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A Mechanistic Model of Ca Regulation of Thin Filaments in Cardiac Muscle
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ABSTRACT We present a model of Ca-regulated thin filaments in cardiac muscle where tropomyosin is treated as a contin-
uous elastic chain confined in the closed position on the actin helix by electrostatic forces. The main distinction from previous
works is that the intrinsic stress-free helical shape of the tropomyosin chain was taken into account explicitly. This results in the
appearance of a new, to our knowledge, tension-like term in the energy functional and the equilibrium equation. The competitive
binding of calcium and the mobile segment of troponin-I to troponin-C were described by a simple kinetic scheme. The values of
dimensionless model parameters were estimated from published data. A stochastic Monte Carlo simulation of calcium curves
has been performed and its results were compared to published data. The model explains the high cooperativity of calcium
response of the regulated thin filaments even in the absence of myosin heads. The binding of myosin heads to actin increases
the calcium sensitivity while not affecting its cooperativity significantly. When the presence of calcium-insensitive troponin-C was
simulated in the model, both calcium sensitivity and cooperativity decreased. All these features were previously observed

experimentally.

INTRODUCTION

Muscle contraction is driven by the cyclic interaction of
globular heads of myosin molecules with the actin that
forms the core of the thin filaments. The actin-myosin inter-
action is controlled by the regulatory proteins troponin (Tn)
and tropomyosin (Tm), which are parts of the thin filaments.
The Tm-Tn complex blocks the actin-myosin interaction in
the absence of Ca®"and enables it when the calcium concen-
tration increases. A coiled-coil Tm molecule binds the next
Tm molecule in a head-to-tail manner to form a continuous
chain that is complementary to the surface of the 36-nm-
long actin helix (1,2). The Tm chain is constrained by elec-
trostatic forces (3) at a particular azimuthal position. This
electrostatic interaction involves some conserved residues
(4). Mutations of these residues to Ala change the myosin
binding to the actin-Tm complex in the absence and pres-
ence of Tn (4,5). The actin-Tm constraint, however, is not
tough. It allows Tm to oscillate azimuthally with respect
to actin with a standard deviation of ~10° (6). Tn sits on
Tm and moves azimuthally together with the Tm chain.
In the absence of Ca2+, the inhibitory domain of the
troponin-I (Tnl) readily binds actin. Such binding leads to
an azimuthal shift of the whole Tm chain to a state where
it covers myosin-binding sites on actin and causes muscle
relaxation (7,8).

The Ca-free state corresponds to the Blocked or B-state of
the three-state model of McKillop and Geeves (8). The bind-
ing of Ca*" to troponin-C (TnC) opens a hydrophobic
pocket between the Ca-binding loop and the central a-helix
of TnC. The open pocket can bind a labile part of Tnl called
the “switch domain”, which is located next to the inhibitory
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domain (9). When this happens, the inhibitory domain of
Tnl cannot reach its binding site on actin and the whole
Tm-Tn complex remains in an actin-free state that corre-
sponds to the Closed or C-state (9). When the regulatory
Tm-Tn complex is in the C-state, actin can bind a myosin
head. The initial binding is weak, but later some conforma-
tional changes occur in myosin and, possibly, actin, so that
the binding becomes stronger. A strongly bound myosin
head shifts Tm further and exposes myosin-binding sites
of neighbor actin monomers. This is the Open or O-state
of the Tn-Tm complex (8). Generally speaking, there is a
competition between TnC and actin for binding of the
mobile segment of Tnl: Ca*" favors the Tnl binding to
TnC and thus promotes its detachment from actin.

The calcium curve that describes the contractile or
biochemical response of striated muscles or regulated thin
filaments to calcium ions is usually approximated with the
Hill equation,

[Ca]"
[Cal5, + [Ca]™
where Vis the normalized response (tension of a muscle cell
or a myofibril, i.e., the ATPase rate, a signal that character-
izes structural changes in troponin, etc.); [Ca] is the molar
Ca®" concentration; [Ca]sg is the Ca®" concentration that
gives a half-maximal response; and n is the cooperativity
constant, called the Hill coefficient. Because cardiac TnC
binds only one Ca®" ion, n is expected to be 1. In reality,
n is much higher, ~2.5-3 or higher (10,11). The high coop-
erativity is often explained by the shift of the Tm chain by
myosin heads that are strongly bound to actin, because
myosin head binding facilitates the unbinding of neighbor
TnC from actin and opens myosin-binding sites on neigh-
bor actin monomers (7). However, it was shown that an
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inhibition of the strong actin-myosin interaction with bleb-
bistatin does not reduce the steepness of the calcium curve
significantly (10,11). This indicates that the cooperativity
is an intrinsic property of the thin filaments themselves
(10). The binding of myosin heads to the actin decreases
[Ca]sp, not affecting n much (10).

Here we describe a mechanistic model that explains the
high steepness of the Ca-activation curve in cardiac muscle
even in the absence of myosin heads. Our approach is based
on works (12-15) where tropomyosin was modeled by a
continuous flexible chain in a harmonic potential well on
the surface of an actin filament. A new, to our knowledge,
expansion of this model is that we have taken into account
that the tropomyosin chain has an intrinsic stress-free helical
shape. This leads to a change in governing equations and
brings new, to our knowledge, features to the system. In
addition, for calculating changes in the elastic energy of
the Tm chain upon the binding of Tnl or myosin head
to actin, we exploit a more precise three-point approxima-
tion instead of the two-point approximation used in the
literature (12-15).

MATHEMATICAL MODEL
Model of the Tm chain

We consider tropomyosin as a continuous semiflexible
worm-like chain (12) that runs along the whole thin filament
in the groove of the long actin helix. The chain can be
pinned to actin by either Tnl or a myosin head. The change
in the azimuthal angle caused by the pinning is —@ or @y,
respectively, as Tnl and a myosin head move Tm to opposite
directions (the filament axis is directed toward the pointed
end of the actin). In the original model (12-15), the intrinsic
helical shape of the tropomyosin was not taken into account,
so that changes in the shape of the Tm chain were described
by the equation of a straight elastic bar in a harmonic poten-
tial well. Here, the stress-free helical shape of tropomyosin
is explicitly accounted for. The pitch of the long actin helix
is ~36 nm. An unpinned, i.e., free Tm chain, has twice-
longer pitch, ~72 nm. The helical twist of an unpinned
Tm chain is ¥ = 27/72 nm = 0.0873 nm~ ' (the 72-nm-
long period of the Tm helix is twice as long as that of the
long actin helix). The Tm chain is considered inextensible
although bendable. It is assumed that, when Tm slides on
the actin surface, the axis of the Tm coiled-coil remains
on a cylinder of radius a. We introduce Cartesian coordi-
nates so that the radius-vector of a point on the tropomyosin
chain (Fig. 1 A) is described by

7 = acos(yz + ¢(z))é) + asin(yz + ¢(z))é,

(Y 4 ul2) M

Here, the unitary vector €3 is directed along the thin filament
axis (z is the axial coordinate) and €, &, are orthogonal uni-
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FIGURE 1
uous line) on the cylindrical actin surface. (A) The three-dimensional rep-
resentation of the Tm chain on the F-actin surface. (B) The involute of
the cylindrical actin surface. (Dashed line) The helical Tm shape in the
closed C-state. (Dash-dotted line) The actin axis. Other notations are
explained in the text.

The schematic representation of the Tm chain (thick contin-

tary vectors in a cross-section of the filament; u(z) is the
axial displacement; and ¢(z) is the angular displacement
of Tm (Fig. 1, A and B). In the undisturbed C-state, the
Tm chain is in an equilibrium stress-free state and forms a
helix:

7 = acos(yz)é, + asin(yz)é, + zé;. 2)

The inextensibility condition means that the length of a
tropomyosin segment does not change upon its sliding along
the actin surface. This means that (Fig. 1 B)

ds' = (1 +d(z) +d (¥ +¢'(2)")d 3)

= (1+a’y)dz = ds,
where s and sy are the arc lengths along the Tm chain in
the bent and undisturbed states, respectively. In Eq. 3 and
onward, the prime means a derivative over z. If the axial
and angular displacements of the Tm chain are small, one
can simplify Eq. 3 by neglecting the terms proportional to
the squares of the displacement components. This results
in a simple linear relation between the angular and axial
component of the displacement:

u(z) +a*y/(z) = 0.

We also assume that Tm is confined in the closed C-state at
¢ = 0 by the elastic force —a¢, which is determined by
electrostatic actin-Tm interactions where « is a constant
factor that characterizes the strength of the chain-confining
potential. This assumption was suggested earlier (12,13),
and more recently supported by an energy computation
for the actin-Tm interaction in Eq. 3. It was shown that
upon the myosin binding to actin, Tm slides along the
actin surface from the closed C-state to the open O-state
without rolling (16). The twisting stiffness of Tm was
found to be much lower than its bending stiffness (17).
These data support the idea (12) that the elastic Tm
energy is mainly determined by its bending. For these rea-
sons, we assume that the elastic energy of a segment of the
tropomyosin chain between two axial points, b and c, is
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determined by its bending energy and energy of the actin-
Tm interaction:

-l / (atote? + K((qjgi)) 2O ) )

“)

Here, go = 1 + a*y* and K is the bending stiffness that is
assumed to be constant along the Tm chain, independent
of the direction of bending. The validity of this simplifica-
tion will be discussed later. Some details of the mathemat-
ical treatment are given in Appendix.

We introduce a dimensionless axial distance, x = z/&,

where
4K \*
= (a)
ay/go

is the persistent length of the Tm chain. Then, the energy
can be rewritten as

E =

c/§
EYR [ (0 0F + 0+ 560 s, 6)

b/E

where 8 = 2ay*+/Kgo/a is a dimensionless parameter. It
should be noted that the term “persistent length” used
here and in the literature (12—15) has different meaning
from that used in the worm-like chain theory and Li et al.
(17), where Lp = K/kgT, with kg as the Boltzmann constant
and T as absolute temperature.

The last term in the energy integrals in Eqs. 4 and 5 is
similar to the term that appears in the elastic bar theory
when the bar is subjected to the tensile force (18). However,
here the physical nature of the term that is characterized by
the dimensionless parameter 3 in Eq. 5 is different. It arises
from the intrinsic helical shape of Tm, not from the true ten-
sile force.

Because the troponin complex sits on the Tm chain, the
binding of the inhibitory domain of Tnl to actin pins the
chain at a fixed angle —¢t. Such Tnl pinning corresponds
to the blocked B-state of the troponin-tropomyosin complex
(8).The strong binding of a myosin head to actin forces the
Tm chain to move azimuthally to the opposite direction, i.e.,
pins it to a positive angle ¢y = —x ¢t (here x is a constant).

Troponin complexes are bound to every Tm molecule in a
chain with an axial repeat of ¢ = 38.5 nm that corresponds
to seven actin monomers on a strand of the long pseudo-
two-strand actin helix. The ratio of the troponin-troponin
distance to the persistent length gives one more dimension-
less parameter, A = c¢/§. A myosin head can bind every actin
monomer on an actin protofilament except those covered
by Tn. The axial distance between the neighbor actins is
5.5 nm.
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The Tm chain on a thin filament can be pinned to actin at
a number of points by either Tnl or myosin heads. When a
new pin point is formed due to a protein-protein binding (or
another reason), detachment of a myosin head or Tnl from
actin leads to a change in Tm elastic energy. The probabil-
ities of the binding or unbinding depend on the energy
change associated with this event.

The total energy of a Tm chain pinned to the angle —@t
by a Tnl molecule is

Er = af¢7v/g(1+6)

(calculated from the solution given in Eq. A4). The energy
Er normalized for the thermal energy kg7 gives a dimen-
sionless energy parameter

_ atpr/go(1 + B)
n ksT '

It is difficult to obtain an explicit general solution for the
energy change for a Tm chain with an arbitrary number of
pin points. Instead, we calculated the energy of an infinitely
long Tm chain for two (E,) and three (E£3) pin points, either
Tnl or myosin, assuming that the energy changes caused by
pinning or unpinning in the intermediate point are mainly
determined by its nearest pinned neighbors on both sides
and is not affected significantly by chain pinning outside
this interval. The validity of this simplification is discussed
in the Supporting Material.

Binding of Ca®* and components of troponin
complex to each other and to actin

A kinetic scheme, used to describe the interaction of
troponin components, Tnl and TnC, with Ca®" and actin,
which was based on the structure of the troponin complex
(9), is shown in Fig. 2. In the scheme, Kc,, K|, and K, are
the equilibrium constants for Ca*" binding to TnC, for bind-
ing of the switch segment of Tnl to TnC, and for binding of
the inhibitory domain of Tnl to actin, respectively. The
value € < 1 is a constant (we used £ = 0 for most simula-
tions; the effect of nonzero £ on Ca’" sensitivity in the
model of regulated thin filaments is illustrated in Fig. S4
in the Supporting Material).

The scheme suggests that only one Ca®" ion can revers-
ibly bind TnC (7). The calcium binding to TnC facilitates
Tnl binding to the open hydrophobic pocket on TnC
and promotes Tnl detachment from the actin. Let C =
Kc,[Ca®™]; y and z are dimensionless or normalized Ca*"
concentration and probabilities for TnC and for the inhibi-
tory/switch segment of Tnl to be in free or unbound states,
respectively. For the steady-state processes, the probabilities
of being in states CaTnC, CaTnCTnl, and TnCTnl are Cy,
CyzKI, and yezKI, respectively. Because the sum of the
probabilities for TnC and Tnl to be in one of the possible
states is unity, x, y, and z satisfy the equations

Biophysical Journal 105(4) 941-950
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FIGURE 2 The kinetic scheme of the interaction of the troponin compo-
nents, TnC and Tnl, with Ca®>" and actin. Here K¢, and K are the equilib-
rium constants for the binding of Ca®" and the switch domain of Tnl to
TnC, respectively; K4 is the equilibrium constant for the Tnl binding to
actin; and € < 1 is a constant.

v+ yC +yCzK; + yezK; = 1, ©)
7+ zKy + yezK; + yCzK; = 1.

If the inhibitory domain of Tnl is detached from the actin
(Ka = 0), the expressions in Eq. 6 can be solved for any
given calcium concentration, C. It gives y and z as

U+ +aKi(e+ 01 +C) — (140)

= 2K, (e + C)(1+C) :

z =y(1+C).

If Tnl is bound to actin and keeps Tm in the blocked B-state,
then z=0and y = 1/(1 + O).

Binding of myosin heads to regulated thin
filament

The binding of myosin heads to regulated thin filaments in
contracting muscle has a complicated nature. Initially, a
head weakly binds an actin monomer that is not covered
by the Tm chain but which should be in the closed C-state,
although not in the blocked B-state (19). Some of the
weakly bound heads then change their binding mode and
become strongly bound. When this happens, the head pins
the Tm chain, shifting it to the opened O-state. Instead of
considering the two-step binding of myosin heads to actin
and their complicated three-dimensional arrangement, we
assumed that the weak binding is short-lived and quickly
reversible so that the weakly bound heads do not affect
the Tm configuration. We substituted the two-step process
with a single strong binding step. Although both weak bind-
ing and the weak-to-strong transition depend on the config-
uration of the Tm chain (and on Ca*"), the combined step is
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equivalent to the closed-to-open transition, or pinning of the
Tm chain to @y.

Myosin heads that bind a particular thin filament originate
from three surrounding thick filaments. Their binding has
an ~14.5-nm axial modulation that corresponds to the axial
spacing of the crowns of myosin heads on the backbone of
the myosin filaments. This modulation results in the appear-
ance of the M3 myosin meridional reflection on the x-ray
diffraction pattern of contracting muscle (20). Although
we used the simplest assumption that the effective affinity,
p, of myosin heads to actin is constant along the thin fila-
ment, a more realistic assumption that p has an axial modu-
lation with a ~14.5-nm period does not affect the results of
our calculations (see Fig. S6).

Change in the energy of the Tm chain: two- and
three-pin approximations

We considered a Tm chain on a 1001-nm-long thin filament
with 27 troponins (two of which are on the filament ends)
and 365 actin monomers. One-half of the total number, or
183 actin monomers, are regulated by Tm chain. Because
each troponin complex occupies an actin monomer, 156 =
183 — 27 actin monomers were accessible for myosin heads.
Each time Tnl binds actin, it pins the chain to a negative
angle —¢@7 whereas a strongly bound myosin head pins it
to a positive angle ¢, = —xor (Fig. 3).

For the steady state of the Tm chain, the ratio of the for-
ward (pinning) and reverse (unpinning) rate constants is
determined by the change in the chain energy upon the bind-
ing or unbinding of Tnl or a myosin head to actin. Because
an explicit solution for a chain with an arbitrary number of
pin points is difficult to obtain, we used the three-pin
approximation that takes into account only the actin site
that is probed and its nearest neighbors on both sides. For

FIGURE 3 The schematic representation of a fragment of the pinned Tm
chain (solid line). (Solid circles) Troponin complexes bound to actin and pin
Tm chain; (shaded circles) detached complexes. (Solid ellipses) Actin-
bound myosin heads; (shaded ellipses) detached head. (Dotted boxes) A
two-pin segment before and after myosin binding to an intermediate actin
site (rate constant ky,) and a three-pin segment before and after Tnl
detachment from an intermediate actin site (rate constant kpy).
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the ith myosin head, the ratio of the rate constants for the
binding to actin and unbinding is given by
Kt

pr=t = pexp( — y(Es — Ey)),
M7

where p is a constant that characterizes the availability of
the myosin heads and their affinity for actin. Similarly, the
ratio for the rates of the binding of the jth Tn complex to
the actin and unbinding from it is given by

pi = — = zKsexp( — y(E; — Ey)).

Here, E, and E; are dimensionless energies, i.e., energies
calculated using Eq. 5 and scaled for E7 The method for
calculating dimensionless energies, E,, E3, for different
possible configurations and distances between the pins are
given in the Appendix and the Supporting Material. Their
values were precalculated for all possible types of pin points
and distances between them using explicit solutions for an
infinitely long Tm chain. These were then saved in computer
memory and used for the Monte Carlo simulations.

Monte Carlo simulation

To determine the average equilibrium characteristics of the
pinned Tm chain at any calcium concentration, C, and to
calculate the average fractions of the actin-bound TnC,
CaTnC, and myosin heads, we use the Monte Carlo method.
The main difficulty was caused by the high dimension of the
phase space: for a chain with 183 actin pin points it is 2'?,
which is too much for using conventional Markov-chain
Monte Carlo methods such as the Metropolis-Hastings algo-
rithm. To search such a configuration space of high dimension
more effectively, an element subjected to probe for pinning/
unpinning was chosen not randomly or consequently, but ac-
cording to the probability of changing of its status. The idea of
the algorithm was to pick up predominantly those elements
that are more likely to switch their state—bind to actin, if
they are detached, or unbind from it, if they are bound.

More explicitly, the ith actin element was probed
for pinning with the probability proportional to (p;)"?
where p;, = zK, exp(—vy(E5; — E»)) for a Tnl and p; =
p exp(—vy(E3 — E,)) for myosin head. For unpinning, the
probability of choosing the ith actin monomer was propor-
tional to (p,-)” 3. After an actin site for the next probe was
chosen, the pinning probability was min[1, (p;)"’] and the
unpinning probability was min[1, (pi)_1/3]. Here, p; is the
ratio of forward (pinning) and reverse (unpinning) rate
constants for ith actin site. As a result of such choice of
the element and the probability of changing its state, the
overall rate of forward (pinning) transition was proportional
to (pi)l/ 3 min[1, (p,-)l/ 3], whereas the rate of the reverse (un-
pinning) transition was proportional to (p;) "* min[l,
(p)~ "1, so that their ratio was p; as required.

bl
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Step by step, the algorithm was as follows: for a given
state of the system, the segment [0; 1] was divided into
182 subsegments with their length proportional to (p;)"’?,
if the ith actin site (i = 1, ... 183) was pinned, or to
(pi)_IB, if it was not pinned. Then, a random number, a,
between 0 and 1 was drawn using a random number gener-
ator. If a fell to the ith subsegment, the ith actin site was
probed for changing its state. If the probability was 1, the
state of the element was changed involuntarily. If not,
another random number, b, between 0 and 1 was drawn
and compared with P;, where P; = min[1, (p,-)m] if the ith
actin was pinned or with P; = min[1, (p,»)*” 3], if it was un-
pinned. If b was smaller than P;, the state of the ith actin was
changed. It was pinned by the Tnl or by myosin head, if it
had been unpinned before, and vice versa. For each calcium
concentration C, the choice of an actin site and probe for
changing its state were repeated up to 5 x 10’ times. The
average values for the fractions of CaTn complexes, actin-
bound Tnl, and myosin heads bound to actin were calculated
as a function of the normalized calcium concentration C.

RESULTS

Cooperative Ca activation of the thin filaments
without myosin heads

The basic set of dimensionless parameters was chosen as
follows: K; = 1000, K5 = 200, ¥ = 4, and A = 2 (this means
that persistence length £ = 19.25 nm), § = 3.5, e = 0, and
x = 0.4. When ¢ is nonzero, many Tnls appear to remain
in the actin free state even at low Ca’" concentration, SO
relaxation is incomplete (see Fig. S4). Although the pres-
ence of a significant fraction of actin-free Tn in the absence
of Ca>" as well as the dependence of Ca®" binding to TnC
on the regulatory domain of Tnl probably takes place in the
regulated thin filaments, here we mainly concentrated on
effects of Tm helicity that were not exploited previously
and left the effects of nonzero & for further work.

We tried, but could not obtain, reasonably steep calcium
curves in the absence of myosin heads with the parameter
v lower than 3.5. This means that the high cooperativity
of the thin filament activation requires a rather high chain-
energy cost for the Tnl binding to actin. For higher values
of the energy parameter, v, the Ca curves could be even
steeper than those reported here (see Fig. S5).

The Ca curves for the fractions of CaTnC and actin-Tnl
complexes at different values of parameters § and A are
shown in Fig. 4. The model curves with 8 =3.5 and 4 = 2
show the steep and highly cooperative Ca®" activation
(the apparent Hill coefficient n = 2.5) in the absence of
myosin heads. This agrees with the data of Sun and Irving
(10) and Sun et al. (11), who found that the Ca>* binding
to TnC is cooperative even in the presence of blebbistatin
that blocks the strong myosin binding to actin. An increase
in § leads to a decrease in Ca sensitivity and to an increase in

Biophysical Journal 105(4) 941-950
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FIGURE 4 The calculated model Ca curves in the absence of myosin
heads for different values of § and A. (A) The calculations for A = 2 and
B-values shown on the plot. (B) The calculations for § = 3.5 and A-values
shown on the plot. (Dashed lines) Average calculated fractions of actin-
unbound Tnl. (Continuous lines) Occupancies of TnC sites by Ca®" ions.

the steepness of the Ca curve, i.e., in the apparent Hill coef-
ficient, n (Fig. 4 A).

At a constant persistence length of the Tm chain (corre-
sponding to the constant bending stiffness and a-parameter),
G depends on the helical parameter  of the actin helix. In
the model described in the literature (12-15), the straight
elastic bar theory was used, which corresponds to 8 = 0.
In this case, the cooperativity was lost. Both activation
and relaxations at zero and saturating Ca>" concentrations
become incomplete at the same values of the other parame-
ters. Higher § that corresponds to the real helicity of F-actin
and Tm chain leads to the higher cooperativity of the Ca
activation of the thin filaments.

The variation of 4 characterizes the change in the tropomy-
osin bending stiffness, K, and/or in the force constant, «, that
constrains tropomyosin in the C-state. An increase in A leads
to a shift of Ca curves to the left, i.e., increases the Ca’t-
sensitivity and decreases its cooperativity (Fig. 4 B). Because
Ais the ratio of the axial distance between neighbor troponins
(38.5 nm) to the persistence length of the Tm chain, it in-
creases when the tropomyosin bending stiffness decreases.
On the other hand, an increase in the coefficient « that char-
acterizes the actin-myosin electrostatic force, which con-
strains the Tm chain in the C-state, leads to an increase in A.

B

Averaged fraction or occupancy >
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Binding of myosin heads to actin increases Ca
sensitivity, but not cooperativity

When myosin heads are able to bind actin, the simulated cal-
cium curves shift to the left, showing an increased sensi-
tivity without a significant increase in the slope of the Ca
curves (Figs. 5 and 6). The reason for that is obvious:
when a myosin head binds actin strongly, it shifts the tropo-
myosin chain to the O-state and facilitates the detachment of
the neighbor troponins from actin. Sun and Irving (10)
monitored the dependence of the faction of the CaTnC com-
plexes on the Ca®"concentration in rigor, and found much
lower [Ca® "5, than in the presence of ATP. The cooperativ-
ity was also absent, n = 1. To simulate the rigor conditions
in our model, K5 was set to zero, to disable the Tnl binding
to actin because it takes place in rigor where Tm is shifted to
the angle ¢y by strongly bound myosin heads preventing
Tnl from reaching its binding site on actin. Modeling results
are very similar to what was observed experimentally
(Fig. 5): the Ca*" binding was noncooperative (n = 1),
and the difference between [Ca’']s, values for the Ca>"
binding to TnC in rigor and in the presence of ATP and bleb-
bistatin was ~1.5 pCa units—very close to what was
observed experimentally (10).

When the affinity of myosin heads to actin was decreased
in our model, the Ca sensitivity also decreased significantly
with only slight decrease in the slope of the Ca curves
(Fig. 6). This agrees well with experiments where the
actin-myosin interaction was depressed by blebbistatin
(21). The dependence of [CaTnC] and normalized number
of actin-bound myosin heads on C were similar to each
other, as was observed by simultaneous measurement of ten-
sion and conformational change in TnC (10,11).

Effect of Ca-insensitive troponin-C on activation

We also modeled experiments in which a fraction of Ca-
insensitive troponins-C molecules was incorporated into
the thin filaments of the skinned rat trabeculae from rat
hearts (21). We modeled these experiments by random

FIGURE 5 The effect of myosin heads on simu-
lated Ca curves. (A) Averaged occupancy of TnC
by Ca>" ions for different affinities of myosin
heads to the actin, p. (Dashed line) Calculation
for K5 = 0 that corresponds to TnC titration with
Ca”" ions in rigor. (B) The average fraction of
Tnl not bound to actin. 8 = 3.5, A = 2 for all
calculations.

0
0.0001  0.001 0.01

0
0.0001 0.001 0.01 0.1 1
Normalized Ca”> concentration

Biophysical Journal 105(4) 941-950

0.1 1



Model of Ca Regulation in Cardiac Muscle

14

>

e p=0.15

g =

S o0s{"”

Q

[$)

(o]

T 06

(0]

N

g 04

S

c

o 0.21

o 0

% 0.001

—

q>) 0 - : T 7 ]
Z  0.001 0.01 0.1 1 10

Normalized Ca™ concentration

FIGURE 6 The normalized average actin occupancy by myosin heads
versus the normalized Ca®* concentration at different head affinity to actin.
(Inset) The nonnormalized actin occupancy for the same conditions (8 =
3.5, A = 2; p-values are shown above the lines).

choice of 10, 25, and 40% troponins that were unable to bind
Ca”". The results are shown in Fig. 7 as Ca curves for the
fraction of CaTnC complexes among those that are able to
bind Ca”, Tnl-actin complexes, and actin-bound myosin
heads. As it was found in experiments (21), an increase in
the fraction of Ca-insensitive troponins-C led to a decrease
in the amplitude of Ca activation in the model (Fig. 7). This
was seen as a decrease in the fraction of actin-detached TnC
and of actin-bound myosin heads at a saturating Ca>" con-
centration. Also, in the presence of Ca-insensitive TnC,
[Cay ]50 and the slope of model Ca curves decreased, which
was as observed experimentally (21).

DISCUSSION
Main findings

The model that treats the tropomyosin chain as an elastic
bar, has the intrinsic stress-free helical shape, and slides
without an elongation on the surface of the actin filament,
describes some essential features of the Ca>" activation of
the thin filaments in cardiac muscle. The model presumes
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that the Tm chain is constrained in the C-state on the actin
surface by electrostatic forces. The model explains the
highly cooperative Ca>* binding to TnC even in the absence
of myosin heads. It also reproduces an increase in Ca
sensitivity of the thin filaments by bound myosin heads
without a significant increase in the cooperativity. The
model also simulates the results of experiments where
some troponin-C molecules were substituted with mutants
insensitive to Ca>" (21).

Comparison with previous works

Our approach is based on the idea (12—-15) that the cooper-
ativity of the thin filaments is caused by the mechanical
properties of the tropomyosin chain, which behaves as a
continuous semi-flexible worm-like chain that slides on
the surface of an actin filament. The shift of the chain
from its equilibrium C-state due to its pinning to actin by
either troponin or myosin head propagates to the neighbor
segment of the chain and results in the cooperativity. The
difference between our model and those suggested previ-
ously is that we explicitly treat the tropomyosin chain as
an elastic bar that has the intrinsic stress-free helical shape.
This causes the additional term in the energy functional, and
the additional term in the force equilibrium equation (see
Appendix). This term is similar to one that arises is the
elastic bar theory due to the application of tension (18). In
our case, however, this term is not induced by real tension,
but results from the intrinsic helical shape of the Tm chain.
The presence of this term increases the effective length of
the Tm chain segment that is affected by its pinning to actin
by either Tnl or myosin head, thus increasing the coopera-
tivity of the thin filament (see the Appendix and the Sup-
porting Material).

Model justification and parameter estimations

Although there is evidence of variation of the Tm bending
stiffness (17) and its curvature (22) along the tropomyosin
molecule, these effects are small, and were neglected for

FIGURE 7 Calcium curves for model simula-
tions of the experiments (21) in which some TnC
sites were insensitive to Ca**. (4) Average calcu-
lated fractions of actin-unbound Tnl (dashed lines)
and of CaTnC complexes (continuous lines). The
fractions of Ca-insensitive TnC are shown in %.
(B) Average normalized fraction of actin-bound
myosin heads. (Insef) Occupancy of actin-site
myosin heads for the same calculations (6 = 3.5,
A=2,p=0.15).
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the sake of simplicity. The coiled-coil structure of Tm also
suggests that its bending stiffness depends on the direction
of the bending. However, the twisting of two «-helices has
a pseudo-periodicity of ~5.5 nm, which is close to the axial
distance between neighbor actin monomers. This means that
for ranges shorter than 5.5 nm, the Tm bending stiffness is
indeed essentially anisotropic. Nevertheless, the character-
istic radius of the Tm bending due to pinning to actin by
either Tn or myosin head is much longer than 5.5 nm by
at least one persistence length. Therefore, the Tm bending
is determined by the average bending stiffness over the
5.5 nm coiled-coil axial period, which is independent of
the direction.

For most of our calculations, we used A = 2, which cor-
responds to the persistence length £ = 19.25 nm. This figure
is very close to that estimated by Geeves et al. (15), and is
consistent with contemporary estimates of the tropomyosin
bending stiffness K (17) and the constraining constant « (3)
obtained using computational approaches. Once § and 4 are
defined, 8 = 3.5 can be calculated directly using radius of
the Tm chain of 4.2 nm (16) and the actin helical twist, Y.
Contemporary estimates of ¢t and ¢y are 25 and 10° (6)
giving x = 0.4. The energy parameter v = 4, which charac-
terizes the ratio of the Tm chain energy, caused by Tnl
binding to actin, to the thermal energy kg7, is somewhat
higher than the 1.6 measurement used in Geeves et al.
(15). However, for 8 > 0, the energy of the Tm chain with
a single actin-Tn pin of the constant amplitude is propor-
tional to

V1+8.

The presence of the term containing § leads to an increase in
the energy by a factor of 2.12 compared to that at 3 = 0.
Therefore, our estimate of v is not far from that used in
Geeves et al. (15). The chain energy associated with a 10°
pinning by the myosin head in our model is yx? = 0.64—
that is, slightly higher than one-half of the thermal energy,
kgT. This figure is consistent with a 10° random azimuthal
fluctuation in the C-state estimated from x-ray fiber dif-
fraction data (6). Smaller vy-values lead to a decrease in
the cooperativity (smaller apparent Hill coefficients, n).
With higher v, one can easily achieve the higher coopera-
tivity with n > 3. The TnC affinity for Ca>", K¢, affects
only the scaling of the dimensionless Ca concentration,
[C]. Our choice of the binding constants of the mobile
domains of Tnl to actin and TnC, K, = 200 and K} =
1000, respectively, provided an effective competition of
the mobile domains of TnlI for TnC and actin at the chosen
v-value.

Authors in the literature (13—15) used a two-pin approx-
imation. This means that the change in chain energy was
calculated using known two-pin solutions (12) for the infi-
nitely long chain with two pin points separated by a certain
distance. For the chain that has more pin points, its config-
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uration was approximated by a two-pin solution in each in-
terval between neighbor pin points (13—15). Here we used a
more precise three-pin approximation: changes in the
energy associated with pinning or unpinning of an actin
site were estimated from a comparison of a three-pin solu-
tion (where the central point is the one of interest) with
the two-pin solution with fixed left and right neighbor pin
points. Test calculations (see the Supporting Material)
show that the two-pin approximation sometimes gives a sig-
nificant error in the energy configuration. The energy esti-
mation from the comparison of E; and E, obtained from
the three- and two-pin approximations, respectively, is
more accurate. We tested this by a comparison with the
four-pin case where an additional pin point was outside
the segment of the interest. In this case, the fourth point
affected the shape of the chain, but only marginally influ-
enced the change in the chain energy due to the pinning
or unpinning (see the Supporting Material).

Explanation of the results and their possible
implications

Although the persistence length in our model was only one-
half of the distance between neighbor troponins on the Tm
chain, the model showed the high cooperativity of a calcium
activation. The reason for it is that an increase in 3 leads to
an increase in the length of the Tm segments affected by a
single pinning to actin. At § = 3.5, the width of the chain
segment where the angular displacement is at least one-
half that in the pin point, is 1.5 times higher than at § = 0
(see Fig. S1). The value of the apparent Hill coefficient, n,
in the absence of myosin heads was in our simulations
(Fig. 4) close to that found by Sun and Irving (10) in the
experiments where strong binding of myosin to actin was
depressed by blebbistatin.

The binding of a myosin head to actin shifts the Tm chain
to the direction opposite to that induced by Tnl binding to
actin, i.e., toward the open O-state of the thin filament.
This explains why the myosin binding facilitates the Ca acti-
vation, decreasing the Ca®" concentration that provides a
half-maximal response. However, the cooperativity of the
calcium curves did not change much, possibly because the
absolute value for the angular shift induced by the binding
of the myosin head to the actin compared to that of the
troponin binding to the actin (10 vs. 25° (6)). The Hill coef-
ficient n increased from n = 2.3 (for CaTn complexes) or
n = 2.7(for actin-Tnl complexes) in the absence of myosin
heads (p =0)ton =3.5 (CaTn) or n = 4.5 (actin-Tnl) at p =
0.2. The maximum (saturated) fraction of myosin heads
bound to actin at high calcium concentration is proportional
to the affinity of myosin heads to actin, p.

We also simulated experiments of Farman et al. (21), who
used a mutant TnC (DM-TnC) that is incapable of
Ca”*"binding. The more calcium-insensitive TnC molecules
were randomly introduced to the model, the less sensitive
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and less steep was the calcium curve. This is similar to what
was observed experimentally: an increase in the fraction of
DM-TnC reduced the maximum tension, [Ca2+]50, and the
steepness of the calcium curve (21).

APPENDIX: EQUILIBRIUM CONFIGURATION OF
PINNED TM CHAIN AND ENERGY CALCULATION

The dimensionless energy of a Tm chain segment between pin-points b and
¢ is given by

2(6 n \/62——1)exp( - 2(5 - \/ﬁ)x>
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binding to actin produce any bending torque of the Tm chain. For an infi-
nitely long Tm chain, the boundary conditions in infinity are

¢(x) =0, ¢'(x)—0,

whenx — ® orx — —o.

The explicit solutions of Eq. A2 for an infinitely long chain with arbi-
trary positions and angles of one, two, three, and four pin points were
obtained using a computer program. The total chain energy was then
calculated using Eq. Al. For a single pin point, ¢(0) = 1, at x = 0 the
solution for x > 0 (for negative x, p(—x) = @(x), i.e., ¢(x) is an even func-
tion) is given by

2(5— 62—1)exp(— 2(5+ 52—1)x)

p(x) =

et (3070 + 0+ B0 ) Jav. (A

The equilibrium configuration of the chain between the pins provides the
minimum for the energy functional (Eq. A1) and is given by

9" (x) — 489" (x) +4o(x) = 0. (A2)
Its general solution is
¢(x) = Acosh 2(6+\/52 1>
+ Bsinh 2<5+\/52—1)
(A3)
+ Ccosh 2<5—\/52—1>
+ Dsinh 2(5—\/52—1)

where A, B, C and D are constants. If the chain is pinned in several points,
the following boundary conditions should be satisfied in each of these
points, x;, where the pin angle is ¢;:

e(x —0) = o(x; +0) = ¢,
@' (x;—0) = ¢'(x; 4 0),

¢"(x; —0) = ¢"(x; +0).

These conditions mean that the chain angular displacement and its first and
second derivatives are continuous functions of the axial coordinate, x. The
second of these two conditions means that neither troponin nor myosin

\/2(64— e -1)

. (Ad)

o~

Plots of the equilibrium shape of the chain pinned in a single point for
different values of § are shown in Fig. S1. The higher the §-value, the wider
the segment affected by the pinning. As a result, the pinning of the helical
chain affects significantly more actin sites than one would expect from the
theory of a straight elastic Tm chain (8 = 0) with the same persistence
length.

Similarly, E, and E; for two and three pins, respectively, were precalcu-
lated for all possible pin types (troponin or myosin head) and possible dis-
tances between them on a 1001-nm-long actin filament and then used for
Monte Carlo simulations.

SUPPORTING MATERIAL

Six figures, one table, and supporting sections are available at http://www.
biophysj.org/biophysj/supplemental/S0006-3495(13)00783-2.

This work was supported by a RFBR grant to A.K.T. (No. 11-04-00908).
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Supporting materials

Shape of the Tm chain pinned in a single point

General solution of Eq. A2 is given in Eq. A3 for an infinitely long chain pinned in one site
to ¢ = 1 is given in Appendix (Eq. A4). Plots of this solution for different values of g >0

are shown in Fig. S1.

~N/ ] T

-15 -10 -5 5 10 X 15
0.1 -

Fig. S1. Configurations of infinitely long Tm chain pinned atx=0to ¢=1
for different g values (shown next to the plot for lines of different colors).

Two- and three-pin approximations

The two- and three-pin problems were also solved using general solution (Eq. A3) with the
following boundary conditions in each of the pin points, xo, where the pin angle is ¢,:

P(xg —0) = p(xo +0) = ., 9'(xg — 0) = @'(xxg + 0), ¢"(x9 — 0) = ¢"(xo + 0). The
boundary conditions in infinity are: ¢(x) — 0,¢'(x) - 0, when x - o or x » —. The
problems were reduced to a system of four linear equations with four unknowns in the
case of two-pin chain and to a system of twelve equations with twelve unknowns in the
case of three pin points. These problems were solved by a computer for every possible
combination of pin elements: troponins and myosins and all possible distances between

them. Calculated energies were then used during Monte-Carlo simulations.

We used three-point approximation instead of two-point approximation because in
some cases the difference between them was significant and three pin point
approximation was more accurate and precise (Fig. S2). Two-pin approximation was

obtained assuming that Tm chain configuration between every two neighbor pin points is



the same as for an infinitely long chain pinned in these two points only (refs. 7-10). For
three-point approximation we calculated changes in configuration and energy of a Tm
chain pinned in two points (nearest neighbors) upon pinning in an intermediate point. The
difference between these two approaches is illustrated by Fig. S2.
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Fig. S2. An example showing the difference between the two- and three-point
approximations. Actin monomers are shown schematically by green circles,
purple empty circles correspond to actin sites covered by Tn, Tnl bound to
actin are shown as solid purple circles, actin site occupied by bound myosin
heads are red. An infinitely long chain pinned by a myosin head and a Tnl
molecule is shown in blue. Green and red lines show the Tm configuration
obtained for two- and three-point approximations, respectively, when the chain
additionally pinned at x = 0. The difference in dimensionless energies upon Tnl
pinning at origin for two-pin approximation is AE,. The same value obtained for
three-pin approximation is AE;. The difference between them is as high as
1.02.

We also tested how the addition of an extra pin point outside close neighborhood
affects energy changes upon Tm pinning to actin (Fig. S3). For this we used four-point
approximation and checked whether the three-point approximation is good enough. The
difference between the three- and four point approximations was in most cases small and
could be neglected. For example the addition of a Tnl or myosin pin outside the nearest
neighborhood caused a difference in calculated energy changes of <0.08 only (Fig. S3).
These examples show that our three-pin approximation is good enough for effective
estimation of changes in energy of Tm chain caused by binding or unbinding of Tnl or

myosin to actin.
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Fig. S3. An example showing the difference between the three- and four-point
approximations. Actin monomers are shown schematically by green circles,
purple empty circles correspond to actin sites covered by Tn. Tnl bound to
actin are shown as solid purple circles, actin site occupied by bound myosin
heads are red. Blue and red lines show Tm chain configuration before its
pinning at x = 0 (red arrow) and after it, respectively. In B and C additional
myosin or Tnl pin point was added on the right.

Effect of parameter ¢on Ca-activation

In the calculation presented in Figs. 4-7 we set parameter ¢ to zero. This means that
the mobile segment cannot bind hydrophobic pocket of TnC unless TnC binds Ca?*. The
effect of parameter &£ on Ca-curves for normalized concentration of the Tnl-actin and

CaTnC complexes in our model is shown in Fig. 4S.
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Fig. S4. The calculated model Ca curves in the absence of myosin heads for
different values of &(shown in the plot). The average calculated fractions of
actin-unbound Tnl are shown by dashed lines and the occupancies of TnC sites
by Ca’* ions are shown by continuous lines.



As one would expect calculations show that an increase in ¢ leads to an
increase in the fraction of Tnl which are not bound to actin even in the absence of
calcium so that the dynamic range of Ca regulation of the thin filaments
decreases. Besides, an increase in ¢ causes a decrease in the cooperativity of the
Ca curves.

Effect of parameter yon Ca-activation
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Fig. S5. The calculated model Ca curves in the absence of myosin heads for
different values of y (shown in the plot). The average calculated fractions of
actin-unbound Tnl are shown by dashed lines and the occupancies of TnC sites
by Ca*" ions are shown by continuous lines.

Effect of 14.5 nm axial repeat of myosin heads on actin on Ca-activation
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Fig. 6S. The calculated model Ca curves at a constant availability of myosin heads
(p = 0.2, black) and in the case of its 14.5 nm axial modulation (red). The availability was a
sum of 50 Gaussian distributions with their peaks separated by 14.5 nm. The average
availability was also 0.2, the full range was 0.08-0.33. The average calculated fractions of
actin-unbound Tnl are shown by dashed lines and the occupancies of TnC sites by Ca**
ions are shown by continuous lines.
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Table S1. Meanings and values of the model parameters.

Parameter Description Values
a Radius at which Tm chain sits on F-actin 4 nm
7 Helical twist of unpinned Tm chain (2rt/72 | 0.0873 nm-!
nm)
K’ Bending stiffness of the tropomyosin chain | ~ 3600 pN xnm?
a Strength of the chain confining potential ~1.5pN
& Persistent lengths of Tm-Tn confined chain | 19.25 nm (16-24
nm)
Yii Dimensionless helicity parameter 0,2.7-4.2
X The ratio of myosin and Tnl pinning angles | 0.4 (=10°/25°)
Er The total energy of a Tm chain pinned by a
Tnl molecule
kB, T The Boltzmann constant, absolute kgT~ 4 pNxnm
temperature
y Dimensionless energy parameter (=E7/ksT) | 4 (3.5-4.5)
c Axial repeat of Tn complexes 38.5 nm
A Dimensionless energy parameter, A =c/¢& 1.6,2,2.4
Kca Equilibrium constant for Ca2+* binding to
TnC.
Ki Equilibrium constant for Tnl binding to 1000
TnC
Ka Equilibrium constant for Tnl binding to 200
actin
C C = Kca[Ca2*] - dimentionless Ca%* [10-6;10]
concentration
£ Constant 0 (up to 0.03)
ye) Effective affinity of myosin heads for actin | 0-0.2
ke, k- Forwards and backward rate constants for
myosin binding to actin
Ktni + Kni - Forward and backward rate constants for

Tnl binding to actin

* Bending stiffness value K for the Tm chain sliding on the actin surface was estimated to be twice
higher that that obtained from MD simulation in solution due to reduced degree of freedom.
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