are treated within 2 years, this equates to treating approximately

260 5.5% of those who attend referral (35% of the 50% diagnosed) within 2 years. After

261 2 years, 1% of those in referral are treated annually thereafter.

Intervention: The effect of introducing DBS was modelled by assuming a 3.6-fold
increase in testing [2.2-5.8 CI] in addiction services, and 2.6-fold increase in testing
[0.1-34.9 CI] in prison, based on two multicentre studies (table 1 and appendix).
Intervention costs were determined from the study methods[5] and in consultation
with the authors (table 1).

269 Sensitivity analyses
BMJ Open

3	270	We performed one-way sensitivity analyses on: time horizon (50/200 years),	
5 6	271	discount rates (3.5% costs/1.5% QALYs), PWID treatment rates (increased in each	I
7 8	272	setting), PWID SVR rates (reduced by 20%), PWID HCV chronic prevalence	
9 10	273	(20%/50%), antiviral treatment (telaprevir/boceprevir for genotype 1 patients, see	
11 12 12	274	appendix), and continuity of care for treatment/referral on entry/exit from prison	
13 14 15	275	(varied from 0% to 100%). We also explored the effect of assuming no prevention	
16 17	276	benefit (but allowing for reinfection), by permanently fixing the force of infection.	
18 19	277		
20 21	278		
22 23	279	RESULTS	
24 25 26	280		
27 28	281	Case finding in addiction services	
29 30	282	The incremental cost effectiveness ratio (ICER) of increasing case-finding in	
31 32	283	addiction services, by introducing DBS testing, was an estimated £14,600 (\$22,630)
33 34 35	284	USD) per QALY gained in the base-case (table 2). At a £20,000 or £30,000 WTP	
36 37	285	threshold, the intervention is likely to be cost-effective in 69% or 93% of the	
38 39	286	simulations, respectively (figure 1a). Uncertainty in the intervention effect	
40 41	287	contributed to 86% and 58% of the variation in incremental costs and QALYs,	
42 43	288	respectively. The remaining variation in incremental QALYs was mainly due to	
44 45 46	289	uncertainty in treatment rates (22%) and health utilities (17%).	
47 48	290		
49 50	291	For most sensitivity analyses, the ICER remained below a £30,000 WTP threshold	
51 52	292	(figure 2a). Reducing the time horizon to 50 years increased the estimated ICER to	S
53 54	293	£22,900 per QALY gained because fewer prevention benefits were accrued.	
55 56 57	294	whereas lengthening to 200 years increased cost-effectiveness. Changing the	
57 58 59	_,		
60			11

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

295	discount rates to 3.5% costs/1.5% QALYs or no discounting decreased the
296	estimated ICER to £5,100 or £6,700 per QALY gained, respectively. Variations in
297	baseline HCV chronic prevalence had little effect (<10%). At lower prevalence (20%),
298	identifying cases was more expensive but prevention impact was greater due to
299	reduced reinfection risk, whereas the opposite occurred at higher prevalence (50%).
300	
301	Increasing treatment rates increased the intervention's cost-effectiveness. If 50%
302	(compared to 5.5% for base-case) of PWID in referral initiated treatment within 2
303	years (a treatment rate achieved by one UK service[37]) the ICER fell to £4,500 per
304	QALY gained. If SVR rates amongst PWID were 20% lower than in ex-PWID, the
305	ICER increased by 14% (£16,700 per QALY gained). Using telaprevir/boceprevir for
306	genotype 1 patients minimally altered the ICER. Ignoring any prevention benefit
307	doubled the ICER to £29,900 per QALY gained.
308	
309	Only one sensitivity analysis substantially altered the cost-effectiveness conclusion.
310	If a disutility was attached to diagnosis, the intervention resulted in negative
311	incremental QALYs (due to low treatment rates) and was dominated (more
312	expensive with fewer health benefits). However, even with this disutility, if treatment
313	rates were increased to 50% of PWID in referral initiating treatment within 2 years,
314	then the estimated ICER was £20,100 per QALY gained.
315	
316	Case finding in prison
317	The ICER of increasing case-finding in prison, by introducing DBS testing, was
318	estimated at £59,400 (\$92,070 USD) per QALY gained (21% likely to be cost-
319	effective at a £30,000 WTP threshold) in the base-case (table 2 and figure 1b).
	 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

3	320	Uncertainty in the intervention effect contributed to most (>85%) of the variation in
5	321	incremental costs and QALYs.
7 8	322	
9 10	323	The base-case conclusion was robust to most one-way sensitivity analyses (figure
11 12	324	2b) – including time horizon, discount rates, HCV prevalence, and use of new
13 14	325	treatments. If 50% of PWID in referral initiated treatment within 2 years, the ICER
15 16 17	326	halved to just below £30,000 per QALY gained.
18 19	327	
20 21	328	Introducing continuity of care (which measures the proportion of initiated
22 23	329	treatments/referrals that are continued when entering/exiting prison) led to an
24 25	330	increase in cost-effectiveness: from an ICER of £59,400 per QALY gained with 0%
26 27 28	331	continuity to £10,400 per QALY gained with 100% continuity (figure 3). The ICER
29 30	332	fell below £20,000 when >40% continuity of care was ensured; at 40% continuity the
31 32	333	intervention was 57% and 83% likely to be cost-effective at the £20,000 and £30,000
33 34	334	WTP thresholds, respectively. The level of continuity required for prison case-finding
35 36	335	to be cost-effective also depended on treatment rates. If prison treatment rates were
37 38 20	336	increased to equal those in the community (50%/5.5% of ex-PWID/PWID treated
39 40 41	337	within 2 years of referral), then 35% continuity results in an ICER just below £20,000
42 43	338	per QALY gained. Increasing treatment rates further so 50% of all referred prisoners
44 45	339	initiate treatment within 2 years lowers the required continuity to 20% for an ICER
46 47	340	helow £20,000
48 49	240	
50 51	541	

DISCUSSION

Main findings

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

ર		
ں ۸		
4		
5		
6		
7		
ò		
0		
9		
1	0	
1	1	
1	2	
4	<u>~</u> っ	
1	3	
1	4	
1	5	
1	6	
1	7	
1	1	
1	8	
1	9	
2	0	
っ っ	1	
~	י ר	
2	2	
2	3	
2	4	
2	5	
ົ	۵ ۵	
~	0	
2	1	
2	8	
2	9	
2 2	ñ	
ິ	4	
3	1	
3	2	
3	3	
3	4	
ົ່	5	
ა ი	0	
3	6	
3	7	
3	8	
х 2	ā	
4	3	
4	U	
4	1	
4	2	
4	3	
, N	1	
+	+	
4	5	
4	6	
4	7	
۵	R	
7	0 0	
4	9	
5	0	
5	1	
5	2	
5	- 2	
5	ں م	
5	4	
5	5	
5	6	
5	7	
0 F	1 0	
о Г	Q	
5	9	
ຄ	n	

1 2

344 Our results indicate the introduction of dried blood spot testing for HCV case-finding 345 is likely to be cost-effective under commonly used willingness-to-pay thresholds in 346 the UK (£20,000-£30,000/QALY gained[12]) and US (\$50,000/QALY gained[38]) in 347 addiction services, but not in prison unless a minimum level of continuity of care in 348 treatment or referral between prison and the community can be ensured. Ignoring 349 the prevention benefit doubles the ICER of the intervention in addiction services. In 350 the base-case, most PWID treatments initiated in prison were interrupted due to the 351 lack of continuity of care and short PWID incarceration times (~4 months) in the 352 UK[25 27]. Consequently, little prevention benefit was achieved from the prison 353 intervention, with the results approaching the 'static' model. With the low base-case 354 PWID treatment rates, the continuity required for DBS to be cost-effective was 355 approximately 35-40% of the estimated treatment/referral rates, but if 356 treatment/referral rates increased then lower levels of continuity would be cost-357 effective. Crucially, not all treatments need to be initiated or completed in prison, as 358 only maintaining treatment or referral contact is necessary. Finally, both interventions 359 are most cost-effective at higher treatment rates. 360 361 Strengths and Limitations

The key strength of this analysis is that the model is dynamic, therefore capturing the prevention impact of case-finding and treatment. The main limitations are concerned with parameter uncertainty and lack of model heterogeneity. First, we based our increase in case-finding on the DBS intervention, which though empirically founded, was informed by relatively small UK studies, resulting in wide uncertainty around the effect estimates.

368

Page 15 of 87

BMJ Open

2 3	369	Second, the base-case assumed comparatively low treatment rates for PWID, partly
4 5 6	370	because UK data on PWID treatment numbers are not available. This information is
7 8	371	critical, as higher treatment rates increase cost-effectiveness. This is especially
9 10	372	important for prisons where treatment completion information was unavailable, yet
11 12	373	strongly influenced cost-effectiveness. Additionally, even if treatment is interrupted,
13 14 15	374	some may benefit from shortened treatment, which we did not incorporate.
16 17	375	
18 19	376	Third, more data are needed to quantify PWID health utilities, which can be below
20 21	377	the general population[39]. Especially important is whether any transient or
22 23	378	permanent disutility on HCV diagnosis occurs, as current data are weak and not
24 25 26	379	based on prospective studies. Our projections indicate if a disutility occurs then
27 28	380	higher treatment rates are required for case-finding to be cost-effective.
29 30	381	
31 32	382	Fourth, the model did not incorporate other interventions or behaviours that may
33 34 35	383	influence HCV risk or treatment uptake. However, modelling work has shown
36 37	384	introducing risk heterogeneity does not substantially reduce intervention impact if
38 39	385	PWID circulate between risk states[40] which is likely to occur as individuals move
40 41	386	in/out of drug treatment and prison.
42 43	387	
44 45 46	388	Fifth, the model was parameterized to UK data, so our results are not necessarily
47 48	389	applicable to other settings. However, our conclusions are robust to changes in HCV
49 50	390	prevalence. Continuity of care could also be an issue in Australia, where PWID
51 52	391	incarceration duration is similar to the UK[41]. However, sentences are longer in the
55 55	392	US[42], so fewer treatments may be interrupted, and therefore case-finding in US
56 57 58	393	prisons could be more cost-effective than our results indicate.

394	
395	Our modelled UK treatment and HCV health care costs are within the range of those
396	presented by recent US studies[43 44], with the exception of approximately 3-fold
397	higher liver transplantation costs, which would increase the cost-effectiveness of
398	case-finding in the US. Testing costs were taken from UK economic evaluations,
399	however it is possible a streamlined and experienced testing service could lower
400	costs associated with staff time, thus increasing cost-effectiveness.
401	
402	Sixth, we were unable to evaluate future interferon-free direct-acting antiviral
403	therapies as information on treatment costs and health utilities are unavailable.
404	These treatments will likely have increased SVR (90% for all genotypes), shorter
405	treatment durations (12-24 weeks), lower toxicity, and simpler dosing regimes[45].
406	Therapies with shorter duration could increase the impact of testing and treatment in
407	prison as more patients will be able to complete therapy prior to release, and could
408	potentially be more cost-effective depending on the ratio of additional costs to
409	incremental impact.
410	
411	Comparison with other studies
412	Two publications evaluated the cost-effectiveness of testing ex-PWID in prison, with
413	ICERs varying from about £20,000[10] to £55,000[9] per QALY gained. Our results
414	are consistent with Sutton et al.[9], which used the same discount rates as our study.
415	However, we included the possible prevention impact of treating PWID, and unlike
416	the previous studies, show how continuity of care between prison and the community
417	can make case-finding cost-effective.
418	

BMJ Open

3
4
5
6
7
0
8
9
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
26
20
21
28
29
30
31
32
33
34
35
20
30
37
38
39
40
41
42
43
44
Λ <u>5</u>
40
40
41
48
49
50
51
52
53
50
54 55
ວວ
56
57
58
59
60

Three papers evaluated testing PWID in drug services[10 20 46]. Differences in baseline assumptions led to varying ICERs from £28,100[20] to £17,500[10 46] per QALY gained. Our results for addiction services support those found in the latter studies[10 46]. However, the intervention examined in these studies[10 20 46] was one-off testing using a cohort model (with no evidence based intervention effect) and neglected any prevention benefit.

425

426 Several US studies examined birth cohort screening for all people born in 1945-427 1965[44 47] or 1946-1970[43] as compared to risk based screening, reporting ICERs 428 of \$38,000 per QALY gained with direct-acting antivirals[43 44] and \$5,400-16,000 429 per QALY gained with pegIFN+RBV[44 47]. Critically, the cost-effectiveness varies 430 substantially by HCV prevalence [47], and the estimated US prevalence is higher 431 than many other developed countries. Additionally, the ICERs were generated given 432 assumptions of higher treatment rates, as well as greater utility gains with SVR than 433 we consider. Importantly, our intervention targets PWID with a risk of transmitting 434 infection to others, whereas birth cohort screening is likely to identify infections 435 among ex-injectors and non-injecting populations which will have little primary 436 prevention impact.

437

438 Implications

Our cost-effectiveness work indicates increasing HCV case-finding in addiction
services can be cost-effective. However, the cost-effectiveness of prison casefinding interventions depends on adequate continuity of care with the community.
Few settings have developed comprehensive strategies to address this issue,
though New York recently initiated the Hepatitis C Continuity Program[48]. In all

> settings, treatment uptake is critical: higher treatment rates prevent more disease transmission and increase the cost-effectiveness of case-finding interventions. If a disutility on diagnosis occurs, higher treatment rates would be necessary to ensure cost-effectiveness. Further empirical data are required on treatment uptake and changes in utilities following diagnosis and treatment in order to compare targeted case-finding with cohort models.

AUTHOR CONTRIBUTIONS

NKM contributed to the study design, model development, analysis, manuscript drafting and editing. MH contributed to the study design, model development, analysis, and manuscript editing. AM contributed to the analysis and manuscript editing. SJH contributed to the model parameterization, analysis, and manuscript editing. AT contributed to the model parameterization and manuscript editing. PV contributed to the study design, model development, analysis, and manuscript editing.

- Acknowledgements
- We thank the following for their insights and/or data: lain Brew, Eamonn O'Moore,
- Sarah Collins, Noel Craine, Graham Foster, Anjan Ghosh, Cathie Gillies, Vivian
- Hope, Scott McDonald, Fortune Ncumbe, Mary Ramsay, Katy Turner.
- **Competing Interests**
- NM has received an honorarium for speaking at a conference sponsored by
- Janssen. SH has received honoraria for speaking at conferences sponsored by
- MSD, Janssen, Gilead, and Roche. MH, AM, AT, PV have no competing interests.

1 2 2	460		
4	409		
5 6	470 471		
7 8			
9 10			
11			
13			
14 15			
16 17			
18 19			
20			
21			
23 24			
25 26			
27 28			
29			
30 31			
32 33			
34 35			
36 37			
38			
39 40			
41 42			
43 44			
45			
40 47			
48 49			

2		
3	472	
4	473	
5	474	1. Nelson PK, Mathers BM, Cowle B, et al. Global epidemiology of hepatitis B and hepatitis C
6	475	in people who inject drugs: results of systematic reviews. The Lancet 2011: 378 :571-
/ 0	476	83
0 Q	477	2 Health Protection Agency Colindale Henatitis C in the LIK 2011 July 2011
10	477 178	3 Department of Health HPA Prison Infection Prevention Team Liver Strategy Team
11	470	National Survey of hepatitis C services in prisons (Draft report) 2011
12	479	A Harris M. Bhadas T. Vanaus access and care, harnessing progratics in harm reduction for
13	400	4. Harris IVI, Knoues T. Venous access and care. Harriessing pragmatics in harrineduction for
14	481	
15	482	5. Hickman M, McDonald T, Ali J, et al. Increasing the uptake of hepatitis C virus testing
16 17	483	among injecting drug users in specialist drug treatment and prison settings by using
1/	484	dried blood spots for diagnostic testing: a cluster randomized controlled trial. Journal
19	485	of Viral Hepatitis 2008; 15 (4):250-54
20	486	6. Craine N, Parry J, O'Toole J, et al. Improving blood-borne viral diagnosis; clinical audit of
21	487	the uptake of dried blood spot testing offered by a substance misuse service. Journal
22	488	of Viral Hepatitis 2009; 16 :219-22
23	489	7. Jones L, Bates G, McCoy E, et al. A systematic review of the effectiveness & cost-
24	490	effectiveness of interventions aimed at raising awareness and engaging with groups
25	491	who are at an increased risk of hepatitis B and C infection.
20 27	492	http://www.nice.org.uk/nicemedia/live/11957/5946/5946.pdf, 2012.
28	493	8. Martin NK, Vickerman P, Foster GR, et al. Can antiviral therapy for hepatitis C reduce the
29	494	prevalence of HCV among injecting drug user populations? A modelling analysis of its
30	495	prevention utility. Journal of Hepatology 2011: 54 :1137-44
31	496	9 Sutton AL Edmunds WI Sweeting ML et al. The cost-effectiveness of screening and
32	497	treatment for henatitis C in prisons in England and Wales: a cost-utility analysis
33	108 1	Journal of Viral Henatitis 2008: 15 (11):707-808
34	400	10 Castalauovo E. Thomason Coon I. Bitt M. et al. The cost offectiveness of testing for
36	499 E00	10. Castellidovo E, molipson-cooli J, Fitt IVI, et al. The cost-effectiveness of testing for bonatitis C in former injecting drug users. Health Technology Assessment
37	500	
38	501	2000; 2000 (10).32
39	502	11. Martin NK, Miners A, Vickerman P, et al. The cost-effectiveness of HCV antiviral
40	503	treatment for injecting drug user populations. Hepatology 2012; 55 (1):49-57
41	504	12. NICE. Guide to the methods of technology appraisal, 2008.
42	505	13. Briggs A, Claxton K, Sculpher M. <i>Decision Modelling for Health Economic Evaluation</i> .
43	506	Oxford: Oxford University Press, 2006.
44 45	507	14. McDonald S, Hutchinson SJ, Palmateer N, et al. Decrease in health-related quality of life
46	508	associated with awareness of hepatitis C virus infection among people who inject
47	509	drugs in Scotland. Journal of Hepatology 2013; 58 :460-6
48	510	15. Shepherd J, Jones J, Hartwell D, et al. Interferon alfa (pegylated and non-pegylated) and
49	511	ribavirin for the treatment of mild chronic hepatitis C: a systematic review and
50	512	economic evaulation. Health Technology Assessment 2007;11(11):1-224
51	513	16. Wright M, Grieve R, Roberts J, et al. Health benefits of antiviral therapy for mild chronic
52 52	514	hepatitis C: randomised controlled trial and economic evaluation. Health Technol
53 54	515	Assess 2006; 10 (21)
55	516	17. Hartwell D. Jones J. Baxter L. et al. Peginterferon alfa and ribavirin for chronic henatitis C
56	517	in patients eligible for shortened treatment, re-treatment, or in HCV/HIV co-
57	517	
58		
59		
60		20

1		
2		
3	518	infection: a systematic review and economic evaluation. Health Technol Assess
4	519	2011; 15 (17):1-210
5 6	520	18. Dalgard O, Egeland A, Skaug K, et al. Health-related Quality of Life in Active Injecting
0 7	521	Drug Users With and WIthout Chronic Hepatitis C Virus Infection. Hepatology
8	522	2004; 39 (1):74-80
9	523	19. British Medical Association. British National Formulary, number 62: BMJ Publishing
10	524	Group. 2011.
11	525	20 Stein K Dalziel K Walker A et al Screening for Henatitis C in injecting drug users: A cost
12	525	utility analysis Journal of Public Health 2004: 26 (1):61-71
13	520	21. Dersonal Social Social Social Social Care 2011:
14	527	21. Personal Social Services Research Onit. Onit Costs of Health and Social Care 2011.
15	528	University of Kent, 2011.
10	529	22. John-Baptiste A, Krann MD, Heathcote J, et al. The natural history of hepatitis C infection
18	530	acquired through injection dru guse: Meta-analysis and meta-regression. Journal of
19	531	Hepatology 2010; 53 (2):245-51
20	532	23. Harris RJ, Ramsay M, Hope VD, et al. Hepatitis C prevalence in England remains low and
21	533	varies by ethnicity: an updated evidence synthesis. European Journal of Public Health
22	534	2011;Epub ahead of print
23	535	24. Micallef JM, Kaldor JM, Dore GJ. Spontaneous viral clearance following hepatitis C
24	536	infection: a systematic review of longitudinal studies. J Viral Hepat 2006;13:34-41
25	537	25. Sutton AJ, Gay NJ, Edmunds WJ, et al. Modelling the hepatitis B vaccination programme
26	538	in prisons. Epidemiol Infect 2006: 134 :231 - 42
21	539	26. Bird AG. Gore SM. Cameron S. et al. Anonymous HIV surveillance with risk factor
20	540	elicitation at Scotland's largest prison Barlinnie AIDS 1995:9:801-08
30	540	27 Taylor A Munro A Allen E et al Low incidence of benatitis Civirus among prisoners in
31	541	27. Taylor A, Midnio A, Aner E, et al. Low incluence of nepatitis C virus among prisoners in Scotland Addiction 2012: 109 (7):1206-204 doi: 10.1111/add.12107[nubliched.Online
32	542	Scotland. Addiction 2015, 106 (7).1290-504 doi: 10.1111/add.12107[published Online
33	545	First: Epub Datejj.
34	544	28. Ministry of Justice. Oriender Management Statistics Quarterly Bulletin, April to June
35	545	2011, England and Wales, 2011.
30 27	546	29. Judd A, Parry J, Hickman M, et al. Evaluation of a modified commercial assay in detecting
38	547	antibody to hepatitis C virus in oral fluids and dried blood spots. J Med Virol
39	548	2003; 71 :49 - 55
40	549	30. Colin C, Lanoir D, Touzet S, et al. Sensitivity and specificity of third-generation hepatitis C
41	550	virus antibody detection assays: an analysis of the literature. J Viral Hepat
42	551	2001; 8 (2):87-95
43	552	31. Irving WL, Smith S, Cater R, et al. Clinical pathways for patients with newly diagnosed
44	553	hepatitis C - What actually happens. Journal of Viral Hepatitis 2006;13(4):264-71
45	554	32. Jowett SL, Agarwal K, Smith BC, et al. Managing chronic hepatitis C acquired through
40 ∕/7	555	intravenous drug use. Q J Med 2001: 94 :153-58
47	556	33. Foster G. Goldin RD. Main J. et al. Management of chronic hepatitis C: clinical audit of
49	557	hinsy hased management algorithm BMI 1997- 315 -453-8
50	558	34 Skipper C. Guy IM. Parkes L et al. Evaluation of a prison outreach clinic for the diagnosis
51	550	and prevention of hepatitis C: implications for the national strategy Gut
52	555	
53	500	2000, 32 .1300 - 04 25. Graboly I. Baffa ID. Lai C. at al. Lawy untake of treatment for bonetitie C.virus infections in
54 55	100	55. Grebery J, Rana JD, Lai C, et al. Low uptake of treatment for nepatitis C virus infection in
55 56	562	a large community-based study of inner city residents. J Viral Hepat 2009; 16 (5):352-
57	563	8
58		
59		
60		21

2		
3	564	36. Mehta SH, Genberg BL, Astemborski J, et al. Limited Uptake of Hepatitis C Treatment
4	565	Among Injection Drug Users. J Comm Health 2008;33(3):126-33
5	566	37. Wilkinson M. Crawford V. Tippet A. et al. Community-based treatment for chronic
6	567	henatitis C in drug users: high rates of compliance with therapy despite ongoing drug
7	569	uso Alimontary Dharmacology & Thoranoutics 2000; 20 (1):20-27
8	508	use. Alimentary Pharmacology & merapeutics 2009, 29 (1).29-57
9	569	38. Grosse SD. Assessing cost-effectiveness in nealthcare: history of the \$50,000 per QALY
10	570	threshold. Expert Rev Pharmacoecon Outcomes Res 2008;8(2):165-78
12	571	39. Kimber J, Copeland L, Hickman M, et al. Survival and cessation in injecting drug users:
12	572	prospective observational study of outcomes and effect of opiate substitution
14	573	treatment. BMJ 2010; 340 :c3172 doi: 10.1136/bmj.c3172[published Online First:
15	574	Epub Datell.
16	575	40. Vickerman P. Martin N. Turner K. et al. Can needle and syringe programmes and opiate
17	576	substitution therapy achieve substantial reductions in HCV prevalence? Model
18	570	projections for different enidemic settings. Addiction 2012: 107 :1084.05
19	577	projections for different epidemic settings. Addiction 2012, 107 .1984-95
20	578	41. Miller E, Bi P, Ryan P. Hepatitis C virus infection in South Australian prisoners:
21	579	seroprevalence, seroconversion, and risk factors. International Journal of Infectious
22	580	Diseases 2009; 13 :201-08
23	581	42. West H, Sabol W, Greenman S. Bureau of Justice Statistics Bulletin: Prisoners in 2009.
24	582	http://bjs.ojp.usdoj.gov/content/pub/pdf/p09.pdf, 2010.
25	583	43. McGarry LJ, Pawar VS, Parekh HH, et al. Economic model of a birth cohort screening
20 27	584	program for hepatitis C virus. Hepatology 2012: 55 (5):1344-55 doi:
28	585	10,1002/hep.25510[published Online First: Epub Date]]
20	586	44 Rein D. Smith B. Witenhorn L et al. The Cost-Effectiveness of Birth-Cohort Screening for
30	500	Henetitis C Antibody in LLS. Drimary Caro Settings. Appals of Internal Medicine
31	507	Pepatitis C Antibody in 0.5. Prinary Care Settings. Annais of Internal Medicine
32	588	2012; 156 (4):263-70
33	589	45. Dore GJ. The changing therapeutic landscape for hepatitis C. Med J Aust 2012; 196 :629-
34	590	32
35	591	46. Thompson Coon J, Castelnuovo E, Pitt M, et al. Case finding for hepatitis C in primary
36	592	care: a cost utility analysis. Family Practice 2006; 23(4):393-406 doi:
37	593	10.1093/fampra/cml032[published Online First: Epub Date] .
38	594	47. Coffin PO, Scott JD, Golden MR, et al. Cost-effectiveness and Population Outcomes of
39	595	General Population Screening for Hepatitis C. Clinical Infectious Diseases
40	596	2012: 54 (1259-1271)
41 12	507	18 Klein SL Wright LN Birkhead GS et al Dromoting HCV Treatment Completion for Prison
43	597	40. Kielin 33, Wright Liv, Birkhead G3, et al. Fromoting fiev Treatment Completion for Frison
44	598	ninates. New York State's nepatitis C Continuity Program. Public nearth Reports
45	599	2007; 122 (Suppi 2):83-88
46	600	
47	601	
48	602	
49		
50		
51		
52		
53 E4		
55		
56		
57		
58		
59		
60		22

2
3
4
5
6
7
8
9
10
10
11
12
13
14
15
16
17
18
10
20
20
21
22
23
24
25
26
27
21
28
29
30
31
32
33
34
35
26
30
31
38
39
40
41
42
43
44
77 15
40
40
41
48
49
50
51
52
52
55
04 57
55
56
57
58
59

1 S

	Mean	Distribution	Units	Ref.
	value			
Intervention effect (proportional change i	n testing rate)			
Addiction services	3.6	Lognormal		[5]
	[2.3-5.8]	(μ=1.285, σ=0.239)	-	
Prison	2.6	Lognormal	-	[5]
	[0.2-34.9]	(μ=0.968, σ=1.317)		
Intervention costs (addiction services)		N i i		
Organization/coordination of training	2,005.71		per health board	†
Training session [‡]	135		per training session	†
Attendees time [§]	1,620		per training session	t
Travel reimbursement for training leader"	90.86		per training session	†
Total cost per addiction services training	3851.57		per training session	†
Mean number tested	40.3		per addiction service ¹	[5]
Total intervention cost per test	95.57	Uniform +/-50%	per test	
Intervention costs (prison)				
Organization/coordination of training**	7020		per prison	†
Training session [‡]	135		per prison	t
Attendees time ^{††}	405		per prison	†
Travel reimbursement for training leader ^{‡‡}	127.20		per prison	†
Total cost per prison training	7687.20		per prison	†
Mean number tested per prison	116		per prison	[5]
Total intervention cost per test	66.27	Uniform +/- 50%	per test	

623

Table 1. Intervention parameters. All cost estimates assume a staff-nurse cost per hour of £362 (median estimate for band 5 general practice nurse [21]). *1 nurse 2 days/week for 6 mozths for 7 health boards. One training session per health board. [†]Noel Craine, personal control contro travel to 7 health boards. [¶]Assumed 1 addiction service per health board. ^{**1} nurse full time fo629 prisons (1 training session per prison) ^{††}3 nurses per prison, half day. ^{‡‡}1200 miles (£6363 per mile) for 5 prisons.

BMJ Open

Intervention location	Discounted Costs (2011 £) [95% interval]	Discounted QALYs [95% interval]	Incremental costs [95% interval]	Incremental QALYs [95% interval]	ICER (£ per QALY gained)
Addiction					
services Baseline	37,181,582 [19,384,816– 67,271,249]	5,354,331 [4,867,168– 5,960,766]	-	-	-
Intervention	38,099,060 [20,140,578– 68,378,488]	5,354,393 [4,867,206– 5,960,853]	917,478 [481,174– 1,664,430]	63 [19–153]	14,632
Prison					
Baseline	37,181,582 [19,384,816– 67,271,249]	5,354,331 [4,867,168– 5,960,766]	-	-	-
Intervention	38,245,293 [19,852,634– 68,601,970]	5,354,349 [4,867,184– 5,960,823]	1,063,710 [-225,101 – 6,060,267]	18 [-12 – 75]	59,418

Table 2. Cost-effectiveness results from the base-case intervention analyses.

3		
4		
5		
6	1	Title: Cost offectiveness of HCV esse finding for nearly who inject drugs vie
7	⊥ ว	dried blood spot tosting in specialist addiction services and prisons
8	2	uneu bioou spot testing in specialist addiction services and prisons
9	5	Authors: Natasha K. Martin ^{1,2} Matthew Hickman ¹ Alex Miners ² Sharen J
10	4 E	Authors, Ivalasha n. Ivlatun , Ivlatunew mickinian , Alec Millers , Sharon J. Hutchinson ^{3,4} Avril Taylor ⁵ Poter Vickorman ^{2,1}
11	с С	HULCHINSON , AVIII LAYION, FELEI VILKEHINDIN
12	07	Affiliations: ¹ Department of Social and Community Medicine, University of Bristol
13	י ג	Bristol LIK ² Faculty of Public Health and Policy London School of Hydiana and
14	Q	Tropical Medicine ³ Health Protection Scotland LIK ⁴ School of Health and Life
15	10	Sciences, Glasgow Caledonian University, Glasgow, LIK ⁵ University of the West of
16	11	Scotland, Glasgow, UK.
17	12	
18	13	Corresponding author contact: Natasha.Martin@bristol.ac.uk. Department of
19	14	Social and Community Medicine, 39 Whatley Road. Bristol. BS8 2PS.
20	15	· · · · · · · · · · · · · · · · · · ·
21	16	Abbreviations: hepatitis C virus (HCV), people who inject drugs (PWID), dried blood
22	17	spot (DBS), incremental cost-effectiveness ratio (ICER), quality-adjusted life-year
23	18	(QALY), willingness-to-pay (WTP), hepatocellular carcinoma (HCC), liver transplant
24	19	(LT), pegylated interferon (pegIFN), ribavirin (RBV), sustained viral response (SVR),
25	20	95% confidence interval (CI), antibody (Ab)
26	21	
27	22	Funding: The funders had no role in study design, data collection and analysis,
28	23	decision to publish, or preparation of the manuscript. NM: This work is produced by
29	24	NM under the terms of the postdoctoral research training fellowship issued by the
30	25	NIHR. The views expressed in this publication are those of the author and not
31	26	necessarily those of the NHS, The National Institute for Health Research or the
32	27	Department of Health. PV: Medical Research Council New Investigator Award
33	28	GUSU1627. MHICKMAN: NIHK School of Public Health, Nationally Integrated
34	29	Quantitative Understanding of Addiction Harm (NIQUAD) MRC addiction research
35	3U 21	Litery and support of the Centre for the Development and Evaluation of Complex
36	3⊥ 21	Research: Centre of Excellence, Euroding from the Dritich Heart Equindation, Cancer
37	32 22	Research LIK Economic and Social Research Council (PES 500.28 0005) Modical
38	22 24	Research Council the Welsh Assembly Government and the Wellcome Trust
39	35	(WT087640MA) under the auspices of the LIK Clinical Research Collaboration is
40	36	gratefully acknowledged.
41	37	
42	38	Word count: 3118
43	39	
44	40	Figures/Tables: 3 figures, 24 tables
45	41	
46	42	Key words: hepatitis C, testing, mathematical modelling, economic evaluation
47	43	· · · · · · · · · · · · · · · · · · ·
48	44	
49		
50		
51		
52		
53		
54		
55		
56		1
57		
58		
59		
60		

2 3 4 5		
6 7 8 9 10	45 46	ABSTRACT (265 words)
	47 48	Objectives: People who inject drugs (PWID) are at high-risk for acquiring hepatitis
11 12	49	C virus (HCV), but many are unaware of their infection. HCV dried blood spot (DBS)
13 14	50	testing increases case-finding in addiction services and prisons. We determine the
15 16	51	cost-effectiveness of increasing HCV case-finding among PWID by offering DBS
17	52	testing in specialist addiction services or prisons as compared to using
19	53	venepuncture.
20 21	54	Design: Cost-utility analysis using a dynamic HCV transmission model among
22	55	PWID, including: disease progression, diagnosis, treatment, injecting status,
24 25	56	incarceration, and addition services contact.
26 27	57	Setting: United Kingdom
28 29	58	Participants: N/A
30 31	59	Intervention: DBS testing in specialist addiction services or prisons. Intervention
32 33	60	impact was determined by a meta-analysis of primary data
34 35	61	Primary and secondary outcome measures: Costs (in UK £, £1=\$1.60 USD) and
36 37	62	utilities (quality adjusted life years, QALYs) were attached to each state and the
38 39	63	incremental cost effectiveness ratio (ICER) determined. Multivariate uncertainty and
40 41	64	one-way sensitivity analyses were performed.
42 43	65	Results: For a £20,000 per QALY gained willingness-to-pay threshold, DBS testing
44 45	66	in addiction services is cost-effective (ICER of £14,600 per QALY gained). Under the
46 47	67	base-case assumption of no continuity of treatment/care when exiting/entering
48	68	prison, DBS testing in prisons is not cost-effective (ICER of £59,400 per QALY
49 50	69	gained). Results are robust to changes in HCV prevalence; increasing PWID
51 52	70	treatment rates to those for ex-PWID considerably reduces the ICER (£4,500 and
53 54	71	£30,000 per QALY gained for addiction services and prison, respectively). If
55 56 57 58 59 60		2

1 2		
3 4 5		
6 7	72	continuity of care is >40%, the prison DBS ICER falls below \pounds 20,000 per QALY
8 9	73	gained.
10 11	74	Conclusions: Despite low PWID treatment rates, increasing case-finding can be
12 13	75	cost-effective in specialist addiction services, and in prisons if continuity of
14 15	76	treatment/care is ensured.
16 17	77	Trial Registration: N/A
18	78	
20	79	ARTICLE SUMMARY
21 22 22	80	Article focus
23 24 25	81	We perform a cost-utility analysis of increasing HCV case-finding among
25 26 27	82	PWID by offering dried blood spot testing in specialist addiction services or
28	83	prisons.
29 30	84	Key messages
31 32	85	Despite low PWID treatment rates, increasing case-finding for PWID can be
33 34	86	cost-effective in specialist addiction services.
35 36	87	 In prisons, the cost-effectiveness of HCV case-finding depends on adequate
37 38	88	continuity of treatment/care between prison and the community, as many
39 40	89	treatments are discontinued due to short incarceration times.
41 42	90	Strengths and limitations of this study
43 44	91	We use a dynamic mathematical model of HCV transmission to capture the
45 46	92	potential prevention benefits of treatment, which has been shown to increase
47 48	93	cost-effectiveness of HCV treatment for PWID.
49 50	94	• Key limitations are the limited empirical data on PWID health utilities,
51 52	95	treatment rates, and intervention impact.
53 54	96	
55 56		3
57 58		5
59 60		
00		

2 3			
4 5			
6 7	97		
8 9	98	INTRODUCTION	
10 11 12	99	In developed countries, the hepatitis C virus (HCV) is spread primarily through	
12 13	100	injecting drug use, with over 90% of new infections among people who inject drugs	
14 15 16 17	101	(PWID)_ and approximately 10 million PWID infected worldwide [1]. However,	
	102	diagnosis rates are low, with only half of infected PWID in the US and UK	
18 19	103	diagnosed[2] , putting many at risk of cirrhosis, liver cancer, and death .	
20 21	104		
21 22 23 24 25 26 27 28 29 30 31 32	105	The majority of HCV testing performed in the US and UK is through venepuncture,	
	106	which is available in virtually all prisons[3] and addiction services (structured	
	107	programs providing pharmacological or nonpharmacological drug treatment in the	
	108	community) either on site or by referral. However, testing opportunities among PWID	
	109	still may be limited. This is because venous access can be poor and specialist staff	
	110	(who may not be available at all potential testing sites) are required to take blood,	
33 34	111	which if only available in hospital phlebotomy services can increase stigma[4].	
35 36	112		
37 38	113	Dried blood spot (DBS) testing is non-invasive and can be performed by clinical and	
39 40	114	non-clinical staff. Two UK studies[5 6] showed offering DBS testing within specialist	
41 42	115	addiction services and prisons led to a 3 to 6-fold increase in HCV testing, and a	
43 44	116	recent systematic review identified DBS as the best available targeted intervention	
45 46	117	for increasing HCV case-finding amongst PWID[7]. Hence, DBS testing could be an	
47 48	118	important component of any strategy attempting to scale-up treatment provision for	
49 50	119	PWID, for both care and prevention[8].	
50 51	120		
52 53			
54 55			
56 57		4	
58 59			

BMJ Open

2 3 4 5			
6 7 8 9	121	We perform a cost-utility analysis of introducing DBS testing amongst current and	
	122	former PWID in specialist addiction services and prisons in the UK[5]. Unlike	
10 11	123	previous economic evaluations of HCV testing in these settings[9 10], we incorporate	
12 13	124	a dynamic mathematical model to capture the potential prevention benefits of	
14 15	125	treatment, which can substantially increase the cost-effectiveness of HCV treatment	
16 17	126	for PWID[11]. A dynamic model accounts for both individual and population benefits	
18 19	127	of treatment, as well as the dynamic nature of incarceration, especially among	
20 21	128	PWID. Our model is also the first to explore the importance of continuity of care	
22	129	between prison and the community.	
24 25	130		
20 26	131	METHODS	
27 28 29 30 31 32	132	Mathematical model	
	133	An existing dynamic, deterministic model of HCV transmission, progression and HCV	
	134	treatment was adapted to project the impact of introducing DBS testing in prisons	
33 34	135	and addiction services[11]. See appendix for details and model schematics. Briefly,	
35 36	136	the model stratifies by: injecting state (never PWID/PWID/ex-PWID); incarceration	
37 38	137	status (never/currently/formerly); contact with addiction services (in contact/not in	
39 40	138	contact); age ([15-19],[20-24],[25-29],[30-54],[55-64],[65-74],[75+]); HCV infection	
41 42	139	and disease progression (never infected, spontaneously cleared, mild HCV,	
43 44	140	moderate HCV, compensated cirrhosis, decompensated cirrhosis, hepatocellular	
45 46	141	carcinoma, liver transplant, post-transplant). HCV disease stages are further	
47 48	142	subdivided into undiagnosed or diagnosed, where those who are diagnosed can	
49 50	143	either be lost to follow-up, in referral (early/late), on antiviral treatment, sustained	
51 52	144	viral response (SVR), or non-SVR.	
53 54	145		
55 50		_	
50 57		5	
58 59			
60			

2 3 4 5 6		
7 8	146	All PWID can acquire and transmit HCV, but imprisoned PWID only transmit HCV to
9	147	other prisoners. We define ex-PWID as those who have permanently ceased
10 11 12 13 14 15	148	injecting, and assume no ongoing transmission from non/ex-PWID. An individual's
	149	risk of acquiring HCV is proportional to the setting-specific HCV prevalence
	150	(prison/community). The model assumes a background rate of HCV testing for all
16 17	151	PWID and ex-PWID in the community/prison, and in addiction services for PWID.
18 10	152	
20	153	No UK data exist regarding continuity of care (treatment or referral) on prison
22	154	entry/exit, but experts described difficulty in ensuring continuity on release (Eamonn
23 24	155	O'Moore[Offender Health, UK Department of Health], Iain Brew[HMP Leeds]
25 26	156	personal communication). Therefore, in our base-case we assume those in
27 28	157	treatment or referral become lost to follow-up upon entering/exiting prison, but can
29 30	158	be re-tested/re-treated.
31 32	159	
33 34	160	Model fitting and base-case projections
35 36	161	For the probabilistic uncertainty analysis, 1000 parameter sets were sampled from
37 38	162	each parameter uncertainty distribution in tables 1 and appendix tables 1-23. For
39 40	163	each of these parameter sets, the model was calibrated to UK epidemiological data
41 42	164	on incarceration, injecting drug use, HCV prevalence, and diagnosis. This was
43 44	165	achieved through a multi-step parameter sampling and model calibration process,
45 46	166	utilizing simplified models where possible to reduce computational time and to verify
47 48	167	the full model predictions against simplified models. For details on the model
49	168	calibration (including schematics and equations) and initialization, see appendix.
50 51	169	
52 53		
54 55		
56 57		6
58 59		
60		
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtm

BMJ Open

2 3 4			
5			
6 7	170	After calibration, for each of the 1000 parameter sets, the model was run with and	
8 9	171	without the intervention ('intervention' and 'baseline', respectively). We model an	
10 11	172	intervention of offering DBS testing in prison, compared to a baseline of current	
12 13	173	testing with venepuncture only. Additionally, we evaluate an intervention of offering	
14 15	174	DBS in specialist addiction services, compared to a baseline of current testing with	
16 17	175	venepuncture. The economic analysis was performed from a UK National Health	
18 10	176	Service perspective. Costs (in 2011 GBP, £1=\$1.55 USD) and health utilities (in	
20	177	quality-adjusted life years, QALYs) were attached to each model compartment.	
22	178	Costs and QALYs were discounted 3.5% per annum as per NICE guidelines, with a	
23 24 25	179	100 year time horizon (to accrue individual and population benefits). The mean	
25 26	180	incremental cost-effectiveness ratio (ICER) was calculated and cost-effectiveness	
27	181	determined using the UK willingness-to-pay (WTP) threshold, estimated between	
29 30	182	£20,000 and £30,000 per QALY gained[12]. Cost-effectiveness acceptability curves	
31 32	183	were constructed and univariate sensitivity analyses undertaken. Analysis of	
33 34	184	covariance (ANCOVA) methods were used to summarize the proportion of the	
35 36	185	variability in the incremental costs and QALYs explained by the uncertainty in input	
37 38	186	parameters[13].	
39 40	187		
41 42	188	Parameters	
43 44	189	All parameters can be found in table 1 and appendix tables 1-4.	Formatt
45 46	190	Health state utilities: Uninfected utility values were taken from UK population	Formatt
47 48	191	norms for non-PWID, and a large cross-sectional study of injectors in Scotland[14]	
49 50	192	for current PWID. We assumed equal utilities for ex-PWID and non-PWID[10].	
50 51	193	Utilities for HCV disease and treatment stages came from UK HCV trials and	
52 53	194	economic evaluations[15-17] and used for ex-PWID (table 1) To derive PWID HCV	
54 55	I	-	
56 57			
58 59			
60			
		For peer review only - http://bmjopen.bmj.com/site/about/guideli	nes.xntml

Formatted: Font: Not Bold Formatted: Font: Not Bold

195	utilities, non-PWID HCV utilities were rescaled by multiplying by the ratio of the	
196	uninfected PWID utility to the uninfected ex-PWID utility for the youngest age group.	
197	All states included disutilities with age.	
198		
199	No disutility was associated with testing in the base-case. However, some evidence	
200	suggests PWID may experience a disutility after positive HCV diagnosis[14 18]. We	
201	explored the impact of a disutility (0.09[14], see appendix) on diagnosis, which was	
202	fully regained with treatment SVR.	
203		
204	Health state and testing costs: Health care costs for HCV disease stages, antiviral	
205	treatment (pegylated interferon-alfa and ribavirin, pegIFN+RBV), and testing were	
206	taken from UK economic analyses[15 16 19 20] <u>. (table 1 and appendix).</u> Data on	
207	the yield (proportion tests Ab+) and prevalence in each setting were used to	
208	calculate the number of non-PWID tested for each PWID/ex-PWID (see appendix).	
209	Costs were inflated to 2011 GBP using the Health and Community Hospital Service	
210	pay and prices index[21]. Additional PWID treatment delivery costs were	
211	applied[11]. We assumed undiagnosed individuals do not incur HCV-related health	
212	care costs unless progressing to decompensated disease[9].	
213		
214	HCV disease progression parameters: Transition rates between disease stages	
215	were taken from UK economic evaluations[15-17]. (table 1). Although estimates	
216	were not PWID specific, a recent meta-analysis suggests little evidence for	
217	differences in progression between PWID and non-PWID[22].	
218		
	8	
	195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218	 utilities, non-PWID HCV utilities were rescaled by multiplying by the ratio of the uninfected PWID utility to the uninfected ex-PWID utility for the youngest age group. All states included disutilities with age. No disutility was associated with testing in the base-case. However, some evidence suggests PWID may experience a disutility after positive HCV diagnosis[14.18]. We explored the impact of a disutility (0.09[14], see appendix) on diagnosis, which was fully regained with treatment SVR. Health state and testing costs: Health care costs for HCV disease stages, antiviral treatment (pegylated interferon-alfa and ribavirin, peglFN+RBV), and testing were taken from UK economic analyses[15.16 19.20]_(table 1 and appendix). Data on the yield (proportion tests Ab+) and prevalence in each setting were used to calculate the number of non-PWID tested for each PWID/ex-PWID (see appendix). Costs were inflated to 2011 GBP using the Health and Community Hospital Service pay and prices index[21]. Additional PWID treatment delivery costs were applied[11]. We assumed undiagnosed individuals do not incur HCV-related health care costs unless progressing to decompensated disease[9]. HCV disease progression parameters: Transition rates between disease stages were taken from UK economic evaluations[15-17](table 1). Although estimates were not PWID specific, a recent meta-analysis suggests little evidence for differences in progression between PWID and non-PWID[22].

1			
2 3			
4 5			
6 7 8 9	219	HCV prevalence: PWID HCV chronic prevalence was estimated from HCV antibody	
	220	prevalence among PWID in England (45% [41-49%, 95% confidence interval	
10 11	221	(CI)][23]). As one-quarter of acute infections spontaneously clear, with spontaneous	
12 13	222	clearance of 26% of acute infections[24] we assume three-quarters of those who are	
14 15	223	ever exposed (antibody positive) are chronically infected, resulting in 35% chronic	
16 17 18 19	224	infection <u>among PWID</u> .	
	225		
20	226	Incarceration duration: Incarceration duration for non-PWID and ex-PWID was	
21 22 22	227	age-stratified, with a mean of 8 months[25]. However, PWID have shorter durations	
23 24 25	228	in custody than non-PWID[25-27]. We used a 4 month PWID incarceration duration,	
25 26	229	based on an estimate for England and Wales[25]. A recent study in Scotland	
27 28 29 30	230	reported a median sentence of 7.1 months in PWID[27] which given most prisoners	
	231	serve approximately half their sentence[28] would also equate to a duration of 4	
31 32	232	months.	
33 34	233	·	Formatted: Font: Not Bold
35 36	234	Testing rates: The overall baseline PWID testing rate (mean 12% undiagnosed	
37 38	235	PWID per year) was estimated through fitting the model to the current proportion of	
39 40	236	diagnosed PWID (approximately 50%[2])., and used Data on the proportion of tests	
41 42	237	from each setting was used in combination with the model projected annual numbers	
43 44	238	of PWID in contact with each setting to calculate setting-specific testing rates (6%	
45 46	239	and 13% per year of undiagnosed PWID in contact with addiction services and	
47 48	240	<u>prisons, respectively (prison, addiction services, other),</u> (see appendix). We	
49 50	241	assume ex-PWID are tested at equal rates to PWID in prison and in general	
51 52	242	community settings. We assumed all diagnostic tests are 100% accurate due to the	
52 53 54	243	high sensitivity and specificity of DBS <u>(99.6% sensitivity, 100% specificity in a setting</u>	
55 56	I	٥	
50 57		5	
58 59			
60			

3 4		
5 6	I	
7 8	244	with 50% prevalence [29]) and venepuncture assays[30], [29 30] and because those
9	245	who receive an initial positive test will receive additional tests before treatment.
11	246	
12 13	247	Referral and treatment transition rates: The referral rate from testing services to
14 15	248	secondary care (35%) was estimated from a UK study[31]. Those not referred or not
16 17	249	attending referral were considered 'lost to follow-up'.
18 19	250	
20	251	Approximately 50% of diagnosed ex-PWID in referral are treated within 2 years[31-
22	252	33]. Since many delay treatment, we assume that after 2 years, 10% of those in
23 24	253	referral initiate treatment annually. Within prison, treatment rates are much lower
25 26	254	than in the community[31 34], although a recent UK prison audit found 24% of those
27 28	255	diagnosed were treated (lain Brew[HMP Leeds], unpublished data). We therefore
29 30	256	estimated half thehalved treatment initiation rates in prison as compared to the
31 32	257	community.
33 34	258	
35 36	259	PWID treatment rates are unknown, but thought to be similarly low to other
37 38	260	countries[35 36], with an estimated <1% of PWID treated annually (Graham
39 40	261	Foster[Consultant Hepatologist], personal communication). Hence, if we assume 1%
41 42	262	of infected PWID are treated within 2 years, this equates to treating approximately
43 44	263	5.5% of those who attend referral (35% of the 50% diagnosed) within 2 years. After
45 46	264	2 years, 1% of those in referral are treated annually thereafter. Testing and treatment
47 48	265	rates are shown in table 1.
40 49	266	
50 51	267	Intervention: The effect of introducing DBS was modelled by assuming a 3.6-fold
52 53	268	increase in testing [2.2-5.8 CI] in addiction services, and 2.6-fold increase in testing
54 55		
56 57		10
58 59		
60		

BMJ Open

[0.1-34.9 CI] in prison, based on two multicentre studies (table 12 and appendix). Intervention costs were determined from the study methods[5] and in consultation with the authors (table 12).

Sensitivity analyses

We performed one-way sensitivity analyses on: time horizon (50/200 years), discount rates (3.5% costs/1.5% QALYs), PWID treatment rates (increased in each setting), PWID SVR rates (reduced by 20%), PWID HCV chronic prevalence (20%/50%), antiviral treatment (telaprevir/boceprevir for genotype 1 patients, see appendix), and continuity of care for treatment/referral on entry/exit from prison (varied from 0% to 100%). We also explored the effect of assuming no prevention benefit (but allowing for reinfectiopg n), by permanently fixing the force of infection. ά.

RESULTS

Case finding in addiction services

The incremental cost effectiveness ratio (ICER) of increasing case-finding in addiction services, by introducing DBS testing, was an estimated £14,600 (\$22,630 USD) per QALY gained in the base-case (table 24). At a £20,000 or £30,000 WTP threshold, the intervention is likely to be cost-effective in 69% or 93% of the simulations, respectively (figure 1a). Uncertainty in the intervention effect contributed to 86% and 58% of the variation in incremental costs and QALYs, respectively. The remaining variation in incremental QALYs was mainly due to uncertainty in treatment rates (22%) and health utilities (17%).

old R to 1
old R to 1
old R to 1
ר to ז יו0%)
ח יווייט
n 20%1
n '0%)
n י0%)
0%)
,
)%).
ó
?
per
ie
r for
ion.
ient
°S,
12

1			
2			
3			
4 5			
6 7	319		
8 9 10 11	320	Case finding in prison	
	321	The ICER of increasing case-finding in prison, by introducing DBS testing, was	
12 13	322	estimated at £59,400 (\$92,070 USD) per QALY gained (21% likely to be cost-	
14 15	323	effective at a £30,000 WTP threshold) in the base-case (table 24 and figure 1b).	
16 17	324	Uncertainty in the intervention effect contributed to most (>85%) of the variation in	
18 19	325	incremental costs and QALYs.	
20 21	326		
22 23	327	The base-case conclusion was robust to most one-way sensitivity analyses (figure	
24 25	328	2b) – including time horizon, discount rates, HCV prevalence, and use of new	
26 27	329	treatments. If 50% of PWID in referral initiated treatment within 2 years, the ICER	
28 29	330	halved to just below £30,000 per QALY gained.	
30 31	331		
32	332	Introducing continuity of care (which measures the proportion of initiated	
34 25	333	treatments/referrals that are continued when entering/exiting prison) led to an	
35 36	334	increase in cost-effectiveness: from an ICER of £59,400 per QALY gained with 0%	
37	335	continuity to £10,400 per QALY gained with 100% continuity (figure 3). The ICER	
39 40	336	fell below £20,000 when >40% continuity of care was ensured; at 40% continuity the	
41 42	337	intervention was 57% and 83% likely to be cost-effective at the \pounds 20,000 and \pounds 30,000	
43 44	338	WTP thresholds, respectively. The level of continuity required for prison case-finding	
45 46	339	to be cost-effective also depended on treatment rates. If prison treatment rates were	
47 48	340	increased to equal those in the community (50%/5.5% of ex-PWID/PWID treated	
49 50	341	within 2 years of referral), then 35% continuity results in an ICER just below £20,000	
51 52 53 54	342	per QALY gained. Increasing treatment rates further so 50% of all referred prisoners	
56 57 58		13	

initiate treatment within 2 years lowers the required continuity to 20% for an ICERbelow £20,000.

DISCUSSION

347 Main findings

Our results indicate the introduction of dried blood spot testing for HCV case-finding is likely to be cost-effective under commonly used willingness-to-pay thresholds in the UK (£20,000-£30,000/QALY gained[12]) and US (\$50,000/QALY gained[38]) in addiction services, but not in prison unless a minimum level of continuity of care in treatment or referral between prison and the community can be ensured. Ignoring the prevention benefit doubles the ICER of the intervention in addiction services. In the base-case, most PWID treatments initiated in prison were interrupted due to the lack of continuity of care and short PWID incarceration times (~4 months) in the UK[25 27]. Consequently, little prevention benefit was achieved from the prison intervention, with the results approaching the 'static' model. With the low base-case PWID treatment rates, the continuity required for DBS to be cost-effective was approximately 35-40% of the estimated treatment/referral rates, but if treatment/referral rates increased then lower levels of continuity would be cost-effective. Crucially, not all treatments need to be initiated or completed in prison, as only maintaining treatment or referral contact is necessary. Finally, both interventions are most cost-effective at higher treatment rates. Strengths and Limitations

The key strength of this analysis is that the model is dynamic, therefore capturing the
prevention impact of case-finding and treatment. The main limitations are concerned

BMJ Open

with parameter uncertainty and lack of model heterogeneity. First, we based our increase in case-finding on the DBS intervention, which though empirically founded. was informed by relatively small UK studies, resulting in wide uncertainty around the effect estimates. Second, the base-case assumed comparatively low treatment rates for PWID, partly because UK data on PWID treatment numbers are not available., although similar rates have been reported in the US[36] and Canada[35]. This information is critical, as higher treatment rates increase the intervention's cost-effectiveness. This is especially important for prisons where information on treatment completion information was unavailable, yet these factors strongly influenced cost-effectiveness. Additionally, even if treatment is interrupted, some may benefit from shortened treatment, which we did not incorporate. However, the rapid development of resistance observed with new treatments[39] indicates treatment continuity will become an increasingly crucial issue. Third, more data are needed to quantify PWID health utilities, which can be below the general population[39]. Especially important is whether any transient or permanent disutility on HCV diagnosis occurs, as current data are weak and not based on prospective studies. No consensus exists regarding diagnosis utilities in other diseases[41 42]. Our projections indicate if a disutility occurs then higher treatment rates are required for case-finding to be cost-effective. Fourth, the model did not incorporate other interventions or behaviours that may influence HCV risk or treatment uptake. For example, case finding and treatment of

PWID is targeted towards those on opiate substitution therapy[43] who may contribute fewer secondary infections[44]. However, modelling work has shown introducing risk heterogeneity does not substantially reduce intervention impact if PWID circulate between risk states[40] which is likely to occur as individuals move in/out of drug treatment and prison. Fifth, the model was parameterized to UK data, so our results are not necessarily applicable to other settings. However, our conclusions are robust to changes in HCV prevalence. Continuity of care could also be an issue in Australia, where PWID incarceration duration is similar to the UK[41]. However, sentences are longer in the US[42], so fewer treatments may be interrupted, and therefore case-finding in US prisons could be more cost-effective than our results indicate. Our modelled UK treatment and HCV health care costs are within the range of those presented by recent US studies [43 44], with the exception of approximately 3-fold higher liver transplantation costs, which would increase the cost-effectiveness of case-finding in the US. Testing costs were taken from UK economic evaluations, however it is possible a streamlined and experienced testing service could lower costs associated with staff time, thus increasing cost-effectiveness. Sixth, we were unable to evaluate future interferon-free direct-acting antiviral therapies as information on treatment costs and health utilities are unavailable. These treatments will likely have increased SVR (90% for all genotypes), shorter treatment durations (12-24 weeks), lower toxicity, and simpler dosing regimes[45]. Therapies with shorter duration could increase the impact of testing and treatment in

2 3 4		
5		
6 7	418	prison as more patients will be able to complete therapy prior to release, and could
8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23	419	potentially be more cost-effective depending on the ratio of additional costs to
	420	incremental impact.
	421	
	422	
	423	Comparison with other studies
	424	Two publications evaluated the cost-effectiveness of testing ex-PWID in prison, with
	425	ICERs varying from about £20,000[10] to £55,000[9] per QALY gained. Our results
	426	are consistent with Sutton et al.[9], which used the same discount rates as our study.
24 25	427	However, we included the possible prevention impact of treating PWID, and unlike
26 27	428	the previous studies, show how continuity of care between prison and the community
28	429	can make case-finding cost-effective.
29 30	430	
31 32 33 34	431	Three papers evaluated testing PWID in drug services[10 20 46]. Differences in
	432	baseline assumptions led to varying ICERs from £28,100[20] to £17,500[10 46] per
35 36	433	QALY gained. Our results for addiction services support those found in the latter
37 38	434	studies[10 46]. However, the intervention examined in these studies[10 20 46] was
39 40	435	one-off testing using a cohort model (with no evidence based intervention effect) and
41 42	436	neglected any prevention benefit.
43 44	437	
45 46	438	Several US studies examined birth cohort screening for all people born in 1945-
47 48	439	1965[44 47] or 1946-1970[43] as compared to risk based screening, reporting ICERs
40 49 50	440	of \$38,000 per QALY gained with direct-acting antivirals[43 44] and \$5,400-16,000
50 51 52 53 54	441	per QALY gained with pegIFN+RBV[44 47]. Critically, the cost-effectiveness varies
	442	substantially by HCV prevalence[47], and the estimated US prevalence is higher
55 56		17
57 58		
59 60		

than many other developed countries. Additionally, the ICERs were generated given
assumptions of higher treatment rates, as well as greater utility gains with SVR than
we consider. Importantly, our intervention targets PWID with a risk of transmitting
infection to others, whereas birth cohort screening is likely to identify infections
among ex-injectors and non-injecting populations which will have little primary
prevention impact.

450 Implications

Our cost-effectiveness work indicates increasing HCV case-finding in addiction services can be cost-effective. However, the cost-effectiveness of prison case-finding interventions depends on adequate continuity of care with the community. Few settings have developed comprehensive strategies to address this issue. though New York state-recently initiated the Hepatitis C Continuity Program[48]. In all settings, treatment uptake is critical: higher treatment rates prevent more disease transmission and increase the cost-effectiveness of case-finding interventions. If a disutility on diagnosis occurs, higher treatment rates would be necessary to ensure cost-effectiveness. Further empirical data are required on treatment uptake and changes in utilities following diagnosis and treatment in order to compare targeted case-finding with cohort models.

463 AUTHOR CONTRIBUTIONS

NKM contributed to the study design, model development, analysis, manuscript
drafting and editing. MH contributed to the study design, model development,
analysis, and manuscript editing. AM contributed to the analysis and manuscript
editing. SJH contributed to the model parameterization, analysis, and manuscript

2 3 4		
5 6		
7	468	editing. AT contributed to the model parameterization and manuscript editing. PV
8 9	469	contributed to the study design, model development, analysis, and manuscript
10 11	470	editing.
12 13	471	Acknowledgements
14 15	472	We thank the following for their insights and/or data: Iain Brew, Eamonn O'Moore,
16 17	473	Sarah Collins, Noel Craine, Graham Foster, Anjan Ghosh, Cathie Gillies, Vivian
18 19	474	Hope, Scott McDonald, Fortune Ncumbe, Mary Ramsay, Katy Turner.
20 21	475	Competing Interests
22	476	NM has received an honorarium for speaking at a conference sponsored by
23 24 25	477	Janssen. SH has received honoraria for speaking at conferences sponsored by
25 26	478	MSD, Janssen, Gilead, and Roche. MH, AM, AT, PV have no competing interests.
27	479	
29 30	480	
31 32	481	
33 34	482 483	
35 36		
37 38		
39 40		
41 42		
43		
44 45		
46 47		
48 ⊿q		
50		
51 52		
53		
54 55		
56 57		19
58		
59 60		

1			
2			
3			
4			
5			
6			
7	484		
8	485		
9	486	1. Nelson PK, Mathers BM, Cowle B, et al. Global epidemiology of hepatitis B and hepatitis C	
10	487	in people who inject drugs: results of systematic reviews. The Lancet 2011; 378 :571-	
11	488	83	
12	489	2. Health Protection Agency Colindale. Hepatitis C in the UK 2011, July 2011.	
12	490	3 Department of Health HPA Prison Infection Prevention Team Liver Strategy Team	
17	491	National Survey of henatitis C services in prisons (Draft report) 2011	
14	102	A Harris M Phodes T. Venous access and care: harnessing pragmatics in harm reduction for	
10	492	4. Harris W, Middes T. Vendus access and care. Harriessing pragmatics in harrineduction for	
10	495	Full contraction in the second s	
17	494	5. Hickman M, MicDonald T, All J, et al. Increasing the uptake of nepatitis C virus testing	
18	495	among injecting drug users in specialist drug treatment and prison settings by using	
19	496	dried blood spots for diagnostic testing: a cluster randomized controlled trial. Journal	
20	497	of Viral Hepatitis 2008; 15 (4):250-54	
21	498	6. Craine N, Parry J, O'Toole J, et al. Improving blood-borne viral diagnosis; clinical audit of	
22	499	the uptake of dried blood spot testing offered by a substance misuse service. Journal	
23	500	of Viral Hepatitis 2009; 16 :219-22	
24	501	7. Jones L, Bates G, McCoy E, et al. A systematic review of the effectiveness & cost-	
25	502	effectiveness of interventions aimed at raising awareness and engaging with groups	
26	503	who are at an increased risk of hepatitis B and C infection.	
27	504	http://www.nice.org.uk/nicemedia/live/11957/5946/5946.pdf, 2012.	
28	505	8. Martin NK, Vickerman P, Foster GR, et al. Can antiviral therapy for hepatitis C reduce the	
29	506	prevalence of HCV among injecting drug user populations? A modelling analysis of its	
30	507	prevention utility. Journal of Henatology 2011 54 1137-44	
31	508	9 Sutton AL Edmunds WI Sweeting ML et al. The cost-effectiveness of screening and	
32	500	treatment for henatitis C in prisons in England and Wales: a cost-utility analysis	
33	510	lournal of Viral Honatitic 2008-15/11):707-808	
34	510	10. Castalaugua E. Thompson Coon I. Ditt M. et al. The sort offectiveness of tecting for	
35	511	10. Castelliuovo E, mompson-coori J, Pitt W, et al. The cost-effectiveness of testing for	
36	512	nepatitis C in former injecting drug users. Health Technology Assessment	
37	513	2006; 200 6(10):32	
38	514	11. Martin NK, Miners A, Vickerman P, et al. The cost-effectiveness of HCV antiviral	
39	515	treatment for injecting drug user populations. Hepatology 2012;55(1):49-57	
40	516	12. NICE. Guide to the methods of technology appraisal, 2008.	
41	517	13. Briggs A, Claxton K, Sculpher M. Decision Modelling for Health Economic Evaluation.	
42	518	Oxford: Oxford University Press, 2006.	
43	519	14. McDonald S, Hutchinson SJ, Palmateer N, et al. Decrease in health-related quality of life	
44	520	associated with awareness of hepatitis C virus infection among people who inject	
77 15	521	drugs in Scotland. Journal of Hepatology 2013; 58 :460-6	
40	522	15. Shepherd J, Jones J, Hartwell D, et al. Interferon alfa (pegylated and non-pegylated) and	
40	523	ribavirin for the treatment of mild chronic hepatitis C: a systematic review and	
41 10	524	economic evaulation. Health Technology Assessment 2007;11(11):1-224	
40	525	16. Wright M, Grieve R, Roberts J, et al. Health benefits of antiviral therapy for mild chronic	
49 50	526	hepatitis C: randomised controlled trial and economic evaluation. Health Technol	
50	527	Assess 2006:10(21)	
51	528	17 Hartwell D. Jones I. Baxter I. et al. Peginterferon alfa and rihavirin for chronic henatitis C	
52 50	520	in nations eligible for shortened treatment re-treatment or in HCV/HIV co-	
53	زعر	in patients engine for shortened treatment, restreatment, or in new/niv co-	
54			
55			
56		20	
57			
58			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
1		
2		
3		
4		
5		
6		
7	530	infection: a systematic review and economic evaluation. Health Technol Assess
8	531	2011; 15 (17):1-210
9	532	18. Dalgard O, Egeland A, Skaug K, et al. Health-related Quality of Life in Active Injecting
10	533	Drug Users With and WIthout Chronic Hepatitis C Virus Infection. Hepatology
11	534	2004; 39 (1):74-80
12	535	19. British Medical Association. British National Formulary, number 62: BMJ Publishing
13	536	Group, 2011.
14	537	20. Stein K, Dalziel K, Walker A, et al. Screening for Hepatitis C in injecting drug users: A cost
15	538	utility analysis. Journal of Public Health 2004; 26 (1):61-71
16	539	21. Personal Social Services Research Unit. Unit Costs of Health and Social Care 2011:
17	540	University of Kent, 2011.
18	541	22. John-Baptiste A, Krahn MD, Heathcote J, et al. The natural history of hepatitis C infection
19	542	acquired through injection dru guse: Meta-analysis and meta-regression. Journal of
20	543	Hepatology 2010; 53 (2):245-51
21	544	23. Harris RJ, Ramsay M, Hope VD, et al. Hepatitis C prevalence in England remains low and
22	545	varies by ethnicity: an updated evidence synthesis. European Journal of Public Health
23	546	2011;Epub ahead of print
24	547	24. Micallef JM, Kaldor JM, Dore GJ. Spontaneous viral clearance following hepatitis C
25	548	infection: a systematic review of longitudinal studies. J Viral Hepat 2006;13:34-41
26	549	25. Sutton AJ, Gay NJ, Edmunds WJ, et al. Modelling the hepatitis B vaccination programme
27	550	in prisons. Epidemiol Infect 2006: 134 :231 - 42
28	551	26. Bird AG. Gore SM. Cameron S. et al. Anonymous HIV surveillance with risk factor
29	552	elicitation at Scotland's largest prison. Barlinnie, AIDS 1995: 9 :801-08
30	553	27. Taylor A. Munro A. Allen F. et al. Low incidence of henatitis C virus among prisoners in
31	554	Scotland, Addiction 2013: 108 (7):1296-304 doi: 10.1111/add.12107[published Online
32	555	First: Enub Datell
33	556	28. Ministry of Justice. Offender Management Statistics Quarterly Bulletin, April to June
34	557	2011 England and Wales 2011
35	558	29 Judd A. Parry I. Hickman M. et al. Evaluation of a modified commercial assay in detecting
36	559	antibody to benatitis C virus in oral fluids and dried blood spots. I Med Virol
37	560	2003- 71 -49 - 55
38	561	30 Colin C Lanoir D Touzet S et al. Sensitivity and specificity of third-generation hepatitis C
39	562	virus antibody detection assays: an analysis of the literature I Viral Henat
40	563	
41	564	31 Irving WI Smith S Cater R et al. Clinical nathways for nations with newly diagnosed
42	565	henotitis C - What actually happens, Journal of Viral Henotitis 2006:12(A):264-71
43	566	22 Jowett SL, Agarwal K, Smith BC, et al. Managing chronic henatitis C acquired through
44	500	intravenous drug uso. O L Med 2001: 04 :152.59
45	507	22 Eastar G. Goldin PD. Main L. et al. Management of chronic honatitic C: clinical audit of
46	500	binov based management algorithm DNI 1007-215:452.9
47	509	24 Skipper C. Guy IM. Darkes L et al. Evaluation of a prison outroach clinic for the diagnosis
48	570	54. Skipper C, Guy Jivi, Parkes J, et al. Evaluation of a prison outreach clinic for the diagnosis
49	571	
50	572	2005, 52 .1500 - 04
51	5/5	55. Grebery J, Rana JD, Lar C, et al. Low uptake of treatment for hepatitis C virus infection in
52	5/4	a large community-based study of inner city residents. J Viral Hepat 2009;10(5):352-
53	5/5	0
54		
55		
56		21
57		
58		
59		
60		

Page 48 of 87

BMJ Open

2		
3		
4		
5		
6	576	26 Mehts SH, Genherg BL, Actemborski L, et al. Limited Untake of Henatitic C Treatment
(570	Among Injection Drug Llears, L Comm Health 2009; 22 (2):126-22
8	577	Among injection Ding Osers. J Community based treatment for chronic
9	570	benetitie C in drug years; high rates of compliance with therapy despite angeing drug
10	579	hepatitis C in drug users. high rates of compliance with therapy despite ongoing drug
11	580	use. Alimentary Pharmacology & Therapeutics 2009; 29 (1):29-37
12	581	38. Grosse SD. Assessing cost-effectiveness in healthcare: history of the \$50,000 per QALY
13	582	threshold. Expert Rev Pharmacoecon Outcomes Res 2008;8(2):165-78
14	583	39. Kimber J, Copeland L, Hickman M, et al. Survival and cessation in injecting drug users:
15	584	prospective observational study of outcomes and effect of oplate substitution
16	585	treatment. BMJ 2010; 340 :c3172 doi: 10.1136/bmj.c3172[published Unline First:
1/	586	Epub Date]].
18	587	40. Vickerman P, Martin N, Turner K, et al. Can needle and syringe programmes and opiate
19	588	substitution therapy achieve substantial reductions in HCV prevalence? Model
20	589	projections for different epidemic settings. Addiction 2012; 107 :1984-95
21	590	41. Miller E, Bi P, Ryan P. Hepatitis C virus infection in South Australian prisoners:
22	591	seroprevalence, seroconversion, and risk factors. International Journal of Infectious
23	592	Diseases 2009; 13 :201-08
24	593	42. West H, Sabol W, Greenman S. Bureau of Justice Statistics Bulletin: Prisoners in 2009.
25	594	http://bjs.ojp.usdoj.gov/content/pub/pdf/p09.pdf, 2010.
20	595	43. McGarry LJ, Pawar VS, Parekh HH, et al. Economic model of a birth cohort screening
27	596	program for hepatitis C virus. Hepatology 2012; 55 (5):1344-55 doi:
28	597	10.1002/hep.25510[published Online First: Epub Date]
29	598	44. Rein D, Smith B, Witenborn J, et al. The Cost-Effectiveness of Birth-Cohort Screening for
30	599	Hepatitis C Antibody in U.S. Primary Care Settings. Annals of Internal Medicine
31	600	2012; 156 (4):263-70
ა∠ ეე	601	45. Dore GJ. The changing therapeutic landscape for hepatitis C. Med J Aust 2012; 196 :629-
აა ა/	602	32
25	603	46. Thompson Coon J, Castelnuovo E, Pitt M, et al. Case finding for hepatitis C in primary
30	604	care: a cost utility analysis. Family Practice 2006; 23 (4):393-406 doi:
27	605	10.1093/fampra/cml032[published Online First: Epub Date] .
31 20	606	47. Coffin PO, Scott JD, Golden MR, et al. Cost-effectiveness and Population Outcomes of
20	607	General Population Screening for Hepatitis C. Clinical Infectious Diseases
40	608	2012; 54 (1259-1271)
40 //1	609	48. Klein SJ, Wright LN, Birkhead GS, et al. Promoting HCV Treatment Completion for Prison
42	610	Inmates: New York State's Hepatitis C Continuity Program. Public Health Reports
43	611	2007; 122 (Suppl 2):83-88
44	612	
45	613	
46	614	
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		22
57		
58		
59		
60		

1		
2		
2		
1		
4		
5		
6	615	
7	015	
8	616	
9	617	Figure Legends:
10	618	
11	619	Figure 1. Base-case cost-effectiveness acceptability curves for the dried blood
12	620	spot intervention. Results shown for the (a) addiction services and (b) prison
13	621	interventions for various willingness-to-pay thresholds.
14	622	
15	623	Figure 2. Univariate sensitivity analyses on the mean incremental cost-
10	624	effectiveness ratio (ICER). Results shown for the dried blood spot intervention in
10	625	(a) addiction services and (b) prison. Vertical line represents the base-case ICER
17	626	estimated at (a) £14 600 per OALY gained and (b) £59 400 per OALY gained
18	627	
19	628	
20	620	Figure 3 Incremental cost-effectiveness ratios for the prison intervention with
21	620	varying continuity of care assumptions. Base case scenario assumed 0%
22	621	continuity of care assumptions. Dase-case scenario assumed 0 %
23	051	continuity.
24	052	
25	633	
26		
27		
28		
29		
30		
31		
32		
22		
24		
34		
30		
30		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
55		10
50		23
5/ 50		
58		
59		
60		

1					
2					
3					
4					
5					
6					
7	634				
8	635				
g					
10			Mean	Distribution	Reference
11			value		
11	Transiti	on probabilities per year (all pro	habilities	converted to instantaneous rates)	
12	Mildito	en probabilitico per year (an pro-	0.005		[40]
13	Moderat	nouerate e to cirrhosis	0.020	$\frac{\text{Beta}(\alpha=36.0009, \beta=1400.0010)}{\text{Beta}(\alpha=26.005, \beta=700.2582)}$	[19] [10]
14	Cirrhosi	s to decompensated cirrhosis	0.039	$\frac{\text{Beta}(\alpha = 14.6168 - \beta = 360.1732)}{\text{Beta}(\alpha = 14.6168 - \beta = 360.1732)}$	[19]
15	Cirrhosi	s/decomp. cirrhosis to HCC	0.014	Beta(α = 1.9326, β=136.1074)	[19]
16	Decomp	ensated cirrhosis/HCC to LT	0.03	Beta(α=6.5256, β=210.9945)	[19]
17	Decomp	ensated cirrhosis to death	0.13	Beta(α=147.03, β=983.97)	[19]
18	HCC to	death	0.43	Beta(α =117.1033, β=155.23)	[19]
19	LI to de	ath	0.057	Beta(α =16.2/62, β=61.2294)	[19] [10]
20		topiant to usati	0.007	₽₩ια(u=∠∠.₩υ+/, p=3/8.8828)	[+ v]
21		state utilities/uisutilities per year			
22	Ex-PWI) age 15-19	0.04		[47]
22	Unint Mild	eciea	0.77	Beta(a=521 2375 8-155 6043)	[17] [10.20]
23	Mode	rate	0.77 0.66	$\frac{\text{Beta}(\alpha - 168, 2461, \beta - 105, 0943)}{\text{Reta}(\alpha - 168, 2461, \beta - 86, 6723)}$	[19 20] [19 20]
24	Cirrhe		0.55	$\frac{\text{Beta}(\alpha = 47, 1021, \beta = 38, 5381)}{\text{Beta}(\alpha = 47, 1021, \beta = 38, 5381)}$	[19 20]
25	Deco	mpensated cirrhosis	0.45	Beta(α=123.75, β=151.25)	[19 20]
26	Hepa	tocellular carcinoma	0.45	Beta(α=123.75, β=151.25)	[19 20]
27	Liver	transplant	0.45	Beta(α=123.75, β=151.25)	[19-20]
28	Post	ransplant	0.67	Beta(α =59.2548, β=29.1852)	[20-21]
29	Mild -	on treatment	0.66 0.55	Beta(α =115./06, β=59.6063)	[19 20]
30	Cirrbo	rale - on treatment	0.46	$\frac{Beta(a=47.1021, \beta=38.0381)}{Beta(a=3053, \beta=4641)}$	[12]
31	Mild		0.40	$\frac{\text{Beta}(\alpha=65.8678, \beta=404.1)}{\text{Reta}(\alpha=65.8678, \beta=14.4588)}$	[12] [10,20]
32	Mode	rate SVR	0.02	$\frac{\text{Beta}(\alpha=53.0608, \beta=14.4500)}{\text{Beta}(\alpha=58.0608, \beta=22.5792)}$	[12 19 20]
22	Cirrhe	osis SVR	0.61	Beta(α=58.0476, β =37.1124)	[21]
33	PWID a	ge 15-19			
34	Uninf	ected	0.74	Uniform(0.67,0.8)	[18]
35	HCV	disease states	As in ex-	PWID, but reduced by PropPWID [*]	Assumed
36	Disutility	with age	0		[17]
37	25-24		0.005		[17] [17]
38	30-54		0.049		[17]
39	55-64		0.14		[17]
40	65-74		0.16		[17]
41	75+		0.21		[17]
42	Costs (E per year, except where noted)			
<u>4</u> 2	Mild dia	gnosed	169	PPI [‡] ×Gamma(<i>k</i> =25,6995.0=5,3698)	[19 20]
7-J // /	Moderal	e diagnosed	880	PPI [‡] ×Gamma(<i>k</i> =88.8502, 0=8.0698)	[19 20]
44	Cirrhosi	s diagnosed	1,397	PPI [‡] ×Gamma(k=24.2342, 0=46.9584)	[19 20]
40	Decomp	ensated cirrhosis	11,199	PPI [≢] ×Gamma(<i>k</i> =36.0249, θ=253.1582)	[19 20]
46	Hepatoc	ellular carcinoma	9,980	PPI ⁺ ×Gamma(<i>k</i> =18.1081, 0=448.8045)	[19]
47	Liver tra	n splant (per transplant)	33,561	$PPI^* \times Gamma(k=89.7536, \theta=304.5004)$	[19] [10]
48	Post tra	sare in year or iiver transpiant hsnlant	11,014 <u>1.701</u>	$\frac{1}{2} = \frac{1}{2} $	[19]
49	Mild SV		318	$\frac{PPI^{\ddagger} \times Gamma(k=28.8141.6=8.9887)}{PPI^{\ddagger} \times Gamma(k=28.8141.6=8.9887)}$	[19]
50	Moderat	e SVR	880	PPI [‡] ×Gamma(<i>k</i> =88.8502, 0=8.0698)	[19]
51	Cirrhosi	s SVR	1,397	PPI [‡] ×Gamma(<i>k</i> =24.2342, 0=46.9584)	[19]
52	Undiagr	osed states	θ		-
53	PegIFN	+RBV drug only			
50	24 we	eks, halved/doubled for 12/48 wks	5,320	Unitorm (4788, 5852)	[23]
54	+ reatme	the delivery			
55					
56					24
57					
58					
59					

1						
2						
3						
1						
5						
5						
0	-Ex-PV	4 D. 12 weeks	1.912	Varied, see appendix	See appendix[19]	
1	-Ex-PV	4 D. 24 weeks	2.057	Varied, see appendix	See appendix[19]	
8	Ex-PV	4 D, 48 weeks	2,326	Varied, see appendix	See appendix[19]	
9	-PWID	12 weeks	2,193	Varied, see appendix	See appendix	
10	-PWID	-24 weeks	2,435	Varied, see appendix	See appendix	
11	-PWID	48 weeks	2,900	Varied, see appendix	See appendix	
12	Testing of	costs in all settings except prison	115.21	Uniform +/- 50%	See appendix	
12	lesting of	Costs in prison	144.21	Unitorm +/- 60%	See appendix	
13		A lest (il antibody positive)	/ 3.0/		[24]	
14	Testing	and treatment parameters				
15	Proportic	on PWID diagnosed (initial)	50%		[4]	
16	Proportic	on PWID treated (initial)	0%		Assumption	
17	Proportic	on ex-PWID diagnosed (initial)	30%	Uniform (24%, 36%)	Assumption [58]	
18	Proportion	on of diagnosed ex-PWID	10%	Uniform (5%, 15%)	Estimated <10%	
19	treated	initial)			diagnosed chronic	
20	Proportir	on HCV genotype 1	50%			
20	Sustaine	ad viral response(SVR)	0070			
21	Gene	type 1 mild/moderate	0.45	Uniform $(0.4, 0.5)$	[59-62]	
22	Gene	type 2/3 mild/mod	0.8	Uniform (0.75, 0.85)	[59 62 63]	
23	-Gene	type 1 cirrhosis	0.25	55% reduction from mild/mod	[64]	
24	-Gene	type 2/3 cirrhosis	0.6	75% reduction from mild/mod	[6 4]	
25	Antiviral	treatment duration (weeks)				
26	Gene	type 1 SVR	48		[59]	
27	- Gene	type 1 non-SVR	12		[59]	
28	- Gene	i type 2/3 ion of DM/ID HCV/ tooto	2 4		[59]	
20	CP		38 / 0/		ÿ	
29	Priso	n	11.5%		§	
30	Addie	tion services	29.4%		§	
31	Other	:	20.7%		§	
32	Proportio	on who are referred and	35%	Uniform (25%, 45%)	[13-35]	
33	attend re	eferral				
34	Proportic	on in referral who initiate				
35	treatmer	nt within 2 years (excl. prison)	500/		140.05.071	
36		4 D	50% 5.5%	Uniform $(40\%, 60\%)$	[13-35-37] Accumption	
27	Troatmo	nt initiation rate after 2 years	3.3%	$\overline{Offitioffit(1\%, 10\%)}$	Assumption	
31	in referr	al (eycl. prison) per vear				
38	Ex-PV	4D	10%	Uniform(5%, 15%)	Assumption	
39	PWID		3%	Uniform(1%, 5%)	Assumption	
40	Treatme	nt rates in prison	Half out-	of-prison rates	Assumption [#]	
41	Yield (pr	oportion tests Ab+)				
42	GP		2.7%		\$	
43	Priso	A tion convicto	14.7%		ş	
44	Addie Othor	XION SERVICES	17.7% 1 70/		š	
15	COC	-	1./ 70			
40	030	Table 4 Madel nonemater	- ‡Drond			Formatted: Indent: Left: 0
40	637	Table 1. Wodel parameters	s. Piopi		ue ior age 15-	
47	638	19)/(unintected ex-PWID ut	Hitty for a	ige 15-19). *PPI=Hospital and Con	nmunity Health	
48	639	Services Pay and Prices Inc	dex infla	tion factor. ³ Health Protection Age	ncy (HPA)	
49	640	unpublished data from the 2	2010 Se	ntinel Surveillance. *lain Brew, HM	P Leeds,	
50	641	unpublished data. HCC= he	patocell	lular carcinoma; LT=liver transplan	t;	
51	642	SVR=sustained viral respor	ise; peg	IFN=pegylated interferon; RBV= ri	bavirin	
52	•					
53						
50						
54						
55						
56					25	
57						
58						
59						
60						

2					
	643	T	1	Γ	
		Mean	Distribution	Units	Ref.
Ĺ		value			
\cap	Intervention effect (proportional change in	testing rate)			
1	Addiction services	3.6	Lognormal		[5]
1		[2.3-5.8]	(μ=1.285, σ=0.239)	-	
2	Prison	2.6	Lognormal	-	[5]
3		[0.2-34.9]	(μ=0.968, σ=1.317)		
4_	Intervention costs (addiction services)	0.005.54			+
5		2,005.71		per health board	t
6	Attendees time [§]	135		per training session	t
7	Travel reimbursement for training leader"	90.86		per training session	t
8	Total cost per addiction services training	3851.57		per training session	t
9	Mean number tested	40.3		per addiction service ¹¹	[5]
Õ_	Total intervention cost per test	95.57	Uniform +/-50%	per test	
1	Intervention costs (prison)				
2	Organization/coordination of training	7020		per prison	†
2	Training session ⁺	135		per prison	+
3	Attendees time''	405		per prison	' †
24	Travel reimbursement for training leader	127.20		per prison	†
5	Mean number tested per prison	116		per prison	[5]
5	······································	66 27	Uniform +/- 50%	ner test	r-1
6	Total intervention cost per test	00.27	011101111 1/- 30 /0		
5 6 7 8 9 0 1 2 2	Total intervention cost per test 644 Table <u>1</u>2. Intervention parameters. A £366(median estimate for band 5 gene months for 7 health boards. One training containing session per pro- for for prisons (1 training session per pri- for for prisons (1 training session per pri- for formisons (1 training session per pri- formison (1 training session	All cost estiner and practice ng session p 2 nurses, ha addiction se	nates assume a sta nurse[21]). [*] 1 nurse per health board. [†] N alf day. "1200 miles ervice per health bo	ff-nurse cost per hou 2 days/week for 6 loel Craine, <i>persona</i> (£0.53 per mile) for ard. ^{**} 1 nurse full tim f day. ^{#‡} 1200 miles	ur of / ne
067890123456789012345678	Total intervention cost per test 644 Table <u>1</u>2. Intervention parameters. <i>A</i> £306(median estimate for band 5 gene montals for 7 health boards. One traini containunication. [‡] 1 nurse, half day. [§] 1 travel to 7 health boards. [¶] Assumed 1 for 50 prisons (1 training session per pr (£05,53 per mile) for 5 prisons. 652	All cost estin eral practice ng session p 2 nurses, ha addiction se ison) ^{††} 3 nur	nates assume a sta nurse[21]). [*] 1 nurse per health board. [†] N alf day. "1200 miles ervice per health bo rses per prison, hal	ff-nurse cost per hou e 2 days/week for 6 loel Craine, <i>persona</i> (£0.53 per mile) for ard. ^{**} 1 nurse full tim f day. ^{#‡} 1200 miles	ur of / ne

1																								
2																								
2																								
3																								
4																								
5																								
6	652																							
7	033																							
8			Moan	Sample	a valuos		Unite	Pof																
9			valuo	oumpie		· .	onno	TTOT.																
10			Value						-															
11	Average	e duration of injecting	11	6.2, 8.6 ,	11, 13.4	, 15.8	years	[65-66]																
12		salion verdose rate	0.01	0.007.0	01 0 01	3	Dor voor	[67]																
13	Duratio	n in addiction services	9.01 9	7 9 11	.01, 0.01	U 1	months	Estimated from OST																
14	2 4. 4. 6.			., 0,				duration[67]																
15	Incarce	ration duration																						
16	PWIE	7						100.011																
17		ages MD	4	2.67, 4,	5.33	4	Wonths	[29-31]																
18	<u> </u>	19	2 75			l	Months	[29]																
10		-24	6.26			1	Months	[29]																
19		-29	8.42			4	Months	[29]																
20	30	-54	9.76			4	Months	[29]																
21		64	11.92			4	Months	[29]																
22		+ Frat injection distribution	12.49				Months	[29]																
23	Age of 15		41%				_	Combined LIK data from [48]																
24		24	30%				-	Combined UK data from [48]																
25	25	29	16%				-	Combined UK data from [48]																
26	30	-54	13%				-	Combined UK data from [48]																
27	55	+	0%			-		Combined UK data from [48]																
28	Death n	ate by age	0 0000			, i i i i i i i i i i i i i i i i i i i		1001																
29		19	0.0003			1	Per year	100] 1681																
30		29	0.0006				Per vear	[68]																
31			0.0019				Per year	[68]																
32	55	64	0.0073			4	Per year	[68]																
33		74	0.0200			4	Per year	[68]																
34	—75	≢ Inn of England social t	0.165			4	⊦er year																	
25		iph of England population	∪.∠%					[08 / 0]																
20	Proporti	in of nonulation	0.65%					[71]																
ა ღ	who are	PWID aged 15-59	0.0070					11																
37	Proport	ion PWID in contact	50%					[48]																
38	with add	liction services																						
39	Proport	ion PWID diagnosed	50%					[4]																
40	PWID F	CV chronic prevalence	35% 0.26	Uniform	(0.22.0	20)		[[27] [28]																
41	spontar	eous clearance	0.20	UIIIUIIII	(0.22, 0.	28) ·	-																	
42	opontai			tribution				Reference	İ		-	-	-	-	-	-						-	-	-
43			15-10	20-24	25-29	30-54	55+	TREFERENCE	1	1	-	-	-	-	-	-		-				-	-	-
44			10-10	20-24	20-20	00-04	007																	
45	Proport	ion general population	1.3%	2.5%	3%	4%	_	[72]	1															
46	with a c	ustodial sentence																						
47	Age dis	ribution of prisoners	8%	20%	18%	47%	7%	[69]																
48	Proport	ion PWID ever in prison	48%	4 6%	67% 26%	73%	- 00/	<u>⊼</u> [21]+			(G	G	(=		_	(-	((= N					
49		ion photners ever PVID	370	10%	30%	44 %	070			-	- 7	-1	-1+	- 1 F	For	Form	Formatte	Formatted: r	Formatted: Not	Formatted: Not Sup	Formatted: Not Superso	Formatted: Not Superscript/	Formatted: Not Superscript/ Sur	Formatted: Not Superscript/ Subs
	054							er *I heliete el Arenere en e	111	<u>,</u>	1	\mathcal{U}	`	<u>`</u> { Fℓ	For	Form	Formatte	Formatted: N	Formatted: Not	Formatted: Not Sup	Formatted: Not Superso	Formatted: Not Superscript/	Formatted: Not Superscript/ Sul	Formatted: Not Superscript/ Subs

50Tatel953. Epidemiological/prison input parameters for model fitting *Unlinked Anonymous 51Mo686ring Survey of PWID, Health Protection Agency, London, unpublished data... *Scottish prison 52tate57xvrii Taylor, unpublished data.

- 53 54
- 55
- 56 57
- 51
- 58
- 59
- 60

27

Formatted: Not Superscript/ Subscript Formatted: Not Superscript/ Subscript Field Code Changed Field Code Changed

Formatted: Not Superscript/ Subscript

Intervention location	Discounted Costs (2011 £) [95% interval]	Discounted QALYs [95% interval]	Incremental costs [95% interval]	Incremental QALYs [95% interval]	ICER (£ per QALY gained)
Addiction					
services Baseline	37,181,582 [19,384,816– 67,271,249]	5,354,331 [4,867,168– 5,960,766]	-	-	-
Intervention	38,099,060 [20,140,578– 68,378,488]	5,354,393 [4,867,206– 5,960,853]	917,478 [481,174– 1,664,430]	63 [19–153]	14,632
Prison					
Baseline	37,181,582 [19,384,816– 67,271,249]	5,354,331 [4,867,168– 5,960,766]	-	-	-
Intervention	38,245,293 [19,852,634– 68,601,970]	5,354,349 [4,867,184– 5,960,823]	1,063,710 [-225,101 – 6,060,267]	18 [-12 – 75]	59,418

Table 24. Cost-effectiveness results from the base-case intervention analyses.

(b)

Figure 1

Base-case cost-effectiveness acceptability curves for the dried blood spot intervention. Results shown for the (a) addiction services and (b) prison interventions for various willingness-to-pay thresholds. 396x529mm (72 x 72 DPI)

APPENDIX

Mathematical model

A dynamic, deterministic compartmental model of injecting drug use, HCV transmission, progression, treatment, and diagnosis amongst PWID was developed, to project the impact of interventions to increase HCV testing of PWID. Schematics for the model components can be found in **appendix figures 1 and 2**. The HCV transmission, antiviral treatment, and disease progression model was based on a coupled system of ordinary differential equations previously published by the authors[1]. Susceptible PWID can become acutely infected with HCV by sharing injecting equipment with other infected PWID. We model a frequency dependent force of infection, such that an individual's risk of infection is proportional to the overall prevalence of infection. This model assumes a proportion (2674%) of acutely infected PWID progress to chronic infection, with the remainder (26%, [2]) resolving their acute infection after a number of months and developing an antibody (Ab) response, thus becoming Ab+/RNA-. Those that develop chronic infection (Ab+/RNA+) remain infected and, unless successfully treated, progress through the various HCV disease stages (mild, moderate, compensated cirrhosis, decompensated cirrhosis, hepatocellular carcinoma (HCC), liver transplant, and post transplant). Death occurs from all stages, but elevated mortality rates were used from the decompensated cirrhosis, HCC, liver transplant, and posttransplant stages[3]. If treated, infected PWID can achieve sustained viral response (SVR) whereby they are cured and are not at risk of progressing to a more advanced disease state, but remain at their current stage of liver progression (mild, moderate, or compensated cirrhosis), and are susceptible to reinfection. If reinfected after achieving SVR, the PWID re-enters the infected compartment of their associated HCV disease stage. If a PWID fails treatment (non-SVR), they remain infected and can progress to more severe disease stages. Successfully treated PWID can be reinfected and retreated, but those who do not achieve SVR are ineligible for retreatment. Due to reduced viral loads during treatment (even amongst those who relapse and do not achieve SVR), we assume PWID are not infectious during treatment[4, 5]. Current injectors are at risk of infection, but after permanent cessation of injecting do not have any infection risk. For simplicity, the model does not assume any behavioural

heterogeneity among the PWID population (such as high/low risk), as modelling indicated introducing heterogeneity in risk does not have an undue influence on prevention intervention effectiveness as long as individuals circulate between high risk and intervention states[6].

For this analysis, the model was adapted in the following ways. First, the model compartments were subdivided to allow for a distinction between naïve uninfected (Ab-/RNA-) or spontaneously cleared individuals (Ab+/RNA-), as well as the following diagnosis stages for chronic infection: undiagnosed, diagnosed but lost to follow-up and not in referral, diagnosed and in the first 2 years of referral, and diagnosed and in referral after 2 years. For ex-PWID, an additional compartment was added to represent those who were uninfected and tested (hence who would not be re-tested as they do not have a continuing infection risk).

In order to appropriately model incarceration, the model structure was replicated to track the flow of PWID and ex-PWID between never incarcerated, currently incarcerated, and formerly incarcerated states. In addition, compartments for never-PWID were added (never incarcerated, currently incarcerated, formerly incarcerated) to enable model calibration to general population incarceration data. This model structure was based on previously published mathematical models of PWID incarceration[7, 8], and it was assumed that incarceration and re-incarceration rates of ex-PWID were equal to that of never-PWID.

Additionally, for PWID not imprisoned (never imprisoned and formerly imprisoned) we further stratified movement by contact with addiction services (in contact/not in contact). We assumed only those in contact with addiction services could be tested in addiction services. We also assumed that on release from prison, PWID were not immediately in contact with addiction services.

Finally, the model was split into 7 age compartments ([15-19],[20-24],[25-29],[30-54],[55-64],[65-74],[75+]), with individuals entering the model at age 15-19 as never-

PWID. In total, the model consists of 222 states and 7 age stratifications, leading to 222 x 7=1,554 compartments.

The model assumes that prisoners only share with other prisoners. Similarly, outside prison, we did not assume any difference in sharing behaviour between those who are never imprisoned or previously imprisoned, and these individuals share between each other.

The dynamic transmission aspect of the model is similar to our previously published mathematical models. Let $P_{\eta,c,J}^{t}$ represent the number of PWID, where the superscript m represents incarceration status (m=0,1,2 for never, currently, formerly incarcerated, respectively), the superscript n represents addiction services status (n=out for out of contact and n=in in contact, and noting that n=out for all incarcerated states when m=1). subscript a represents the age group, with a=1,2...7 for each age group. The subscript I represents the HCV state, where $I=x_i$ for susceptible where i represents the different susceptible stages (never infected, spontaneously cleared), $I=y_i$ for chronic infected undiagnosed (including mild, moderate, compensated cirrhosis), $I=z_i$ for chronic infected diagnosed (including mild, moderate, compensated cirrhosis, decompensated cirrhosis, HCC, liver transplant, post-transplant and in early referral, late referral, or lost to followup states), $I=v_i$ for on treatment (including mild, moderate, compensated cirrhosis), $I=s_i$ for SVR (mild, moderate, compensated cirrhosis) and I=f_i for treatment failure/non-SVR (mild, moderate, compensated cirrhosis). For example, $P_{0,1,x_1}^{\text{out}}$ represents a PWID who has never been imprisoned and is not in contact with addiction services, is in age group 1 (15-19), and is undiagnosed mild chronically infected. We assume proportionate mixing by age. Using this notation, the force of infection for a PWID who is not imprisoned (m=0 or 2) is:

 $\frac{\sum\limits_{\text{all } a,n,y_i,z_i,f_i} (P_{0,a,y_i}^n + P_{0,a,z_i}^n + P_{0,a,f_i}^n + P_{2,a,y_i}^n + P_{2,a,z_i}^n + P_{2,a,z_i}^n)}{\sum\limits_{a,n,r_i \neq u,z_i,n,s_i,f_i} (P_{0,a,x_i}^n + P_{0,a,z_i}^n + P_{0,a,y_i}^n + P_{0,a,s_i}^n + P_{0,a,s_i}^n + P_{2,a,z_i}^n + P_{2,a,z_i}^$

where π represents the infection rate, which is fit to the HCV prevalence among PWID.

While incarcerated, PWID can only transmit to other incarcerated PWID, so the force of infection for a susceptible PWID in prison (m=1) is:

$$\pi \frac{\sum\limits_{\text{all } a,y_i,z_i,f_i} (P_{1,a,y_i} + P_{1,a,z_i} + P_{1,a,f_i})}{\sum\limits_{\text{all } a,x_i,y_i,z_i,v_i,s_i,f_i} (P_{1,a,x_i} + P_{1,a,y_i} + P_{1,a,z_i} + P_{1,a,v_i} + P_{1,a,s_i} + P_{1,a,f_i})}$$

As stated before, all PWID in never infected (Ab-/RNA-), spontaneously cleared (Ab+/RNA-), and SVR states are susceptible for infection as described above.

Model Parameters

Intervention impact

The intervention impact was modelled a proportional increase in setting-specific testing rates, determined by a random effects meta-analysis of the primary data[9] for each setting (addiction services and prisons) separately. The results of the meta-analysis can be found in **appendix figure 3**.

SVR rates

Sustained viral response (SVR) rates for pegIFN+RBV were sampled by genotype, with mean values in the mild/moderate HCV disease stages of 45% for genotype 1 and 80% for genotype 2/3[10]. Patients with compensated cirrhosis exhibit proportional reductions in SVR values by about 45% and 25% for genotypes 1 and 2/3, respectively[11]. Preliminary studies indicate SVR rates are equal between PWID and ex/non-PWID[12, 13], which we assumed in our base-case.

Calculation of testing rates

The HPA collects comprehensive yearly data of HCV testing in their sentinel surveillance, which includes a question on PWID as a risk factor. However, only a very small proportion of tests are coded with PWID status as a risk factor, and current or former PWID status is not recorded. Therefore, we were unable to use the HPA data to estimate the yearly testing rates of current and ex-PWID.

For peer review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Δ

To circumvent this problem, we fitted an overall PWID annual testing rate to calibrate the model to the estimated proportion of PWID who are diagnosed (approximately 50%[14]). This rate varied for each sampled group of parameters, but the mean annual testing rate was 12% per year among undiagnosed PWID. This annual testing rate ensured the proportion of diagnosed PWID remained stable (at equilibrium) without any intervention.

As testing of PWID takes place in different locations (prison, addiction services, other settings) and the proportion of PWID in contact with these settings varies, it was necessary to calculate setting-specific testing rates from the overall testing rate. This was done using three pieces of information: 1) the overall testing rate, 2) the fraction of tests attributable to each location, and 3) the proportion of the population in contact with each location. We obtained the fraction of tests attributable to each location from the HPA sentinel surveillance of hepatitis testing data, using the tests coded with an PWID risk only (Mary Ramsay and Sara Collins[Health Protection Agency], unpublished data.). Although these data underestimate the number of tests given to PWID, it is reasonable to assume the HPA distribution between sites would be representative of the testing administered to PWID as a whole. Finally, we ran the model to obtain steady state values of the proportion of population found in each testing location based on the input parameters (some of which were previously fitted, such as the proportion of PWID in contact with addiction services and in prison). We assume all ex-PWID are in contact with a GP. These three components were then combined to obtain setting specific testing rates for each parameter set simulation. The setting specific testing rates for PWID and ex-PWID were assumed equal, with the exception that the model assumes ex-PWID are not in contact with addiction services, so no testing occurs from this scenario for this group.

Testing costs

Costs associated with testing were calculated as follows. The numbers of PWID tested in each setting were calculated, and associated with setting specific test costs. Two additional costs were added: RNA testing (for all Ab+ tests) and non-PWID testing. The

number of non-PWID tested in order to test one PWID was calculated from the settingspecific test yield (proportion of tests Ab+) and 'true' baseline prevalence. A setting with a low yield indicates more non-PWID are tested for every PWID; if yield equals baseline prevalence, this indicates only PWID are tested.

Contact with addiction services rates

The proportion of PWID in contact with addiction services at any given time was difficult to estimate. 92% of PWID report ever accessing a needle exchange in the HPA Unlinked Anonymous Survey, though the proportion currently accessing services is not asked[15]. However, it is estimated that 50% of PWID are currently on opiate substitution therapy[16, 17], and we therefore estimated that the same proportion is currently in contact with addiction services. Similarly, the average duration of time in contact with addiction services was estimated from data of average time PWID are on OST[18].

Model fitting

Overview of model fitting and baseline projections

A multi-step parameter sampling and model calibration/fitting method was used with simplified models to reduce computational time and allow for verification of full model predictions against the simplified models. For each fitting process (5 separate model fits in total), **appendix table 3-5** details the model used, input parameters, calibration data used to fit the model, and parameters estimated through model fitting. The seven-step sampling and calibration process is as follows:

- Values were randomly sampled for four parameters (cessation rate, overdose rate, PWID prison release rate, and addiction services duration), yielding a total of 135 possible parameter combinations, or 'calibration scenarios'. Due to the heavy computational burden of fitting the many incarceration parameters, the model was fitted to a limited range of sampled 'calibration scenarios'.
- 2) Fit #1: Simplified model 1 (appendix figure 4) was run for each sampled calibration scenario, in order to calibrate the simplified model to the (not

2	
3	
4	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
22	
23	
24	
24	
25	
26	
27	
28	
29	
30	
31	
22	
32	
33	
34	
35	
36	
37	
38	
20	
39	
40	
41	
42	
43	
44	
45	
46	
-0 /7	
47	
48	
49	
50	
51	
52	
52	
55	
04 55	
55	
56	
57	
58	
59	
60	

sampled) incarceration data shown in <u>appendix table 23</u>. Inputs included the sampled scenario parameters, and non-sampled input parameters estimated from literature/sources (age-specific death rates, prison release rates for never PWID, distribution of ages of first injection, and a preliminary estimate of the entry rate of never-PWID aged 15-19 which will be refit in Fit #5). The parameters which were estimated through model calibration were the agedependent incarceration rate, reincarceration rates, PWID incarceration rates, PWID reincarceration rates, and injecting initiation rate. Simplified model 1 neglected HCV transmission, testing, and treatment. More details can be found in the section '**Details of fit #1**' and model equations can be found the section entitled "**Model Equations: Simplified Model 1**".

3) Fit #2: Simplified model 2 (appendix figure 5) was run for each sampled calibration scenario, in order to calibrate the model to addiction services data. For fit #2, a simplified model of incarceration and movement in/out of addiction services was used. The inputs for these simulations were the sampled calibration scenarios and inputs from Simplified model 1, as well as the estimated incarceration parameters from Simplified model 1. The model was calibrated to data on the proportion of PWID in contact with addiction services, and the estimated parameter obtained through model fitting was the recruitment rate into addiction services. Model equations can be found in the section entitled "Model Equations: Simplified Model 2".

4) Fit #3: Simplified model 3 (appendix figure 6) was run for each sampled calibration scenario, in order to calibrate the model to the diagnosis data. For fit #3, a simple model of HCV transmission and testing among PWID was used to estimate the overall PWID testing rate by calibrating the model to the proportion of PWID who report being diagnosed for HCV. The model inputs were the sampled calibration scenarios and non-sampled inputs of age-specific death rates, distribution of injecting initiation age, and preliminary estimate of the entry rate of never-PWID aged 15-19. The model also required an input of the estimated injecting initiation rate from simplified model 1. Model equations can be found in the appendix section entitled "Model Equations: Simplified Model 3".

Formatted: Font: Bold

- 5) 1000 parameter sets were sampled from each parameter uncertainty distribution in from the full range of disease progression, intervention, cost, and utility parameters (**Tables 1**, <u>Appendix tables 1</u>-<u>4</u>3). For each of the 1000 parameter sets, one of the 135 fitted 'calibration scenarios' was selected.
- 6) Fit #4: For each of the 1000 parameter sets, the full model was calibrated to three separate HCV PWID chronic prevalences (35%[19], used in the base-case, as well as 20% and 50% for the sensitivity analyses) to estimate the infection rate, pi, associated with each chronic prevalence.
- 7) Fit #5: For each of the 1000 parameter sets, the full model was calibrated to a total PWID population size (fit to 1000 PWID at baseline), to estimate the entry rate of never-PWID in the 15-19 age group.

Model fitting was performed by using nonlinear least-squares methods using the MATLAB solver *Isqnonlin*.

Model Equations

Simplified model 1

For Simplified Model 1, the mathematical model tracks injecting drug use state (never/current/former PWID) and incarceration state (never/currently/formerly incarcerated). $N_{m,\omega}$ represents never PWID, with superscript *m* representing incarceration status (*m*=0,1,2 for never, currently, formerly incarcerated, respectively) and subscript *a* representing age group, with *a*=1,2...7 for each age group. Using the same subscript notation, $P_{m,\omega}$ represents PWID and $E_{m,\omega}$ represents ex-PWID. The full system of equation is as follows:

$$\begin{aligned} \frac{dN_{0,a}}{dt} &= \theta_a - (\rho_{0,a} + \xi_a + \gamma_a) N_{0,a} \\ \frac{dN_{1,a}}{dt} &= \rho_{0,a} N_{0,a} + \alpha_{0,a} N_{2,a} - (\beta_{0,a} + \xi_a + \gamma_a) N_{1,a} \\ \frac{dN_{2,a}}{dt} &= \beta_{0,a} N_{1,a} - (\alpha_{0,a} + \xi_a + \gamma_a) N_{2,a} \\ \frac{dP_{0,a}}{dt} &= \xi_a N_{0,a} - (\rho_{1,a} + \zeta + \gamma_a + \eta) P_{0,a} \\ \frac{dP_{1,a}}{dt} &= \xi_a N_{1,a} + \rho_{1,a} P_{0,a} + \alpha_{1,a} P_{2,a} - (\beta_{1,a} + \zeta + \gamma_a + \eta) P_{1,a} \\ \frac{dP_{2,a}}{dt} &= \xi_a N_{2,a} + \beta_{1,a} P_{1,a} - (\alpha_{1,a} + \zeta + \gamma_a + \eta) P_{2,a} \\ \frac{dE_{0,a}}{dt} &= \zeta P_{0,a} - (\rho_{0,a} + \gamma_a) E_{0,a} \\ \frac{dE_{1,a}}{dt} &= \zeta P_{1,a} + \rho_{0,a} E_{0,a} + \alpha_{0,a} N_{2,a} - (\beta_{0,a} + \gamma_a) E_{1,a} \\ \frac{dE_{2,a}}{dt} &= \zeta P_{2,a} + \beta_{0,a} E_{1,a} - (\alpha_{0,a} + \gamma_a) E_{2,a} \end{aligned}$$

where time is represented by the variable *t*. All populations experience age-specific death rates specified by rate γ_a and PWID have an additional death rate due to overdose of η . New never-PWID enter the system into the youngest age compartment at rate θ_1 ($\theta_a = 0$ for $\alpha \neq 1$). Never or former PWID are incarcerated at an age specific rate $\rho_{0,\alpha}$, are released at a rate $\beta_{0,\alpha}$, and are reincarcerated at a rate $\alpha_{0,\alpha}$. Similarly, PWID are incarcerated at an age specific rate $\rho_{1,\alpha}$, are released at a rate $\alpha_{1,\alpha}$. Never PWID initiate injecting at an age-specific rate of ξ_a , and cessate from injecting at a rate ζ .

Simplified model 2

For Simplified Model 2, the mathematical model in Simplified Model 1 is extended to include flow in and out of addiction services for PWID who are not incarcerated. Using the same subscript notation as before, but adding a superscript with n = in if the PWID is in contact with addiction services, and n = out if they are not in contact, then $P_{\pi_{i},e}^{*t}$ represents PWID. The full system of equation is as follows:

where the variables are as in Simplified Model 1, with the addition that PWID enter addiction services at a rate v, and exit at a rate σ . The model assumes that when people initiate injecting, or are released from prison, they are not immediately in contact with addiction services (but can subsequently be recruited into contact at rate v.

Simplified model 3

Simplified model 3 is used to fit the PWID diagnosis rate to the overall proportion of PWID diagnosed at a given time. Hence, it includes never PWID, uninfected PWID, infected undiagnosed PWID, and infected diagnosed PWID. As in the other simplified models, N_a represents never PWID, with *a* representing age group, with *a*=1,2...7 for each age group. Here, $P_{a,x}$ represents susceptible PWID, $P_{a,y}$ represents infected but undiagnosed PWID, and $P_{a,x}$ represents infected and diagnosed PWID. The full system of equation is as follows:

$$\begin{array}{lcl} \frac{dN_{a}}{dt} &=& \theta_{a} - (\xi_{a} + \gamma_{a})N_{a} \\ \\ \frac{dP_{a,x}}{dt} &=& \xi_{a}N_{a} - \pi P_{a,x}\frac{P_{a,y} + P_{a,z}}{P_{a,x} + P_{a,y} + P_{a,z}} - (\zeta + \gamma_{a} + \eta)P_{a,x} \\ \\ \frac{dP_{a,y}}{dt} &=& \pi P_{a,x}\frac{P_{a,y} + P_{a,z}}{P_{a,x} + P_{a,y} + P_{a,z}} - (\kappa + \zeta + \gamma_{a} + \eta)P_{a,y} \\ \\ \frac{dP_{a,z}}{dt} &=& \kappa P_{a,y} - (\zeta + \gamma_{a} + \eta)P_{a,z} \end{array}$$

where the parameters are as in Simplified Model 1 with the addition that κ represents the diagnosis rate, and π is the infection rate.

Details of fit #1

In fit #1, the simplified incarceration model was calibrated to age-structured data on the proportion of the general population with a custodial sentence[20], proportion of PWIDs previously imprisoned, age distribution of current prisoners[21], proportion of prisoners ever PWID, proportion of the population currently imprisoned[22, 23], and the prevalence of PWID in the general population[19]. The epidemiological and prison parameters sampled for this fitting algorithm can be found in **appendix table 23**.

As the prison data varied over several orders of magnitude (for example, the proportion of PWID previously incarcerated was around 60%, while the proportion of the England population currently imprisoned between the ages of 15-59 is 0.2%), a log-transformation of the calibration data was used in order to minimize relative error in the least-squares regression[24]. Furthermore, the error measure was re-weighted with more weight given to the error from the non-age structured parameters to provide a better fit to those parameters. Specifically, the error measure associated with each individual age-specific parameter of the 7 age-groups was weighted 1/7th as much as a non-age specific parameter. **Appendix figure 7** provides an example of the data and calibrated model projections with the median values chosen for each parameter; all other fits were similar to this. The model fitted well to the data, with the notable exception of the proportion of PWID previously incarcerated in the 15-19 age group, which the model consistently underestimates. This was due to the low proportion of

Formatted: Font: Bold

prisoners who admit ever-injecting in this age group, along with the low general rates of ever incarceration in this age group. It was decided *a posteriori* that this deviation was acceptable given the goodness of fit to the rest of the data and also because it is unlikely that the data sources are consistent.

Initial conditions

The steady-state values of the full model without testing and treatment were used as initial conditions for the baseline/intervention simulations, with the following alterations. At baseline, the proportion of diagnosed ex-PWID was not thought to be at steady-state. This was because recent testing initiatives have mainly targeted PWID; it is estimated the proportion of diagnosed PWID (50%[14]) is currently likely higher than that of ex-PWID (estimated at 30% based on proportion PWID diagnosed in 2000 who are likely to be ex-PWID[15]). Hence, the steady-state values for infected populations were divided between undiagnosed/diagnosed states for the initial conditions. As treatment rates of PWID are extremely low, we assume none of the PWID population have been treated at baseline, and sample the proportion of ex-PWID previously treated (mean sampled value 10%[14]) from the range found in appendix table 1.

We calculate the initial conditions as follows. The full model without any testing and treatment was run, and the number of people in all compartments was stored after the system reached steady-state. This vector of initial condition values was then edited as follows to account for the current proportion of diagnoses estimated in the PWID and ex-PWID populations, as well as the proportion of ex-PWID already treated. As it is unknown what proportion of previously diagnosed PWID are currently in referral for treatment, we made the conservative assumption that all previously-diagnosed are lost-to-follow-up at the beginning of the model if they have not been treated, and hence need retesting in order to enter the referral and treatment pathway. We assume that no PWID have been treated at baseline. Ex-PWID who have been treated are not eligible for retesting and retreatment, and hence were removed from the model as they did not change the cost-effectiveness of testing strategies.

Formatted: Font: Bold

Hence, half of the chronically infected PWID population were placed in the diagnosed compartment of their relative disease state, with the remaining placed in the 'diagnosed and lost-to-follow-up' compartment of their relative disease state. For the ex-PWID population, a proportion will have been treated, and of the remaining untreated proportion, 30% were considered diagnosed and were placed in the 'diagnosed and lost to follow-up' compartment. As a result of this initialisation procedure, the proportion of diagnosed ex-PWID was not at steady state at the start of the simulation. As stated in the main text of the paper, this was deemed appropriate, as recent testing initiatives have mainly targeted PWID, and therefore it is assumed that diagnosis rates among ex-PWID are low. However, over time those who are PWID will become ex-PWID, and therefore the proportion of diagnosed ex-PWID will increase over time.

Results

The incremental costs and incremental QALYs are shown on a cost-effectiveness plane in appendix figure 8.

Model is stratified by age ([15-19, [20-24], [25-29], [30-54], [55-64], [65-74], [75+]), includes death from all compartments, overdose death from PWID compartments, and inflow to the youngest 'Never PWID, never imprisoned' compartment.

Appendix figure 2. General model flow schematic (each PWID and ex-PWID compartment includes HCV infection sub-compartments).

Appendix figure 3. Random effects meta-analysis results for the dried blood spot intervention effect on testing rate (proportional increase in testing rate). Results shown for (a) addiction services and (b) prison.

Model is stratified by age ([15-19, [20-24], [25-29], [30-54], [55-64], [65-74], [75+]), includes death from all compartments, overdose death from PWID compartments, and inflow to the youngest 'Never PWID, never imprisoned' compartment.

Appendix figure 4. Simplified model #1 schematic.

Model is stratified by age ([15-19, [20-24], [25-29], [30-54], [55-64], [65-74], [75+]), includes death from all compartments, overdose death from PWID compartments, and inflow to the youngest 'Never PWID, never imprisoned' compartment.

Appendix figure 5. Simplified model #2 schematic.

Model is stratified by age ([15-19, [20-24], [25-29], [30-54], [55-64], [65-74], [75+]) and includes inflow to the youngest [15-19] 'Never PWID' compartment.

Appendix figure 6. Simplified model #3 schematic.

Appendix figure 7. Example of one characteristic model fit to the prison data (injecting duration 11 years, PWID incarceration duration 4 months, PWID overdose rate 1% per year). The top left shows the age-distributed proportion of general population with a custodial sentence. The bottom left shows the age-distribution within the prison population. The top right shows the proportion of PWID who have previously been incarcerated. The bottom right shows the proportion of prisoners who report ever PWID. Additionally, the model was fit to proportion of the general population imprisoned (simulated 0.21% as compared to 0.2%[22, 23]) and the proportion of population PWID (simulated 0.58% as compared to 0.65%[19])

Formatted Table

2				
3				
4				
5				
6				
7	1			
8	<u>Mean</u>	Distribution	Reference	•1
9	value babilition	converted to instantaneous rates)		
10.1ransition probabilities per year (all pro			101	
1 <u>Mild to moderate</u> Moderate to cirrhosis	0.025	Beta(α =38.0859, β=1485.3516) Beta(α =26.905, β=700.2582)	[3]	
12 Cirrhosis to decompensated cirrhosis	0.039	Beta(α =14.6168, β =360.1732)	[3]	
13 Cirrhosis decomp. cirrhosis to HCC	0.014	<u>Beta(α=1.9326, β=136.1074)</u>	[3]	
14 Decompensated cirrhosis/HCC to LT	0.03	Beta(α =6.5256, β=210.9945)	[3]	
15 <u>Decompensated cirrnosis to death</u>	0.13	$\frac{Beta(\alpha=147.03, \beta=983.97)}{Beta(\alpha=117.1033, \beta=155.23)}$	[3] [3]	
16LT to death	0.21	Beta(α =16.2762, β =61.2294)	[3]	
17 <u>Post transplant to death</u>	0.057	<u>Beta(α=22.9017, β=378.8825)</u>	[3]	
18 <u>Health state utilities/disutilities per year</u>				
19 <u>Ex-PWID age 15-19</u>				
20 Uninfected	<u>0.94</u>	Deta(==504.0075_0=455.0040)	[25]	
21 Moderate	0.66	Beta(α =168 2461 β =86 6723)	[3, 26] [3, 26]	
22 <u>Cirrhosis</u>	0.55	Beta(α =47.1021, β=38.5381)	[3, 26]	
23 Decompensated cirrhosis	0.45	Beta(α=123.75, β=151.25)	[3, 26]	
24 <u>Hepatocellular carcinoma</u>	0.45	Beta(α =123.75, β=151.25) Poto(α =122.75, β=151.25)	[3, 26]	
25 Post transplant	0.45	Beta(α =59,2548, B=29,1852)	[3, 20] [26, 27]	
26 Mild - on treatment	0.66	Beta(α =115.706, β=59.6063)	[3, 26]	
27 Moderate - on treatment	0.55	Beta(α=47.1021, β=38.5381)	[3, 8, 26]	
28 <u>Cirrhosis - on treatment</u>	0.46	Beta(α =3953, β=4641) Deta(α =05.0070, θ=44, 4500)	[8]	
29 Moderate SVR	0.82	$\frac{Beta(\alpha=58,0608,\beta=14.4588)}{Beta(\alpha=58,0608,\beta=22,5792)}$	[3, 26] [3, 8, 26]	
30 Cirrhosis SVR	0.61	Beta(α =58.0476, β =37.1124)	[27]	
31 PWID age 15-19				
32 Uninfected	<u>0.74</u>	Uniform(0.67,0.8)	[28]	
33 Disutility with age	AS III EX-	FWID, but reduced by FIOPFWID	Assumed	
34 <u>20-24</u>	<u>0</u>		[25]	
35 <u>25-29</u>	0.005		[25]	
$36 \frac{30-54}{55-64}$	0.049		[25]	
37 65-74	0.14		[25]	
38 75+	0.21		[25]	
39 <u>Costs (£ per year, except where noted)</u>				
40 Mild diagnosed	<u>169</u>	<u> PPI[‡]×Gamma(<i>k</i>=25.6995,θ=5.3698)</u>	[3, 26]	
41 Moderate diagnosed	880	PPI [‡] ×Gamma(<i>k</i> =88.8502, θ=8.0698)	[3, 26]	
42 <u>Cirrhosis diagnosed</u>	<u>1,397</u>	$\frac{PPI^{+} \times Gamma(k=24.2342, \theta=46.9584)}{PPI^{+} \times Gamma(k=26.0240, \theta=252.4582)}$	[3, 26]	
43 Hepatocellular carcinoma	<u>9 980</u>	$PPI^{+} \times Gamma(k=18, 1081, 0=233, 1382)$	[3, 20]	
44 Liver transplant (per transplant)	33,561	PPI [‡] ×Gamma(<i>k</i> =89.7536, θ=304.5004)	[3]	
45 <u>Cost of care in year of liver transplant</u>	<u>11,614</u>	<u>PPI[‡]×Gamma(k=13.7788, θ=686.4168)</u>	[3]	
46 Post transplant	<u>1,701</u> 319	$\frac{PPI^{+} \times Gamma(k=15.2189, \theta=91.0053)}{PPI^{+} \times Gamma(k=28.8141, \theta=8.0887)}$	[3]	
47 Moderate SVR	880	$PPI^{+} \times Gamma(k=88.8502, \theta=8.0698)$	[3]	
48 <u>Cirrhosis SVR</u>	1,397	PPI [‡] ×Gamma(<i>k</i> =24.2342, θ=46.9584)	[3]	
49 <u>Undiagnosed states</u>	<u>0</u>			
50 regit N+KBV drug only 24 weeks balved/doubled for 12/48 who	5 320	Liniform (4788, 5852)	[20]	
51 Treatment delivery	0,020	<u>omoni (4700, 3032)</u>	[~3]	
52			I	
53				
54			2	0
55				

57 58

56

1

1 2					
3 4					
5					
6 7					
8 0 Ex BV	UD 12 wooks	1 012	Variad soo appandix	Soo appondiv[3]	
9 <u>Ex-PV</u> 10 <u>Ex-PV</u>	VD, 24 weeks	2,057	Varied, see appendix	See appendix[3]	
	<u>, 12 weeks</u>	<u>2,320</u> <u>2,193</u>	Varied, see appendix	See appendix	
12 <u>PWID</u> 13 <u>PWID</u>	, <u>24 weeks</u> , <u>48 weeks</u>	<u>2,435</u> <u>2,900</u>	Varied, see appendix Varied, see appendix	See appendix	
14 Testing	dosts in all settings except prison dosts in prison	<u>115.21</u> 144.21	<u>Uniform +/- 50%</u> Uniform +/- 60%	<u>See appendix</u> See appendix	
15 <u>PCR RN</u>	IA test (if antibody positive)	73.67		[30]	
17 Proporti	on PWID diagnosed (initial)	50%		[14]	
18 <u>Proporti</u>	on PWID treated (initial)	<u>0%</u> 30%	Uniform (24% 36%)	Assumption [15]	
20 Proporti	on of diagnosed ex-PWID	<u>10%</u>	<u>Uniform (5%, 15%)</u>	Estimated <10%	
21		500/		infections [14]	
22 <u>Proporti</u> 23 <u>Sustaine</u>	an HCV genotype 1 ed viral response(SVR) with	<u>50%</u>		[10, 14]	
24 <u>Geno</u>	<u>+RBV</u> ptype 1 mild/moderate	<u>0.45</u>	<u>Uniform (0.4, 0.5)</u>	[10, 13, 31, 32]	
25 <u>Geno</u> 26 Geno	<u>type 2/3 mild/mod</u> type 1 cirrhosis	<u>0.8</u> 0.25	Uniform (0.75, 0.85) 55% reduction from mild/mod	[10, 13, 33] [11]	
27 Geno	type 2/3 cirrhosis	0.6	75% reduction from mild/mod	[11]	
28 _{peglFN}	RBV (weeks)	40		[40]	
30 <u>Gen</u>	bype 1 svR bype 1 non-SVR	<u>40</u> <u>12</u>		[10]	
31 <u>Gene</u>	tion of PWID HCV tests	<u>24</u>		[10]	
32 <u>GP</u> 33 Prisc	n	<u>38.4%</u> 11.5%		ŝ	
34 Addie	ction services r	<u>29.4%</u> 20.7%		<u>s</u>	
35 Proporti 36 attend r	on who are referred and	35%	<u>Uniform (25%, 45%)</u>	[34, 35]	
37 <u>Proporti</u>	on in referral who initiate			9	
38 <u>treatme</u>	vinin 2 years (exci. prison)	<u>50%</u>	<u>Uniform(40%, 60%)</u>	[34-37]	
40 <u>Treatme</u>	ent initiation rate after 2 years	<u>5.5%</u>	<u>Uniform(1%, 10%)</u>	Assumption	
41 in referr	a <mark>l (excl. prison) per year</mark> VID	10%	Uniform(5%, 15%)	Assumption	
42 43 _{Treatme}	ent rates in prison	3% Half out	Uniform(1%, 5%) -of- prison rates	Assumption Assumption	
44 <u>Yield (p</u>	oportion tests Ab+)	2 7%		§	
45 <u>GP</u> 46 <u>Prisc</u>	<u>n</u>	<u>2.7%</u> <u>14.7%</u>		<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u>8</u></u>	
47 <u>Addie</u>	r <u>r</u>	<u>17.7%</u> <u>1.7%</u>		<u>8</u>	
4 <u>Append</u>	ix table 1. Model paramete	rs. [†] Prop	<u>PWID=(uninfected PWID utility va</u>) *PPI=Hospital and Community H	lue for age 15-	Formatted: Indent: Left: -0.79"
5 <mark>9nd Pric</mark>	es Index inflation factor. [§] He	alth Prot	ection Agency (HPA) unpublished	data from the 2010	
5 <u>\$entinel</u> 5bT=liver	Surveillance. "Iain Brew, HM transplant: SVR=sustained v	<u>IP Leeds</u> /iral resr	s, unpublished data. HCC= hepato ponse: pegIFN=pegvlated interferor	<u>cellular carcinoma;</u> n [.] RBV= ribavirin	
53				<u>,</u>	
54 55				21	
56					
57 59					
วช 59					
60					

1								
2								
ა ⊿								
5								
6								
7								
8								
9								
10			<u>Mean</u>	Sample	d values		<u>Units</u>	Ref.
11			value					
12	Average	duration of injecting	<u>11</u>	<u>6.2, 8.6,</u>	<u>11, 13.4, 1</u>	<u>15.8</u>	<u>years</u>	[38, 39]
14	PWID o	verdose rate	<u>0.01</u>	<u>0.007, 0</u>	.01, 0.013		Per year	[18]
15	Duration	in addiction services	<u>9</u>	<u>7, 9, 11</u>			months	Estimated from OST
16	Incarcer	ation duration						
17	PWIE			0.07 4	5.00			17 401
18	Ex-P	<u>ages</u> VID	4	<u>2.67, 4,</u>	<u>5.33</u>		Months	[7, 40]
19	15-	19	<u>2.75</u>				Months	[7]
20	<u>20-</u> 25-	<u>24</u> 29	<u>6.26</u> 8.42				Months Months	[7]
21	30-	<u>54</u>	9.76				Months	[7]
22	<u> </u>	<u>64</u>	<u>11.92</u>				Months Months	[7]
24	Age of f	rst injection distribution	12.49				Montis	[/]
25	15-	<u>19</u>	<u>41%</u>				=	Combined UK data from [16]
26	20-	<u>24</u> 29	<u>30%</u> 16%				=	Combined UK data from [16] Combined UK data from [16]
27	30-	54	13%				<u> </u>	Combined UK data from [16]
28	Death ra	<u>te by age</u>	<u>0%</u>				-	Combined UK data from [16]
29	15-	<u>19</u>	<u>0.0003</u>				Per year	[41]
30	20-	<u>24</u> 20	0.0005				Per year	[41]
32	30-	<u>29</u> 54	0.0000				Per year	[41]
33	55-	64	0.0073				Per year	[41]
34	75	<u>74</u> F	0.0200 0.165				Per year Per vear	[41]
35	Proporti	on of England population	0.2%					[22, 23]
36	<u>currently</u>	/ imprisoned aged 15-59	0.65%					[42]
37	who are	PWID aged 15-59	0.0376					[+2]
38	Proporti	on PWID in contact	<u>50%</u>					[16]
39	Proporti	on PWID diagnosed	50%					[14]
40	PWID H	CV chronic prevalence	35%					[19]
42	Proporti spontan	on infections leading to eous clearance	<u>0.26</u>	Uniform	(0.22, 0.29	<u>))</u>	=	[2]
43	opentari		Age dis	tribution				Reference
44			15-19	20-24	<u>25-29</u>	<u>30-54</u>	<u>55+</u>	
45	Proporti	on general population	1.3%	2.5%	3%	4%	_	[20]
46	with a c	ustodial sentence	1.5 /0	2.0/0	<u>J /0</u>	<u>-1 /0</u>	Ξ	
4/	Age dist	ribution of prisoners	<u>8%</u>	<u>20%</u>	<u>18%</u>	<u>47%</u>	<u>7%</u>	[22]
40 70	Proporti	on prisoners ever PWID	<u>48%</u> 5%	<u>46%</u> 16%	<u>67%</u> 36%	<u>73%</u> 44%	<u>-</u> 8%	[40]
50								
5	ppend	ix table 2. Epidemiolo	ogical/p	rison in	put para	mete	ers for m	odel fitting *Unlinked
52	nonym	bus Monitoring Survey	ot PWI	J, Healt	n Protect	ion A	<u>gency, L</u>	ondon, unpublished data.
53								
54								22
55								
56								
58								
55 56 57 58								

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

5
6
7
8
ğ
10
10
11
12
13
14
15
16
17
18
19
20
21
22
22
∠3
24
25
26
27
28
29
30
31
32
J∠ 22
33
34
35
36
37
38
39
40
41
42
42
11
44 15
40
46
47
48
49
50
51
52
53
54
55
50
20
5/
58
59
60

HCV testing costs- baseline	Mean value (in 2011 £)	Distribution /notes	Units	Ref.	
Assessment	1.78	1 minute (average nurse and consultant doctor cost	Per test	[30]	
Pre-test discussion and test	53.50	30 minutes (average nurse and consultant doctor cost [*])	Per test	[30]	
Post-test results	44.58	25 minutes (average nurse and consultant doctor cost)	Per test	[30]	
ELISA test	15.35	,	Per test	[30]	
Additional assessment time (prison only)	29	Assuming 20 min. with nurse	Per test	Estimated from timings in [30]	
Total test costs in all settings except prison	115.21	Uniform +/- 50%	Per test		
Total test costs in prison setting PCR RNA test (if antibody positive)	144.21 73.67	Uniform +/- 60% [†]	Per test Per year	[30]	

Appehdix table <u>34</u>. Baseline HCV testing costs. ^{*}Assuming a consultant cost per hour of £127, and a staff-nurse cost per patient contact hour of £87 (median estimate for band 5 GP nurse, used as higher than estimate of £84 per hour for same band hospital day ward nurse) as found in the Unit Costs of Health and Social Care 2011[43]. [†]Greater uncertainty surrounding costs of testing in prison is due to uncertainty surrounding method of test offer (on prison entry, BBV/sexual health screening, or during routine health check).

10				
11	HCV antiviral treatment costs	Mean value	Distribution	Ref.
12		(in 2011 £)		
12	PegIFN+RBV drug only			
14	12 weeks	2,660*	Halved from sampled cost at 24 wks	[29]
15	24 weeks	5,320*	Uniform (4788, 5852)	[29]
16	48 weeks	10,640*	Doubled from sampled cost	[29]
17			at 24 wks	
10	Treatment delivery			
18	12 weeks			
19	Staff	307	Varied by staff cost variation [†]	[3]
20	Tests	1,605	Varied by test cost variation ⁺	[3]
21	24 weeks		· · · · · · · · · · · · · · · · · · ·	
22	Staff	374	Varied by staff cost variation	[3]
22	l ests	1,683	Varied by test cost variation*	[3]
23	48 weeks	504		[0]
24	Jan	004 1 000	Varied by stall cost variation [‡]	[၁] [၁]
25	Additional treatment delivery for BWID	1,022	varied by test cost variation	ျပ
26	PWID extra nurse time		Varied by staff cost variation [†]	
27	12 weeks	129	and PWID staff time	[1] "
21	24 weeks	159	variation§	[1] "
28	48 weeks	220		[1] "
29	PWID extra basic assessments		Varied by test cost variation [‡] ,	
30	12 weeks		staff cost variation [†] , and	
31	Staff	58	PWID staff time variation [§]	[1] "
32	Tests	43		[1] "
0Z	24 weeks			
33	Staff	97		[1] "
34	Tests	71		[1] "
35	48 weeks			
36	Staff	1/4		[1]
27	l ests	129	Verial by staff as struction [‡]	[1]
38	PWID psychiatric visits	10	and PWID staff time	[1]
39				

Appendix table 42. HCV antiviral treatment costs. ^{*}Average peginterferon cost between alfa-2a (Pegasys) and alfa-2b(ViraferonPeg), and average ribavirin cost between Copegus and Rebetol. [†]Test value calculated by multiplying mean test cost with a test cost variation parameter, uniformly sampled between 0.8 and 1.2. [‡]Staff value calculated by multiplying mean staff cost by a staff cost variation parameter, uniformly sampled between 0.8 and 1.2. ⁴⁵ [§]PWID staff cost calculated by multiplying mean staff cost by a staff cost variation parameter and an extra PWID staff time variation parameter (both uniformly sampled between 0.8 and 1.2). "Graham Foster, Consultant Hepatologist, personal communication. pegIFN=pegylated interferon; RBV=ribavirin.
10

25

1				
2				
3				
4				
5				
6 7 8	Model	Input parameters	Data used to fit model	Parameters estimated through model fitting
9				
10 Fit #1 11 12 13	Simplified model 1 (Appendix figure 2)	 Sampled cessation rate Sampled overdose rate Sampled PWID prison release rate 	 Proportion general population with a custodial sentence by age Proportion of PWID population previously imprisoned by age Age distribution of surrant prisoners 	 Incarceration rates by age Re-incarceration rates by age PWID incarceration rates by age
14 15 16		 Death rates by age Prison release rate for never- PWID or ex-PWID by age Injecting initiation age distribution (Deauth actimate) aptroverse of 	 Age distribution of current prisoners Proportion of prisoners ever-PWID by age Proportion of the population currently imprisoned Propulation of PWID in general population 	 PWD re-incarceration rates by age Injecting initiation rate
1/		 (Rough estimate) entry rate of never-PWID aged 15-19 	Prevalence of PWID in general population	
10 19 20	Simplified model 2 (Appendix figure 4)	Input and output parameters from Fit #1 Sampled addiction services	Proportion PWID in contact with addiction services	Recruitment rate into addiction services
21 22		 Gampled addiction services duration (Rough estimate) entry rate of 		
23		never-PWID aged 15-19.		
24 Fit #3 25 26	Simplified model 3 (Appendix figure 5)	 Sampled cessation rate Sampled overdose rate Death rates by age 	Proportion PWID diagnosed	Overall (not setting-specific) PWID testing rate
27 28 29		 Injecting initiation age distribution Fit injecting initiation rate (Fit #1) (Rough estimate) entry rate of never-PWID aged 15-19. 		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
30	Full model (figures 1	- All model personators from Fite		- Infontion rate T
31 FIL #4 32	and 2 of the main text) without ex-	 All model parameters from Fits #1-3 and sampled sets. (Rough estimate) entry rate of 	HCV PWID chronic prevalence	• Infection rate, π
33	PWID	never-PWID aged 15-19.		
35 Fit #5 36	Full model	 All model parameters from Fits #1-4 and sampled sets. 	Total population size (fit to 1000 PWID)	 Entry rate of never-PWID in the 15-19 age group
37 An	ondix table 53 Mo	del fitting procedure summary		
38 ~~~		as many procedure summary		
39				
40				
41				
42				
43				
44				
45				
46		For peer re	view only - http://bmjopen.bmj.com/s	site/about/guidelines.xhtml
47				~
48				

Telaprevir/boceprevir scena	ario Value	Units	Notes	Ref.
Proportional increase in SVR genotype 1 patients	for 68%	-		[44, 45]
0 Average duration of treatmen 1 genotype 1 2 3 4	t for 37	weeks	Assume 50% have a rapid viral response (RVR) and only require 26 weeks treatment (24 weeks telaprevir, 28 weeks boceprevir). The remaining 50% require 48 weeks. In trials, 58-65% achieve RVR.	[44, 45]
5 Telaprevir or boceprevir drug 5 cost only (pegIFN+RBV cost 7 additional) 8	£19,600	per treatment	Mean cost between telaprevir (12 weeks, £22,398) and boceprevir (24 weeks, £16,800). Cost in addition to 37 weeks pegIFN+RBV (sampled as in table 1 of main text)	[46, 47]

20Appendix table 64. Telaprevir/boceprevir sensitivity analysis parameters. pegIFN=pegylated 21nterferon; RBV=ribavirin; RVR=rapid viral response; SVR=sustained viral response.

22				
23	Health state utilities/disutilities per year	Mean	Distribution	Ref.
24	Fx-PWID			
25	Mild diagnosed [age 15-19]	0.77	Beta(α=521.2375, β=155.6943)	[3, 26]
26	Moderate diagnosed [age 15-19]	0.66	Beta(α=168.2461, β=86.6723)	[3, 26]
27	Compensated cirrhosis diagnosed [age 15-19]	0.55	Beta(α=47.1021, β=38.5381)	[3, 26]
21	Undiagnosed stages		Diagnosed state utility value + 0.09	[28]
28	Mild SVR [age 15-19]	0.82	Beta(α=65.8678, β=14.4588)	[3, 26]
29	Moderate SVR [age 15-19]	0.72	Beta(α=58.0608, β=22.5792)	[3, 8, 26]
30	Compensated cirrhosis SVR [age 15-19]	0.61	Beta(α=58.0476, β=37.1124)	[27]
31	PWID			
22	HCV disease states	As in ex	-PWID, but reduced by PropPWID [†]	Assumed

³³Appendix table <u>7</u>5. Disutility on diagnosis sensitivity analysis parameters ³⁴PropPWID=(uninfected PWID utility value for age 15-19)/(uninfected ex-PWID utility for age 15-19). 35VR=sustained viral response. 36

[1] Martin NK, Miners A, Vickerman P, Foster G, Hutchinson S, Goldberg D, et al. The cost-effectiveness of HCV antiviral treatment for injecting drug user populations. Hepatology 2012;55:49-57.

[2] Micallef JM, Kaldor JM, Dore GJ. Spontaneous viral clearance following hepatitis C infection: a systematic review of longitudinal studies. J Viral Hepat 2006;13:34-41.
[3] Shepherd J, Jones J, Hartwell D, Davidson P, Price A, Waugh N. Interferon alfa (pegylated and non-pegylated) and ribavirin for the treatment of mild chronic hepatitis C: a systematic review and economic evaulation. Health Technology Assessment 2007;11:1-224.
[4] Martin NK, Vickerman P, Foster GR, Hutchinson SJ, Goldberg DJ, Hickman M. Can antiviral therapy for hepatitis C reduce the prevalence of HCV among injecting drug user provide tions? A medalling applicing of its prevention utility. Journal of Honstelargy

populations? A modelling analysis of its prevention utility. Journal of Hepatology 2011;54:1137-1144.

[5] Martin NK, Vickerman P, Hickman M. Mathematical modelling of Hepatitis C Treatment for Injecting Drug Users. Journal of Theoretical Biology 2011;274:58-66.

[6] Vickerman P, Hickman M, May M, Kretzschmar M, Wiessing L. Can hepatitis C virus prevalence be used as a measure of injection-related human immunodeficiency virus risk in populations of injecting drug users? An ecological analysis. Addiction 2009;105:311-318.

[7] Sutton AJ, Gay NJ, Edmunds WJ, Andrews NJ, Hope VD, Gilbert RL, et al. Modelling the hepatitis B vaccination programme in prisons. Epidemiol Infect 2006;134:231 - 242.

[8] Sutton AJ, Edmunds WJ, Sweeting MJ, Gill ON. The cost-effectiveness of screening and treatment for hepatitis C in prisons in England and Wales: a cost-utility analysis. Journal of Viral Hepatitis 2008;15:797-808.

[9] Hickman M, McDonald T, Ali J, Nichols T, Hope V, Skidmore S, et al. Increasing the uptake of hepatitis C virus testing among injecting drug users in specialist drug treatment and prison settings by using dried blood spots for diagnostic testing: a cluster randomized controlled trial. Journal of Viral Hepatitis 2008;15:250-254.

[10] NICE. Peginterferon alfa and ribavirin for the treatment of mild chronic hepatitis C: National Institute for Health and Clinical Excellence; 2006.

[11] Bruno S, Shiffman M, Roberts SK, Gane EJ, Messinger D, Hadziyannis SJ, et al. Efficacy and Safety of Peginterferon Alfa-2D (40KD) Plus Ribavirin in Hepatitis C Patients with Advanced Fibrosis and Cirrhosis. Hepatology 2010;51:388-397.

[12] Hellard M, Sacks-Davis R, Gold J. Hepatitis C Treatment for Injection Drug Users: A Review of the Available Evidence. Clinical Infectious Diseases 2009;49:561-573.

[13] Aspinall A, Corson S, Doyle J, Grebely J, Hutchinson S, Dore GJ, et al. Treatment of hepatitis C virus among people who are actively injecting drugs: a sysematic review and meta-analysis. Clinical Infectious Diseases 2013; (in press).

[14] Health Protection Agency Colindale. Hepatitis C in the UK 2011; July 2011.
[15] Health Protection Agency. Data tables of the Unlinked Anonymous Monitoring Survey of HIV and Hepatitis in Injecting Drug Users Surveillance Update: July 2011; 2011.
[16] Turner K, Hutchinson S, Craine N, Hope V, Palmateer N, Vickerman P, et al. The impact of needle and syringe provision and opiate substitution therapy on the incidence of Hepatitis C virus in injecting drug users: pooling of UK evidence. Addiction 2011;106:1978-1988.

BMJ Open

Hickman M, Hope V, Brady T, Madden P, Jones S, Honor S, et al. Hepatitis C virus [17] (HCV) prevalence, and injecting risk behaviour in multiple sites in England in 2004. Journal of Viral Hepatitis 2007;14:645-652. [18] Cornish R, Macleod J, Strang J, Vickerman P, Hickman M. Risk of death during and 10 after opiate substitution treatment in primary care: prospective observational study in UK 11 General Practice Research Database. BMJ 2010;341. 12 13 [19] Harris RJ, Ramsay M, Hope VD, Brant L, Hickman M, Foster GR, et al. Hepatitis C prevalence in England remains low and varies by ethnicity: an updated evidence synthesis. 14 European Journal of Public Health 2011; Epub ahead of print. 15 Prime J, White S, Liriano S, K P. Criminal careers of those born between 1953 and [20] 16 17 1978, England and Wales: Home Office, Statistical Bulletin; 2001. 18 Ministry of Justice. Offender Management Statistics Quarterly Bulletin, April to June [21] 19 2011, England and Wales; 2011. 20 [22] Ministry of Justice. Population in Custody Tables August 2010; 2010. 21 [23] Office for National Statistics. Population Estimates for UK, England and Wales, 22 Scotland and Northern Ireland, Mid-2010; 2010. 23 [24] Carroll RJ, Ruppert D. Transformation and Weighting in Regression: Chapman and 24 Hall; 1988. 25 [25] Kind P, Hardman G, Macran S. UK Population Norms for EQ-5D: University of York; 26 2008. 27 Wright M, Grieve R, Roberts J, Main J, HC T. Health benefits of antiviral therapy for [26] 28 mild chronic hepatitis C: randomised controlled trial and economic evaluation. Health 29 Technol Assess 2006;10. 30 [27] Hartwell D, Jones J, Baxter L, Shepherd J. Peginterferon alfa and ribavirin for chronic 31 hepatitis C in patients eligible for shortened treatment, re-treatment, or in HCV/HIV co-32 infection: a systematic review and economic evaluation. Health Technol Assess 2011;15:1-33 210. 34 McDonald S, Hutchinson SJ, Palmateer N, Allen E, Cameron S, Goldberg D, et al. [28] 35 Decrease in health-related quality of life associated with awareness of hepatitis C virus 36 infection among people who inject drugs in Scotland. Journal of Hepatology 2013;58:460-37 466. 38 [29] British Medical Association. British National Formulary, number 62: BMJ Publishing 39 Group; 2011. 40 [30] Stein K, Dalziel K, Walker A, Jenkins B, Round A, Royle P. Screening for Hepatitis C in 41 injecting drug users: A cost utility analysis. Journal of Public Health 2004;26:61-71. 42 Hadziyannis SJ, Sette H, Morgan TR, Balan V, Diago M, Marcellin P, et al. [31] 43 Peginterferon-î±2a and Ribavirin Combination Therapy in Chronic Hepatitis C. Annals of 44 Internal Medicine 2004;140:346-355. 45 McHutchison JG, Lawitz EJ, Shiffman ML, Muir AJ, Galler GW, McCone J, et al. [32] 46 Peginterferon Alfa-2b or Alfa-2a with Ribavirin for Treatment of Hepatitis C Infection. New 47 England Journal of Medicine 2009;361:580-593. 48 Shiffman ML, Suter F, Bacon BR, Nelson D, Harley H, Sola R, et al. Peginterferon Alfa-[33] 49 2a and Ribavirin for 16 or 24 Weeks in HCV Genotype 2 or 3. N Engl J Med 2007;357:124-50 134. 51 [34] Irving WL, Smith S, Cater R, Pugh S, Neal KR, Coupland CAC, et al. Clinical pathways 52 for patients with newly diagnosed hepatitis C - What actually happens. Journal of Viral 53 Hepatitis 2006;13:264-271. 54 55 56 28 57

7

8

9

58 59 60

BMJ Open

3	
4	
5	
6	
7	[35] Castelnuovo E, Thompson-Coon J, Pitt M, Cramp M, Siebert U, Price A, et al. The
0	cost-effectiveness of testing for hepatitis C in former injecting drug users. Health
0	Technology Assessment 2006-2006-32
9	[26] Jowett S. Magarual K. Smith DC. Craig W. Howett M. Bassanding DD. et al. Managing
10	[50] JOWELT SL, Agai wai K, Shitti BC, Claig W, Hewelt W, Bassenulite DK, et al. Managing
11	chronic hepatitis C acquired through intravenous drug use. Q J Med 2001;94:153-158.
12	[37] Foster G, Goldin RD, Main J, Murray-Lyon I, Hargreaves S, Thomas HC. Management
13	of chronic hepatitis C: clinical audit of bipsy based management algorithm. BMJ
14	1997;315:453-458.
15	[38] Sweeting MJ, De Angelis D, Ades AE, Hickman M, Estimating the prevalence of ex-
16	injecting drug use in the nonulation Stats Meth Med Res 2009-18-381-395
17	[20] Vickorman D. Minors A. Williams L. Accorsing the cost of factiveness of interventions
17	[53] Vicketman P, Willels A, Williams J. Assessing the cost-effectiveness of interventions
18	linked to needle and syringe programmes for injecting drug users. In: NICE, editor. London;
19	2008.
20	[40] Taylor A, Munro A, Allen E, Dunleavy K, Cameron S, Miller L, et al. Low incidence of
21	hepatitis C virus among prisoners in Scotland. Addiction 2013;108:1296-1304.
22	[41] Government Actuary's Department. Interim life tables 1980-82 to 2004-06: Office for
23	National Statistics
24	[41] Have Conner M. MacDougall L. Eastwood C. Williams K. Millar T. Conture reconsture
25	[42] Hay G, Galillott W, MacDougail J, Eastwood C, Williams K, Milliam T. Capture-recapture
20	and anchored preavience estimation of injecting drug users in England: national and
20	regional estimates. Statistical Methods in Medical Research 2009;18:323-339.
27	[43] Personal Social Services Research Unit. Unit Costs of Health and Social Care 2011:
28	University of Kent; 2011.
29	[44] Jacobson IM, McHutchison JG, Dusheiko G, Di Bisceglie AM, Reddy KR, Bzowei NH, et
30	a) Telaprevir for Previously Untreated Chronic Henatitis C Virus Infection, N Engl I Med
31	al. Telepreventor Televolasiy ontreated enrolle nepatitis e virus intection. A Englis Med
32	2011;304:2403-2416.
33	[45] Poordad F, McCone J, Bacon BR, Bruno S, Manns MP, Sulkowski MS, et al. Boceprevir
33	for Untreated Chronic HCV Genotype 1 Infection. N Engl J Med 2011;364:1195-1206.
34	[46] NELM.NHS.UK Press Release. Janssen Cilag launches telaprevir (Incivo) 375mg tablets
35	for the treatment of genotype 1 chronic hepatitis c. 2011 [cited; Available from:
36	http://www.nelm.nbs.uk
37	[47] NELM NHS LIK Press Release MD Jaunches boceprevir (Victrelis) for the treatment of
38	[47] INLIVING SOLVERS RELEASE. WE dathered bocepiewit (victures) for the detrient of
39	chronic nepatitis C in the OK. 2011 [cited; Available from: <u>mtp://www.neim.mis.uk</u>
40	
10	
41	
42	
43	
44	
45	
46	
47	
48	
10	
49	
50	
51	
52	
53	
54	
55	
56	nr
57	29
58	
50	
59	