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1 Analytical Solution by the Replica Approach

Here we employ the replica approach [S1, S2] and a method from polymer physics [S3] to
solve the system of interacting polymers, which resembles the interaction of communica-
tion paths on a sparse graph. Although the derivation is rather involved, we are able to
simplify the final equations and obtain a simple recursive equation resembling the sparse
graph cavity equation in disordered systems [S1, S2]. We suggest readers who are only in-
terested in the final solution to jump directly to Sections S1.3.6 and S1.4 where we provide
a short summary for the finite temperature and zero-temperature (optimized) solutions,
respectively. For readers who would like to follow the whole derivation, a glance at these
final results may clarify the main objectives of the calculation. In Section S1.3.6 we also
discuss the possible application of the cavity approach, which is easier to be converted to
an algorithm, and its limitations.

1.1 The partition function

We first write down the partition function Z of a system of M polymers interacting on a
network of N nodes, subject to the Hamiltonian H = M

∑
i φ(Ii/M) with Ii the number

of polymers/routes passing through i. We will make use a method developed in polymer
science, termed the 0-vector model [S3], commonly employed to analyze self-avoiding walk

[S4, S5]. Denote
∫
¯ d~S as the angular integration over an n-component vector ~S of length

|~S| =
√

n and the normalization factor Cn =
∫
¯ d~S, it was shown in [S3] that all positive

moments of any component Sa vanishes in the limit n → 0 except for the term 1
Cn

∫
¯ d~SS2

a =

1 for each component a in ~S. It then implies when n → 0 all the terms which contribute
in

N∏
i=1

(
1

Cn

∫

¯
d~Si

)
Sx,aSy,a

∏

(kl)

(
1 + Akl

~Sk · ~Sl

)
, (S1)

where parenthesis (k, l) represent ordered variables, such that k < l. The only surviv-
ing terms are of the form Axk1Ak1k2 · · ·AklyS

2
x,aS

2
k1,aS

2
k2,a · · ·S2

kl,a
S2

y,a, that represent a self-
avoiding path (x, k1, k2, . . . , kl, y) joining nodes x and y [S3]. Each surviving path con-
tributes exactly 1 so that Eq. (S1) counts the number of heterogeneous route between x
and y. We make use of this method to write the partition function of our polymer model
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as

Z =
N∏

i=1

[∫
dλidλ̂i

2π
eiMλiλ̂i−βMφ(λi)

]∏
iν

[
1

Cn

∫

¯
d~Sν

i

]

×
M∏

ν=1


∏

(ij)

(
e−

iλ̂i+iλ̂j
2 Sν

i,aS
ν
j,a

)Λν
(ij)∏

(kl)

(
1 + Akle

− iλ̂k+iλ̂l
2 ~Sν

k · ~Sν
l

)
 (S2)

where each factor in the product over ν is identical to Eq. (S1) except the additional factors

e−
iλ̂i+iλ̂j

2 and e−
iλ̂k+iλ̂l

2 (note that the superindex ν in Sν
i,a is the polymer/communication

index and not a power). It implies for each polymer/route ν the path choice (i, k1, . . . , kl, j)

contributes a factor e−iλ̂i−iλ̂k1
−···−iλ̂kl

−iλ̂j , and the product over ν leads to the term e−i
PN

i=0 Iiλ̂i

where Ii is the number of polymers/routes passing through i. Finally, the integration over
λ̂i corresponds to a delta function which replaces λi in φ(λi) by Ii/M , giving rise to the
correct Boltzmann factor e−βM

P
i φ(Ii/M). We choose to write Z in a relatively complicated

way as it allows for a generic cost function φ throughout the calculation.

1.2 Replica calculation and the saddle point equations

Here we employ the replica approach, which makes use of the trick logZ = limm→0
Zm−1

m

to compute the average of logZ by evaluating Zm averaged over the quenched disorders
Aij and Λν

(ij) and finally take the limit of m → 0. Here · · · corresponds to the average over
the quenched disorder.

We first write Zm

Zm =
∏
iα

[∫
dλα

i dλ̂α
i

2π
eiMλα

i λ̂α
i −βMφ(λα

i )

]∏
iνa

[
1

Cn

∫

¯
d~Sα

iν

]

×
∏
να


∏

(ij)

(
e−

iλ̂α
i +iλ̂α

j
2 Sα

iν,aS
α
jν,a

)Λν
(ij) ∏

(kl)

(
1 + Akle

− iλ̂α
k +iλ̂α

l
2 ~Sα

kν · ~Sα
lν

)
 (S3)

where α is the replica index, and subscript ν of S the communication/polymer index. Since
we aim to analyze the ground state behavior of the system on a sparse graph with arbi-
trary degree distribution ρ(k), we will mainly follow [S6] in the first half of the derivation
to decouple the interaction of nodes on sparse graphs. The distribution of the disorder
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variables Aij and Λν
(ij) are given by

p
({Λν

(ij)}
)

=
∏
ν


 2

N(N − 1)

∑

(ij)

δΛν
(ij)

,1

∏

(kl) 6=(ij)

δΛν
(kl)

,0


 (S4)

p ({Aij}) =
1

DA

∏

(ij)

[(
1− 〈k〉

N

)
δAij ,0 +

〈k〉
N

δAij ,1

]∏
i

[
δ

(∑
j

Aij − ki

)]

=
1

DA

∏

(ij)

[(
1− 〈k〉

N

)
δAij ,0 +

〈k〉
N

δAij ,1

]∏
i

[∮
dZi

2πi
Z
−(ki+1)
i

]∏

(ij)

(ZiZj)
Aij

(S5)

where 〈k〉 =
∑∞

k=1 kρ(k) is the average node degree and the integration over Zi is an

integral representation of the delta function δ
(∑

j A(ij) − ki

)
. The average over the degree

distribution ρ(k) will be introduced later. The resulting representation of p ({Aij}) with
the denominator DA

DA =
∏

(ij)

∑
Aij=0,1

[(
1− 〈k〉

N

)
δAij ,0 +

〈k〉
N

δAij ,1

]∏
i

[∮
dZi

2πi
Z
−(ki+1)
i

]∏

(ij)

(ZiZj)
Aij (S6)

gives rise to the correct degree probability distribution
∏

i
〈k〉ki

ki!
e−〈k〉, which follows the

Poisson distribution of mean 〈k〉. We then average Zm over the above distributions to
obtain

Zm ∝
∏

iα

[∫
dλα

i dλ̂α
i

2π
eiMλα

i λ̂α
i −βMφ(λα

i )
]∏

iνα

[∫

¯
d~Sα

iν

]∏

i

[∮
dZi

2πi
Z
−(ki+1)
i

]

×
∏
ν






∑

(ij)

∏
α

(
e−

iλ̂α
i +iλ̂α

j
2 Sα

iν,aS
α
jν,a

)
∏

(kl)

[
1− 〈k〉

N
+
〈k〉
N

ZkZl

∏
να

(
1 + e−

iλ̂α
k +iλ̂α

l
2 ~Sα

kν · ~Sα
lν

)]


(S7)
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To define macroscopic order parameters we then introduce delta functions as follows:

Zm ∝ 1
DA

∏

iα

[∫
dλα

i dλ̂α
i

2π
eiMλα

i λ̂α
i −βMφ(λα

i )
]∏

iνa

[∫

¯
d~Sα

iν

]∏

i

[∮
dZi

2πi
Z
−(ki+1)
i

]

×
∏
ν




∑

(ij)

∏
α

[∫

¯
d~Sα

ν

∫

¯
d~S

′α
ν

∫
dλ̂α

∫
dλ̂

′
α

δ(Sα
ν,a − Sα

iν,a)δ(S
′α
ν,a − Sα

jν,a)δ(λ̂α − λ̂α
i )δ(λ̂

′
α − λ̂α

j )

(
e−

iλ̂α+iλ̂
′
α

2 Sα
ν,aS

′α
ν,a

)]}

× exp




〈k〉
2N

∑

k,l

ZkZl

∏
να

[∫

¯
d~Sα

ν

∫

¯
d~S

′α
ν

]∏
α

[∫
dλ̂α

∫
dλ̂

′
α

]

∏
να

[δ(~Sα
ν − ~Sα

kν)δ(~S
′α
ν − ~Sα

lν)]
∏
α

[δ(λ̂α − λ̂α
k )δ(λ̂

′
α − λ̂α

l )]
∏
να

(
1 + e−

iλ̂α+iλ̂
′
α

2 ~Sα
ν · ~S

′α
ν

)}

(S8)

where we arrive at the last exponential factor by (i) assuming 〈k〉/N is small, which is
justified in sparse graph and (ii) neglecting a term k = l which is order N , compared
to the summation over k and l which is of order N2. We then introduce the so-called
functional order parameters [S6] given by

P (S, λ̂) =
1

N

∑
i

Zi

∏
να

[δ(~Sα
ν − ~Sα

iν)]
∏
α

[δ(λ̂α − λ̂α
i )] (S9)

Q(Sν,a, λ̂) =
1

N

∑
i

∏
α

[δ(Sα
ν,a − Sα

iν,a)δ(λ̂α − λ̂α
i )], (S10)

where S corresponds to a vector of the variables ~Sα
ν over the labels ν and α, λ̂ and Sν,a

correspond to the vectors of λ̂α and Sα
ν,a over the label α. One then arrives at the following
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expression

Zm ∝ 1
DA

∫ ∏

{S,λ̂}
dP (S, λ̂)dP̂ (S, λ̂)

∏

{Sν,a,λ̂}
dQ(Sν,a, λ̂)dQ̂(Sν,a, λ̂)

×
∏

iα

[∫
dλα

i dλ̂α
i

2π
eiMλα

i λ̂α
i −βMφ(λα

i )
]∏

iνa

[∫

¯
d~Sα

iν

]∏

i

[∮
dZi

2πi
Z
−(ki+1)
i

]

×
∏
ν

exp

{∏
α

[∫

¯
d~Sα

ν

∫
dλ̂α

]
Q(Sν,a, λ̂)Q̂(Sν,a, λ̂)

− 1
N

∏
α

[∫

¯
d~Sα

ν

∫
dλ̂α

]∑

i

∏
α

[δ(Sα
ν,a − Sα

iν,a)δ(λ̂α − λ̂α
i )]Q̂(Sν,a, λ̂)

}

× exp

{∏
να

[∫

¯
d~Sα

ν

]∏
α

[∫
dλ̂α

]
P (S, λ̂)P̂ (S, λ̂)

− 1
N

∏
να

[∫

¯
d~Sα

ν

]∏
α

[∫
dλ̂α

]∑

i

Zi

∏
να

[δ(~Sα
ν − ~Sα

iν)]
∏
α

[δ(λ̂α − λ̂α
i )]P̂ (S, λ̂)

}

×
∏
ν

{
N2

2

∏
α

[∫

¯
d~Sα

ν

∫

¯
d~S

′α
ν

∫
dλ̂αdλ̂

′
α

]
Q(Sν,a, λ̂)Q(~S′ν,a, λ̂

′)
∏
α

(
e−

iλ̂α+iλ̂
′
α

2 Sα
ν,aS

′α
ν,a

)}

× exp

{
N〈k〉

2

∏
να

[∫

¯
d~Sα

ν

∫

¯
d~S

′α
ν

]∏
α

[∫
dλ̂αdλ̂

′
α

]

P (~S, λ̂)P (S′, λ̂′)
∏
να

(
1 + e−

iλ̂α+iλ̂
′
α

2 ~Sα
ν · ~S

′α
ν

)}
(S11)

Although Eq. (S11) looks complicated, one can easily integrate the delta functions on the
4th, and the 6th lines. After making the changes of variables

P̂ (S, λ̂) → −NP̂ (S, λ̂) (S12)

Q̂(~Sν , λ̂) → −NQ̂(~Sν , λ̂), (S13)

6



we arrive at

Zm ∝
∫ ∏

{S,λ̂}
dP (S, λ̂)dP̂ (S, λ̂)

∏

{Sν,a,λ̂}
dQ(Sν,a, λ̂)dQ̂(Sν,a, λ̂)

× exp

{
−N

∑
ν

∏
α

[∫

¯
d~Sα

ν

∫
dλ̂α

]
Q(Sν,a, λ̂)Q̂(Sν,a, λ̂)

−N
∏
να

[∫

¯
d~Sα

ν

]∏
α

[∫
dλ̂α

]
P (S, λ̂)P̂ (S, λ̂)

}

× 1

DA

{∏
iα

[∫
dλα

i dλ̂α
i

2π
eiMλα

i λ̂α
i −βMφ(λα

i )

]∏
iνa

[∫

¯
d~Sα

iν

]∏
i

[∮
dZi

2πi
Z
−(ki+1)
i

]

×
∏

i

eZiP̂ (~Si,λ̂i)+
P

ν Q̂ν(~Sν
i ,λ̂i)

}

× exp

{
N

1

N

∑
ν

log

{
N2

2

∏
α

[∫

¯
d~Sα

ν

∫

¯
d~S

′α
ν

∫
dλ̂α

∫
dλ̂

′
α

]

×Q(Sν,a, λ̂)Q(~S ′ν,a, λ̂
′)
∏
α

(
e−

iλ̂α+iλ̂
′
α

2 Sα
ν,aS

′α
ν,a

)}}

× exp

{
N〈k〉

2

∏
να

[∫

¯
d~Sα

ν

∫

¯
d~S

′α
ν

]∏
α

[∫
dλ̂αdλ̂

′
α

]

×P (~S, λ̂)P (S′, λ̂′)
∏
να

(
1 + e−

iλ̂α+iλ̂
′
α

2 ~Sα
ν · ~S

′α
ν

)}
. (S14)

One can now integrate the variable Zi which involves only the 4th and the 5th line. With

the normalization factor DA =
∏

i
〈k〉ki

ki!
e−〈k〉 given by Eq. (S6), the 4th and the 5th line

become

∏
i




∏
α

[∫
dλα

i dλ̂α
i

2π
eiMλα

i λ̂α
i −βMφ(λα

i )

]∏
νa

[∫

¯
d~Sα

iν

] [P̂ (~Si, λ̂i)
]ki

〈k〉ki
e
P

ν Q̂ν(~Sν
i ,λ̂i)





. (S15)

One can see that except for the first line in Eq. (S14), all the terms in Eq. (S14) are either
exponential in N or factorized in node index i, such that

Zm ∝
∫ ∏

{S,λ̂}
dP (S, λ̂)dP̂ (S, λ̂)

∏

{Sν,a,λ̂}
dQ(Sν,a, λ̂)dQ̂(Sν,a, λ̂)eNΨ (S16)
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with

Ψ = −
∑

ν

∏
α

[∫

¯
d~Sα

ν

∫
dλ̂α

]
Q(Sν,a, λ̂)Q̂(Sν,a, λ̂)

−
∏
να

[∫

¯
d~Sα

ν

]∏
α

[∫
dλ̂α

]
P (S, λ̂)P̂ (S, λ̂)

+ log




∏
α

[∫
dλαdλ̂α

2π
eiMλαλ̂α−βMφ(λα)

]∏
νa

[∫

¯
d~Sα

ν

] [P̂ (S, λ̂)
]k

〈k〉k e
P

ν Q̂ν(Sν ,λ̂)





+
1

N

∑
ν

log

{
N2

2

∏
α

[∫

¯
d~Sα

ν

∫

¯
d~S

′α
ν

∫
dλ̂α

∫
dλ̂

′
α

]

Q(Sν,a, λ̂)Q(~S ′ν,a, λ̂
′)
∏
α

(
e−

iλ̂α+iλ̂
′
α

2 Sα
ν,aS

′α
ν,a

)}

+
〈k〉
2

∏
να

[∫

¯
d~Sα

ν

∫

¯
d~S

′α
ν

]∏
α

[∫
dλ̂αdλ̂

′
α

]
P (~S, λ̂)P (S′, λ̂′)

∏
να

(
1+e−

iλ̂α+iλ̂
′
α

2 ~Sα
ν · ~S

′α
ν

)
.

(S17)

The free energy F of the system is given by F = limm→0
1

βmN
logZm ≈ limm→0

1
m

Ψ∗

where Ψ∗ is the extremization of the exponent Ψ with the saddle point of P (S, λ̂), P̂ (S, λ̂),
Q(Sν,a, λ̂) and Q̂(Sν,a, λ̂). We can now average F with respect to the degree distribution
ρ(k) such that

∑∞
k=1 ρ(k)F ∝ ∑∞

k=1 ρ(k)Ψ∗, where Ψ is the same as in Eq. (S17) except
for the term in the 3rd line that becomes

∞∑

k=1

ρ(k) log




∏
α

[∫
dλαdλ̂α

2π
eiMλαλ̂α−βMφ(λα)

]∏
νa

[∫

¯
d~Sα

ν

] [P̂ (S, λ̂)
]k

〈k〉k e
P

ν Q̂ν(Sν ,λ̂)




(S18)
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The saddle point of P , P̂ , Q and Q̂ are given by the solution of

P (S, λ̂) =
∑

k

ρ(k)

∏
α

[∫
dλα

2π
eiMλαλ̂α−βMφ(λα)

]
k[P̂ (S, λ̂)]k−1e

P
ν Q̂(Sν,a,λ̂)

∏
α

[∫
dλαdλ̂α

2π
eiMλαλ̂α−βMφ(λα)

]∏
να

[∫
¯ d~Sα

ν

]
[P̂ (S, λ̂)]ke

P
ν Q̂(Sν,a,λ̂)

(S19)

P̂ (S, λ̂) = 〈k〉
∏
να

[∫

¯
d~S

′α
ν

]∏
α

[∫
dλ̂

′
α

]
P (S′, λ̂′)

∏
να

(
1 + e−

iλ̂α+iλ̂
′
α

2 ~Sα
ν · ~S

′α
ν

)
(S20)

Q(Sν,a, λ̂) =
∑

k

ρ(k)

∏
α

[∫
dλα

2π
eiMλαλ̂α−βMφ(λα)

]∏
α,µ 6=ν

[∫
¯ d~Sα

µ

]
[P̂ (S, λ̂)]ke

P
µ Q̂µ(~Sµ,a,λ̂)

∏
α

[∫
dλαdλ̂α

2π
eiMλαλ̂α−βMφ(λα)

]∏
µα

[∫
¯ d~Sα

µ

]
[P̂ (S, λ̂)]ke

P
µ Q̂µ(~Sµ,a,λ̂)

(S21)

Q̂(Sν,a, λ̂) =
2

NNQ

∏
α

[∫

¯
d~Sα

ν

∫
dλ̂

′
α

]
Q(~S ′ν,a, λ̂

′)
∏
α

(
e−

iλ̂α+iλ̂
′
α

2 Sα
ν,aS

′α
ν,a

)
(S22)

with the normalization factor

NQ =
∏
α

[∫

¯
d~S

′α
ν

∫

¯
d~S

′′α
ν

∫
dλ̂

′
α

∫
dλ̂

′′
α

]
Q(~S ′ν,a, λ̂

′)Qν(~S
′′
ν,a, λ̂

′′)
∏
α

(
e−

iλ̂
′
α+iλ̂

′′
α

2 S
′α
ν,aS

′′α
ν,a

)

One can see that the substitution of P̂ and Q̂ (Eqs. (S20) and (S22)) into P and Q
(Eqs. (S19) and (S21)) leads to a pair of coupled recursive equations in terms of P and
Q only. To solve these equations, one needs to find a self-consistent closed form for the
equations of P and Q. We will thus apply a symmetry ansatz for P and Q and show that
they satisfy Eqs. (S19) and (S21) self-consistently.

Before introducing the specific ansatz chosen, let us summarize the physical interpreta-
tion of the existing calculation and provide a sketch of the subsequent procedure following
the choice of symmetry ansatz. Equation (S16) and the corresponding set of saddle point
order parameters P , P̂ , Q and Q̂ decouple the interaction between nodes on a sparse
graph to provide mean field macroscopic distributions. We will proceed to decouple the
communications, which are fully connected in their own space (since each communication
interacts with all other communications on each node). We will see that the variable λ̂α,
defined as the conjugate of the normalized traffic λα = Iα/M on a node, plays a cru-
cial role in decoupling the communications in the limit M → ∞, resembling the role of
the magnetization mα in the conventional fully connected spin glass replica calculation as
N →∞ [S1, S2, S7]. Since we are also interested in the regime of finite M , we will obtain
approximate equations that are applicable for any value of M . In summary, to solve the
system of equations, we apply the first set of order parameter to decouple the sparsely
connected nodes, and then a second set of (order parameter-like) variables to decouple the
fully connected communications.
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(a)

j

i
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(b)
i

j

Fig. S1: Communication routes are indicated by thick red lines. (a) Communication passes
through node j and its ancestor i, and (b) communication route passes node j but not its
ancestor i.

1.3 The functional order parameter ansatze at finite temperature

1.3.1 The expression for P̂ (S, λ̂)

We apply the following ansatz for P̂ (S, λ̂)

P (S, λ̂) =
∏
α

[∫
dλα

2π
eiMλαλ̂α−βMφ(λα)

] ∫
d~h w(~h)

∏
να

[
hν

0 + hν
1e
− iλ̂α

2 Sα
ν,a + hν

2e
−iλ̂α(Sα

ν,a)
2
]
,

(S23)

which is a power series of Sα
ν,a up to the second order, since all higher order moments

vanish due to the 0-vector method of polymer science [S3]. For readers familiar to the
techniques of disordered system, the above ansatz relates to the cavity approach [S1, S2],
where hν

0, h
ν
1, h

ν
2 resemble the cavity fields where communication ν does not pass through

the node (hν
0), passes through the node via the cavity to an ancestor as in Fig. S1(a) (hν

1) or
passes the node without going through the cavity as in Fig. S1(b) (hν

2), respectively. Due
to this connection with the cavity approach, this ansatz can be converted into a successful
algorithm for optimizing real instances.

Inserting ansatz (S23) into Eq. (S20) gives P̂ (S, λ̂) by keeping only terms in the order

10



(S
′α
ν,a)

0 or (S
′α
ν,a)

2, due to the angular integration
∫
¯ d~S

′α
ν of the 0-vector method, yielding

P̂ (S, λ̂) = 〈k〉
∫

d~h w(~h)
∏
να

[∫

¯
d~S

′α
ν

]∏
α

[∫
dλ

′
αdλ̂

′
α

2π
e

iMλ
′
αλ̂
′
α−βMφ

�
λ
′
α

�]

×
∏
να

[
hν

0 + hν
2e
−iλ̂

′
α(S

′α
ν,a)

2 + hν
1e
− iλ̂α

2
−iλ̂

′
αSα

ν,a(S
′α
ν,a)

2
]

= 〈k〉(Cn)mM

∫
d~h w(~h)

∏
α

[∫
dλ

′
αdλ̂

′
α

2π
e

iMλ
′
αλ̂
′
α−βMφ

�
λ
′
α

�]

×
∏
να

[
hν

0 + hν
2e
−iλ̂

′
α + hν

1e
− iλ̂α

2
−iλ̂

′
αSα

ν,a

]
∵
∫
¯ d~S

′α
ν (S

′α
ν,a)

2 =
∫
¯ d~S

′α
ν = Cn

= 〈k〉
∫

d~h w(~h)
∏
α

[∫
dλ

′
αdλ̂

′
α

2π
e

iMλ
′
αλ̂
′
α−βMφ

�
λ
′
α

�]

×
∏
να

[
hν

0 + hν
2e
−iλ̂

′
α + hν

1e
− iλ̂α

2
−iλ̂

′
αSα

ν,a

]
∵ replica m → 0 (S24)

where the integration on λ
′
α and λ̂

′
α can be computed by the saddle point method in the

limit M → ∞. In other words, we compute the saddle point with respect to λ
′∗
α and λ̂

′∗
α

(related by iλ̂
′∗
α = βφ′(λ

′∗
α ) as explained by Section S1.3.5) and use them to evaluate the

integral over λ
′
α and λ̂

′
α. For finite values of M , we found in Section S1.3.5 that if we

estimate λ
′∗
α individually per communication, i.e. obtain an estimated solution for λ

′∗
να,

then the analytic solution obtained for Eq. (S24) provides physically meaningful results in
a broad range of M values. In the subsequent derivation, we will denote the saddle point
value of λ

′∗
να by a function Fν(~h,S, λ̂) to emphasize its dependence on the variables ~h,S

and λ̂. The explicit form of Fν(~h,S, λ̂) is derived in Section S1.3.5.
By using the saddle point value of λ

′∗
να in Eq. (S24), and assuming replica symmetry

(RS) such that λ
′∗
να = λ

′∗
ν for all α, we obtain

P̂ (S, λ̂) =〈k〉
∫

d~h w(~h)
∏
ν

[∫
dλ

′∗
ν δ[λ

′∗
ν − Fν(~h,S, λ̂)]

]
e

β
P

ν

h
λ
′∗
ν φ′(λ

′∗
ν )−φ(λ

′∗
ν )
i

2π




m

×
∏
να

[
hν

0 + hν
2e
−βφ′(λ

′∗
ν ) + hν

1e
− iλ̂α

2
−βφ′(λ

′∗
ν )Sα

ν,a

]

=〈k〉
∫

d~h w(~h)
∏
ν

[∫
dλ

′∗
ν δ[λ

′∗
ν − Fν(~h,S, λ̂)]

]

×
∏
να

[
hν

0 + hν
2e
−βφ′(λ

′∗
ν ) + hν

1e
− iλ̂α

2
−βφ′(λ

′∗
ν )Sα

ν,a

]
∵ replica m → 0

(S25)

Having the expression for P̂ (S, λ̂), the product [P̂ (Z, ~S, λ̂)]k−1 in the numerator of
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Eq. (S19) (and hence similarly for [P̂ (Z, ~S, λ̂)]k in the denominator) can be expressed as

[P̂ (S, λ̂)]k−1 =
k−1∏

l=1

P̂l(~S, λ̂)

= 〈k〉k−1
k−1∏

l=1

[∫
d~hl w(~hl)

∏
ν

∫
dλ∗νlδ[λ

∗
νl − Fν(~hl,S, λ̂)]

]

×
∏
να

k∏

l=1

[
hνl

0 + hνl
2 e−βφ′(λ∗νl) + hνl

1 e−
iλ̂α
2
−βφ′(λ∗νl)Sα

ν,a

]
. (S26)

We then expand the final product up to the second order (Sα
ν,a)

2 as the integration of all
higher order of Sα

ν,a vanishes when we later complete the integration over Sα
ν,a. This leads

to

[P̂ (S, λ̂)]k−1 =〈k〉k−1
k−1∏

l=1

[∫
d~hl w(~hl)

∏
ν

∫
dλ∗νlδ[λ

∗
νl−Fν(~hl,S, λ̂)]

]∏
να

[(
q∏

l=1

(hνl
0 +hνl

2 e−βφ′(λ∗νl))

)

+




q∑

l=1

hνl
1 e−βφ′(λ∗νl)

∏

j 6=l

(hνj
0 + hνj

2 e−βφ′(λ∗νj))


 e−

iλ̂α
2 Sα

ν,a

+


∑

(lr)

hνl
1 hνr

1 e−βφ′(λ∗νl)−βφ′(λ∗νr)
∏

j 6=l,w

(hνj
0 + hνj

2 e−βφ′(λ∗νj))


 e−iλ̂α(Sα

ν,a)
2




=〈k〉k−1
k−1∏

l=1

[∫
d~hl w(~hl)

]∏
να

[
gν
0,k−1 + gν

1,k−1e
− iλ̂α

2 Sα
ν,a + gν

2,k−1e
−iλ̂α(Sα

ν,a)
2

]
(S27)

such that

gν
0,k−1 =

k−1∏

l=1

[
hνl

0 + hνl
2 e−βφ′(λ∗νl)

]
(S28)

gν
1,k−1 =

k−1∑

l=1

hνl
1 e−βφ′(λ∗νl)

∏

j 6=l

[
hνj

0 + hνj
2 e−βφ′(λ∗νj)

]
(S29)

gν
2,k−1 =

∑

(lr)

hνl
1 hνr

1 e−βφ′(λ∗νl)−βφ′(λ∗νr)
∏

j 6=l,r

[
hνj

0 + hνj
2 e−βφ′(λ∗νj))

]
(S30)

Expression (S27) already shares a similar form with the ansatz (S23). Next we will show

that after applying a similar ansatz to Q̂(~S, λ̂), we will get a self consistent equation in

terms of w(~hl) and the fields hν
0, hν

1 and hν
2 only.
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1.3.2 The expression forP̂ (S, λ̂)

The ansatz for Q(~S, λ̂) takes a similar form to (S23)

Q(Sν,a, λ̂) =
∏
α

[∫
dλα

2π
eiMλαλ̂α−βMφ(λα)

] ∏

α,µ6=ν

[
hµ

0 + hµ
2e
−iλ̂α

]

×
∫

d~h w(~h)
∏
α

[
hν

0 + hν
1e
− iλ̂α

2 Sα
ν,a + hν

2e
−iλ̂α(Sα

ν,a)
2
]

(S31)

except that it is applied individually for each communication ν and the dependence on Sα
ν,a

is accordingly. The above ansatz is plugged into Eq. (S21) to give Q̂(Sν,a, λ̂) as

Q̂(Sν,a, λ̂) =
2

NDQ̂

∏
α

[∫
dλ

′
αdλ̂

′
α

2π
e

iMλ
′
αλ̂
′
α−βMφ

�
λ
′
α

�] ∏
α,µ6=ν

[
hµ

0 + hµ
2e
−iλ̂α

]

×
∫

d~h w(~h)
∏
α

[
hν

1e
− iλ̂α

2
−iλ̂

′
αSα

ν,a

]
(S32)

where DQ̂ is a normalization constant. As in the case for P̂ , we evaluate the integration of

λ
′
α and λ̂

′
α by finding saddle points when M →∞

Q̂(Sν,a, λ̂) =
2

NDQ̂

∫
d~h w(~h)

∏
α

[∫
dλ

′
αdλ̂

′
α

2π

]∏
α

[
hν

1e
− iλ̂α

2 Sα
ν,a

]
eMΩν(λ̂) (S33)

with

Ων(λ̂) = −iλ̂
′
α

M
+
∑

α

iλ
′
αλ̂

′
α −

∑
α

βφ
(
λ
′
α

)
+

1

M

[∑
α

∑

µ 6=ν

log
(
hµ

0 + hµ
2e
−iλ̂

′
α

)]
. (S34)

This allows one to obtain the saddle point of λ
′
α and λ̂

′
α by ∂Ξ/∂λ

′
α = 0 and ∂Ξ/∂λ̂

′
α = 0

which give

iλ̂
′
α = βφ′

(
λ
′
α

)
(S35)

iλ
′
α =

i

M

[
1 +

∑

µ6=ν

hµ
2e
−iλ̂

′
α

hµ
0 + hµ

2e
−iλ̂

′
α

]
(S36)

implying

λ
′
α =

1

M

[
1 +

∑

µ 6=ν

hµ
2e
−βφ′(λ

′
α)

hµ
0 + hµ

2e
−βφ′(λ′α)

]
, (S37)

which is an equation in λ
′
α. Unlike the saddle point λ∗ν = Fν(~h,S, λ̂) in the expression of

P̂ (S, λ̂) (in Eq. (S25)), the above equation (S37) is independent of Sν,a and λ̂ which make
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the solution λ
′∗
α dependent only on hµ

0 , hµ
1 and hµ

2 . By assuming replica symmetry such
that λ

′∗
α = λ

′∗ for all α, Eq. (S32) becomes

Q̂(Sν,a, λ̂) =
2

NDQ̂

∫
d~h w(~h)


e

βM
h
λ
′∗φ′(λ

′∗)−φ(λ
′∗)
i

2π




m ∏

α,µ6=ν

[
hµ

0 + hµ
2e
−βφ′(λ

′∗)
]

∏
α

[
hν

1e
− iλ̂α

2
−βφ′(λ

′∗)Sα
ν,a

]

=
2

NDQ̂

∫
d~h w(~h)




e

βM
h
λ
′∗φ′(λ

′∗)−φ(λ
′∗)
i

2π


∏

µ 6=ν

(
hµ

0 + hµ
2e
−2βλ

)
hν

1e
−2βλ




m

∏
α

[
e−

iλ̂α
2 Sα

ν,a

]

=
2

NDQ̂

∏
α

[
e−

iλ̂α
2 Sα

ν,a

]
∵ replica m → 0 (S38)

given that
∫

d~h w(~h) = 1. We now compute the denominator DQ̂, which can be done in
the same manner yielding

DQ̂ =




∫

d~h w(~h)




e

βM
h
λ
′∗φ′(λ

′∗)−φ(λ
′∗)
i

2π


∏

µ6=ν

(
hµ

0 + hµ
2e
−2βλ

)
hν

1e
−2βλ




m


2

=1 ∵ replica m → 0 (S39)

Thus

Q̂(Sν,a, λ̂) =
2

N

∏
α

[
e−

iλ̂α
2 Sα

ν,a

]
(S40)

Finally we expand the exponential factor in
∏

ν eQ̂(~S,λ̂) to first order of Sα
ν,a. The second

order of Sα
ν,a has a factor 4

N2 which corresponds to the same node being both source and
destination of a communication and will be neglected. This gives

∏
ν

eQ̂(~S,λ̂) =
∏
ν

[
1 +

2

N

∏
α

(
e−

iλ̂α
2 Sα

ν,a

)]

=
∏
ν

1∑
Λν=0

[
δΛν ,0 +

2

N
δΛν ,1

]∏
να

[
1− Λν + Λνe

− iλ̂α
2 Sα

ν,a

]
(S41)
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1.3.3 Recursive equation for w(~h)

Finally we substitute the two expressions (S27) and (S41) into Eq. (S19) to obtain a self
consistent equation for P

P (S, λ̂)∝
∞∑

k=1

kρ(k)
〈k〉

1
DP,k

k−1∏

l=1

[∫
d~hl w(~hl)

∏
ν

∫
dλ∗νlδ[λ

∗
νl−Fν(~hl,S, λ̂)]

]∏
ν

1∑

Λν=0

[
δΛν ,0+

2
N

δΛν ,1

]

×
∏
α

[∫
dλα

2π
eiMλαλ̂α−βMφ(λα)

]∏
να

{[
(1− Λν)gν

0,k−1

]
+
[
(1− Λν)gν

1,k−1 + Λνg
ν
0,k−1

]
e−

iλ̂α
2 Sα

ν,a

+
[
(1− Λν)gν

2,k−1 + Λνg
ν
1,k−1

]
e−iλ̂α(Sα

ν,a)
2
}

(S42)

The above expression does not yield a self-consistent ansatz since λ∗νl still depends on S

and λ̂. We thus approximate the above expression by

P (S, λ̂)≈
∞∑

k=1

kρ(k)
〈k〉

1
DP,k

k−1∏

l=1

[∫
d~hl w(~hl)

∫

¯
dS′l

∫
dλ̂′lP (S′l, λ̂

′
l)
∏
ν

∫
dλ∗νlδ[λ

∗
νl−Fν(~hl,S′l, λ̂

′
l)]

]

×
∏
ν

1∑

Λν=0

[
δΛν ,0 +

2
N

δΛν ,1

]

×
∏
α

[∫
dλα

2π
eiMλαλ̂α−βMφ(λα)

]∏
να

{[
(1−Λν)gν

0,k−1

]
+
[
(1−Λν)gν

1,k−1 + Λνg
ν
0,k−1

]
e−

iλ̂α
2 Sα

ν,a

+
[
(1− Λν)gν

2,k−1 + Λνg
ν
1,k−1

]
e−iλ̂α(Sα

ν,a)
2
}

(S43)

where the normalization factor DP,k = 1 as the number of replica m → 0. This approxima-

tion of Fν(~hl,S, λ̂) by Fν(~hl,S
′
l, λ̂

′
l), with S′l and λ̂′l independently drawn from the same

distribution P (S, λ̂), is particularly justified when M →∞ as λ∗νl is obtained from a saddle
point, where the distribution approaches a delta function and is primarily dependent on
the form of the distribution P (S, λ̂). We remark that the above approximation is the main
approximation utilized for the derivation. One can now identify a recursive relation for
w(~h) by comparing the above expression with Eq. (S23), such that

w(~h) =
∞∑

k=1

kρ(k)

〈k〉
k−1∏

l=1

[∫
d~hl w(~hl)

∫

¯
dS′l

∫
dλ̂′lP (S′l, λ̂

′
l)
∏
ν

∫
dλ∗νlδ[λ

∗
νl − F (~hl,S

′
l, λ̂

′
l)]

]

×
∏
ν

1∑
Λν=0

[
δΛν ,0 +

2

N
δΛν ,1

]∏
ν

{
δ
[
hν

0 − (1− Λν)g
ν
0,k−1

]

×δ
[
hν

1 − [(1− Λν)g
ν
1,k−1 + Λνg

ν
0,k−1]

]
δ
[
hν

2 − [(1− Λν)g
ν
2,k−1 + Λνg

ν
1,k−1]

]}
(S44)

where the gν ’s are given in terms of hνl by Eqs. (S28) to (S30). In other words, combining
the above expression and Eqs. (S28) to (S30), we obtain a recursion relation for the fields
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h as

hν
0 =(1− Λν)

k−1∏

l=1

[
hνl

0 + hνl
2 e−βφ′(λ∗νl)

]
(S45)

hν
1 =(1− Λν)

k−1∑

l=1

hνl
1 e−βφ′(λ∗νl)

∏

j 6=l

[
hνj

0 + hνj
2 e−βφ′(λ∗νj)

]
+ Λν

k−1∏

l=1

[
hνl

0 + hνl
2 e−βφ′(λ∗νl)

]
(S46)

hν
2 =(1− Λν)

∑

(lr)

hνl
1 hνr

1 e−βφ′(λ∗νl)−βφ′(λ∗νr)
∏

j 6=l,r

[
hνj

0 + hνj
2 e−βφ′(λ∗νj)

]

+ Λν

k−1∑

l=1

hνl
1 e−βφ′(λ∗νl)

∏

j 6=l

[
hνj

0 + hνj
2 e−βφ′(λ∗νj)

]
(S47)

The general form of this equation resembles the replica symmetry cavity equations obtained
elsewhere. After deriving these equations, we can now focus on the variable h’s instead of
the more detailed polymer variables Sα

ν,a. A further simplification is shown in 1.3.4. By
using the same procedure as above, one can show that the substitution of (S27) and (S41)
into Eq. (S21) lead to a self-consistent form of the ansatz Eq. (S31).

1.3.4 Further simplification of the equations

Further simplification of equation (S44) is based on simplifying the notation in Eqs. (S28)
to (S30) using

zν
l =

hνl
1 e−βφ′(λ∗νl)

hνl
0 + hνl

2 e−βφ′(λ∗νl)
(S48)

and similarly

zν =
hν

1e
−βφ′(λ∗ν)

hν
0 + hν

2e
−βφ′(λ∗ν)

(S49)

such that Eqs. (S28) to (S30) become

gν
1,k−1

gν
0,k−1

=
k−1∑

l=1

zν
l (S50)

gν
2,k−1

gν
0,k−1

=
∑

(lr)

zν
l zν

r . (S51)
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Using Eq. (S44), we now rewrite Eq. (S49) as

zν =
hν

1e
−βφ′(λ∗ν)

hν
0 + hν

2e
−βφ′(λ∗ν)

= (1− Λν)
gν
1,k−1e

−βφ′(λ∗ν)

gν
0,k−1 + gν

2,k−1e
−βφ′(λ∗ν)

+ Λν

gν
0,k−1e

−βφ′(λ∗ν)

gν
1,k−1e

−βφ′(λ∗ν)

= (1− Λν)
e−βφ′(λ∗ν)

∑k−1
l=1 zν

l

1 + e−βφ′(λ∗ν)
∑k−1

(lr) zν
l zν

r

+ Λν
1∑k−1

l=1 zν
l

, (S52)

where λ∗ν = f−1
ν (0), and the function fν(x) depends on the descendent field ~z in the manner

explained in the next section. With this notation the equation can be simplified based on
a distribution w(~z) which characterizes each communication ν by a single value zν , instead
of hν

0, h
ν
1 and hν

2 as is the case in Eq. (S44). In other words, we preform the change of
variables by defining the distribution w(~z) as

w(~z) =

∫
d~h w(~h)

∫

¯
dS′
∫

dλ̂′P (S′, λ̂′)
∏
ν

δ

(
zν − hν

1e
−βφ′(Fν(~h,S′,λ̂′))

hν
0 + hν

2e
−βφ′(Fν(~h,S′,λ̂′))

)
, (S53)

To perform the change of variables, we start from the recursion of w(~h) in Eq. (S44) and

introduce the delta function
∫

dzν
l δ

(
zν

l − hνl
1 e−βφ′(Fν (~h,S′,λ̂′))

hνl
0 +hνl

2 e−βφ′(Fν (~h,S′,λ̂′))

)
for each l and ν on the

right hand side of Eq. (S44). This effectively makes the variable g’s depend solely on
~z1, . . . , ~zk−1 (see Eqs. (50) and (51)), i.e.

w(~h) =
∞∑

k=1

kρ(k)

〈k〉
∏
ν

1∑
Λν=0

[
δΛν ,0 +

2

N
δΛν ,1

]

×
k−1∏

l=1

[∫
d~hlw(~hl)

∫

¯
dS′l

∫
dλ̂′lP (S′l, λ̂

′
l)

∫
d~zl

∏
ν

δ

(
zν

l −
hνl

1 e−βφ′(F (~hl,S
′
l,λ̂
′
l))

hνl
0 + hνl

2 e−βφ′(F (~hl,S
′
l,λ̂
′
l))

)]

×
∏
ν

{
δ
[
hν

0 − (1− Λν)g
ν
0,k−1(~z1, . . . , ~zk−1)

]

× δ
[
hν

1 − [(1− Λν)g
ν
1,k−1(~z1, . . . , ~zk−1) + Λνg

ν
0,k−1(~z1, . . . , ~zk−1)]

]

×δ
[
hν

2 − [(1− Λν)g
ν
2,k−1(~z1, . . . , ~zk−1) + Λνg

ν
1,k−1(~z1, . . . , ~zk−1)]

]}
(S54)
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The integration over ~hl, S′l and λ̂′l can be replaced by w(~zl) as defined in Eq. (S53), leading
to

w(~h) =
∞∑

k=1

kρ(k)

〈k〉
∏
ν

1∑
Λν=0

[
δΛν ,0 +

2

N
δΛν ,1

] k−1∏

l=1

[∫
d~zl w(~zl)

]

×
∏
ν

{
δ
[
hν

0 − (1− Λν)g
ν
0,k−1(~z1, . . . , ~zk−1)

]

× δ
[
hν

1 − [(1− Λν)g
ν
1,k−1(~z1, . . . , ~zk−1) + Λνg

ν
0,k−1(~z1, . . . , ~zk−1)]

]

×δ
[
hν

2 − [(1− Λν)g
ν
2,k−1(~z1, . . . , ~zk−1) + Λνg

ν
1,k−1(~z1, . . . , ~zk−1)]

]}
(S55)

To obtain a recursion relation for w(~z), we introduce w(~z) on the left hand side by following

the definition of (S53), and multiply P (S, λ̂)
∏

ν δ
(
zν − hν

1e−βφ′(F (~h,S,λ̂))

hν
0+hν

2e−βφ′(F (~h,S,λ̂))

)
followed by the

integration of the variables ~h, S and λ̂ on both sides, which leads to

w(~z) =

∫
d~h

∫

¯
d~S

∫
dλ̂P (S, λ̂)

∞∑

k=1

kρ(k)

〈k〉
∏
ν

1∑
Λν=0

[
δΛν ,0 +

2

N
δΛν ,1

] k−1∏

l=1

[∫
d~zlw(~zl)

]

×
∏
ν

δ

(
zν − hν

1e
−βφ′(Fν(~h,S,λ̂))

hν
0 + hν

2e
−βφ′(Fν(~h,S,λ̂))

)

×
∏
ν

{
δ
[
hν

0 − (1− Λν)g
ν
0,k−1(~z1, . . . , ~zk−1)

]

× δ
[
hν

1 − [(1− Λν)g
ν
1,k−1(~z1, . . . , ~zk−1) + Λνg

ν
0,k−1(~z1, . . . , ~zk−1)]

]

×δ
[
hν

2 − [(1− Λν)g
ν
2,k−1(~z1, . . . , ~zk−1) + Λνg

ν
1,k−1(~z1, . . . , ~zk−1)]

]}
(S56)

Finally, we integrate over the variables ~h by making use of the delta functions of the last
three lines in Eq. (S56), i.e. replacing the variables hν

0, hν
1, hν

2 by the g variables in the
delta function of zν . This is equivalent to the simplifications obtained in Eq. (S52), leading
to

w(~z) =
∞∑

k=1

kρ(k)

〈k〉
k−1∏

l=1

[∫
d~zl w(~zl)

]∏
ν

1∑
Λν=0

[
δΛν ,0 +

2

N
δΛν ,1

]

×
∫

¯
d~S

∫
dλ̂P (S, λ̂)

∫
d~λ∗

∏
ν

δ[λ∗ν − Fν(~h(~z1, . . . , ~zk−1),S, λ̂)]

×
∏
ν

δ

{
zν − (1− Λν)

e−βφ′(λ∗ν)
∑k−1

l=1 zν
l

1 + e−βφ′(λ∗ν)
∑k−1

(lr) zν
l zν

r

− Λν
1∑k−1

l=1 zν
l

}
(S57)

where ~λ∗ is a vector of λ∗ν over the label ν. We further denote

ρ(~λ∗|~h(~z1, . . . , ~zk−1)) =

∫

¯
d~S

∫
dλ̂P (S, λ̂)

∏
ν

δ[λ∗ν − Fν(~h(~z1, . . . , ~zk−1),S, λ̂)] (S58)
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Fig. S2: (a) A forward field P (S′, λ̂′) from the central node to the ancestor, and a backward
field P (S, λ̂) from ancestor to the central node. (b) A corresponding picture of the messages
in the derived algorithm.

such that the recursion of w(~z) is given by

w(~z) =
∞∑

k=1

kρ(k)

〈k〉
k−1∏

l=1

[∫
d~zl w(~zl)

]∏
ν

1∑
Λν=0

[
δΛν ,0 +

2

N
δΛν ,1

] ∫
d~λ∗ρ(~λ∗|~h(~z1, . . . , ~zk−1))

×
∏
ν

δ

{
zν − (1− Λν)

e−βφ′(λ∗ν)
∑k−1

l=1 zν
l

1 + e−βφ′(λ∗ν)
∑k−1

(lr) zν
l zν

r

− Λν
1∑k−1

l=1 zν
l

}
(S59)

1.3.5 The derivation of ρ(~λ∗|~h)

To derive ρ(~λ∗|~h), we first note that the function Fν(~h,S, λ̂) is defined as the saddle point
of the integration (S20), i.e.

P̂ (S, λ̂) = 〈k〉
∏
να

[∫

¯
d~S

′α
ν

]∏
α

[∫
dλ̂

′
α

]
P (S′, λ̂′)

∏
να

(
1 + e−

iλ̂α+iλ̂
′
α

2 ~Sα
ν · ~S

′α
ν

)
.

From the definition of ρ(~λ∗|~h) in Eq. (S58), we compute λ∗ν by evaluating the saddle point
in the following integration

∫

¯
d~S

∫
dλ̂P (S, λ̂)P̂ (S, λ̂) =

〈k〉
∏
να

[∫

¯
d~Sα

ν

∫

¯
d~S

′α
ν

]∏
α

[∫
dλ̂αdλ̂

′
α

]
P (~S, λ̂)P (S′, λ̂′)

∏
να

(
1 + e−

iλ̂α+iλ̂
′
α

2 ~Sα
ν · ~S

′α
ν

)
.

(S60)

Equation (S60) can be interpreted as the interaction between two vertices sharing an edge,
where variables denoted by a prime give rise to a backward field with respect to the one
forward field generated by non-primed variables, as shown schematically in Fig. S2 (a), to
acknowledge the central node of the current state of the ancestor node.
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To obtain λ∗α, we follow the same procedure as before by inserting the ansatz (S23) into
Eq. (S60)

∏
να

[∫

¯
d~Sα

ν

∫

¯
d~S

′α
ν

]∏
α

[∫
dλαdλ̂α

2π
eiMλαλ̂α−βMφ(λα)

]∏
α

[∫
dλ

′
αdλ̂

′
α

2π
eiMλ

′
αλ̂
′
α−βMφ(λα)

]

×
∫

d~h w(~h)

∫
d~h′ w(~h′)

∏
να

[
hν

0 + hν
1e
− iλ̂α

2 Sα
ν,a + hν

2e
−iλ̂α(Sα

ν,a)
2
]

×
∏
να

[
hν′

0 + hν′
1 e−

iλ̂
′
α

2 S
′α
ν,a + hν′

2 e−iλ̂
′
α(S

′α
ν,a)

2

]∏
να

(
1 + e−

iλ̂α+iλ̂
′
α

2 ~Sα
ν · ~S

′α
ν

)
.

=

∫
d~h w(~h)

∫
d~h′ w(~h′)

×
∏
α

[∫
dλαdλ̂α

2π
eiMλαλ̂α−βMφ(λα)

]∏
α

[∫
dλα

j dλ̂
′
α

2π
e

iMλ
′
αλ̂
′
α−βMφ

�
λ
′
α

�]

×
∏
να

[
(hν

0 + hν
2e
−iλ̂α)(hν′

0 + hν′
2 e−iλ̂

′
α) + hν

1h
ν′
1 e−iλ̂α−iλ̂

′
α

]
(S61)

We can now evaluate the saddle point of λ
′
α when M →∞ by writing the above as

∫
d~h w(~h)

∫
d~h′ w(~h′)

∏
α

[∫
dλαdλ̂α

2π

]∏
α

[∫
dλ

′
αdλ̂

′
α

2π

]
eMΞ (S62)

where Ξ is

Ξ =
∑

α

[
λαλ̂α − βφ (λα) + λ

′
αλ̂

′
α − βφ

(
λ
′
α

)]

+
1

M

∑
να

[
(hν

0 + hν
2e
−iλ̂α)(hν′

0 + hν′
2 e−iλ̂

′
α) + hν

1h
ν′
1 e−iλ̂α−iλ̂

′
α

]
(S63)

which leads us to the following symmetry coupled equations in λα and λ
′
α

λα =
1

M

∑
ν

hν
2e
−βφ′(λα)

[
hν′

0 + hν′
2 e−βφ′(λ

′
α)
]

+ hν
1h

ν′
1 e−βφ′(λα)−βφ′(λ

′
α)

[hν
0 + hν

2e
−βφ′(λα)]

[
hν′

0 + hν′
2 e−βφ′(λ′α)

]
+ hν

1h
ν′
1 e−βφ′(λα)−βφ′(λ′α)

(S64)

λ
′
α =

1

M

∑
ν

hν′
2 e−βφ′(λ

′
α)
[
hν

0 + hν
2e
−βφ′(λα)

]
+ hν

1h
ν′
1 e−βφ′(λα)−βφ′(λ

′
α)

[hν
0 + hν

2e
−βφ′(λα)]

[
hν′

0 + hν′
2 e−βφ′(λ′α)

]
+ hν

1h
ν′
1 e−βφ′(λα)−βφ′(λ′α)

. (S65)

To obtain λ
′∗
α , the exact way is to solve the above coupled equations simultaneously for

both λ
′∗
α and λ∗α, which is computationally complicated. An alternative way which yields a

simple yet reasonable estimate of λ
′∗
α is to assume that λ∗α is known, in this case we focus

on solving Eq. (S65) and using the simplification of zν from Eq. (S48) we rewrite Eq. (S65)
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as

λ
′
α =

1

M

∑
ν

hν′
2 e−βφ′(λ

′
α) + zνhν′

1 e−βφ′(λ
′
α)

[
hν′

0 + hν′
2 e−βφ′(λ′α)

]
+ zνhν′

1 e−βφ′(λ′α)
. (S66)

Furthermore, the fields hν′
0 , hν′

1 and hν′
2 can be expressed in terms of the zν

l of the neighbor-
ing nodes l = 1, . . . , kj − 1 (see Fig. S2(a) for schematic diagram) via the relation between
h and gν ’s in Eq. (S44) and the relation between gν ’s and z’s in Eqs. (S50) and (S51).
Thus, we arrive at the following equation for λ

′
α

λ
′
α =

1

M

∑
ν



Λν + (1− Λν)

e−βφ′(λ
′
α)
∑k−1

(lr) zν
l zν

r + e−βφ′(λ
′
α)zν

∑k−1
l=1 zν

l[
1 + e−βφ′(λ′α)

∑k−1
(lr) zν

l zν
r

]
+ e−βφ′(λ′α)zν

∑k−1
l=1 zν

l



 (S67)

which constitutes the function f(x; zν
1 , . . . , zν

k) given by

f(x; zν
1 , . . . , zν

k) = x− 1

M

∑
ν

{
Λν + (1− Λν)

e−βφ′(x)
∑k

(lr) zν
l zν

r

1 + e−βφ′(x)
∑k

(lr) zν
l zν

r

}
. (S68)

such that λ
′∗
α = f−1(0; zν

1 , . . . , zν
k). This gives rise to

ρ(~λ∗|~h(~z1, . . . , ~zk−1)) =
∫

¯
dS′
∫

dλ̂′P (S′, λ̂′)
∏
ν

δ[λ∗ν − Fν(~h(~z1, . . . , ~zk−1),S′, λ̂′)]

=
∫

d~h′w(~h′)
∫

¯
dS′
∫

dλ̂′P (S′, λ̂′)
∏
ν

δ[λ∗ν − Fν(~h(~z1, . . . , ~zk−1),S′, λ̂′)]

=
∫

d~h′w(~h′)
∫

¯
dS′
∫

dλ̂′P (S′, λ̂′)
∫

d~z ′

×
∏
ν

{
δ

(
zν ′− hν

1
′e−βφ′(Fν(~h′,S′,λ̂′))

hν
0
′ + hν

2
′e−βφ′(Fν(~h′,S′,λ̂′))

)
δ
[
λ∗ν−f−1(0;~z1, . . . , ~zk−1, ~z

′)
]
}

(S69)

where we have introduced the delta function for the variable zν ′ and at the same time
replace Fν

~h(~z1, . . . , ~zk−1),S
′, λ̂′) by f−1(0; ~z1, . . . , ~zk−1, ~z

′). Apply the change of variable
(S53) we arrive at

ρ(~λ∗|~h(~z1, . . . , ~zk−1)) =

∫
d~z ′w(~z ′)

∏
ν

δ
[
λ∗ν − f−1(0; ~z1, . . . , ~zk−1, ~z

′)
]

(S70)

Substitute of this expression into Eq. (S59), we obtain

w(~z) =
∞∑

k=1

kρ(k)

〈k〉
k∏

l=1

[∫
d~zl w(~zl)

]∏
ν

1∑
Λν=0

[
δΛν ,0 +

2

N
δΛν ,1

]

×
∏
ν

{∫
dλ∗νδ

[
λ∗ν − f−1(0; ~z1, . . . , ~zk−1, ~zk)

]}

×
∏
ν

δ

{
zν − (1− Λν)

e−βφ′(λ∗ν)
∑k−1

l=1 zν
l

1 + e−βφ′(λ∗ν)
∑

(lr) zν
l zν

r

− Λν
1∑k−1

l=1 zν
l

}
(S71)
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which resembles an ordinary RS cavity equation except old the product for w(~zl) runs
from l = 1 to k, instead of from l = 1 to k − 1. The origin of the difference is due to the
approximation we employed in Eq. (S43).

We note that Eq. (S67) gives the average number of polymers/communications that
pass through the node, as each term ν in the summation on the right corresponds to the
probability that polymer ν passes through the node. We will see in the next section that
the above equation is used to compute the flow through a node.

Equation (S68) is only valid at large M while we are also interested in cases when M is
small or intermediate. To derive an approximate expression suitable for finite M , we start
from Eq. (S61) and instead of writing it as an exponent of eMΞ as in Eq. (S62), we isolate
one communication ν and write it as

∫
d~h w(~h)

∫
d~h′ w(~h′)

×
∏
α

[∫
dλαdλ̂α

2π
eiMλαλ̂α−βMφ(λα)

]∏
α

[∫
dλ

′
αdλ̂

′
α

2π
e

iMλ
′
αλ̂
′
α−βMφ

�
λ
′
α

�]

×
∏
α

[
hν

0h
ν′
0 + hν

2h
ν′
0 e−iλ̂α + hν

0h
ν′
2 e−iλ̂

′
α + (hν

2h
ν′
2 + hν

1h
ν′
1 )e−iλ̂α−iλ̂

′
α

]

×
∏

µ6=ν,α

[
(hµ

0 + hµ
2e
−iλ̂α)(hµ′

0 + hµ′
2 e−iλ̂

′
α) + hµ

1h
µ′
1 e−iλ̂α−iλ̂

′
α

]
(S72)

The rationale behind this approach is similar to that of the cavity approach, but now in the
space of M communications, where we isolate one communication/polymer and evaluate
how it is influenced by all other communications through the variable λ

′
α. This process

will give us an expression for λ
′∗
α which is exact when M = 1, i.e. only communication ν

exists. We continue our derivation by writing the integrand in the above expression in the
form of eMΞ, i.e.

∫
d~h w(~h)

∫
d~h′ w(~h′)

{∏
α

[
hν

0h
ν′
0

∫
dλαdλ̂αdλ

′
αdλ̂

′
α

(2π)2
eMΞν,1

+ hν
0h

ν′
2

∫
dλαdλ̂αdλ

′
αdλ̂

′
α

(2π)2
eMΞν,2 + hν

2h
ν′
0

∫
dλαdλ̂αdλ

′
αdλ̂

′
α

(2π)2
eMΞν,3

+(hν
2h

ν′
2 + hν

1h
ν′
1 )

∫
dλαdλ̂αdλ

′
αdλ̂

′
α

(2π)2
eMΞν,4

]}
. (S73)

All the Ξ exponents carry a subscript ν to represent the isolation of communication ν. As

only the last two terms carry the coefficient e−iλ̂
′
α , we will only look for the saddle points

of Ξν,3 and Ξν,4 with respect to λ̂
′
α. This is clearly an approximation as the saddle point
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does not dominate the integral at finite M values. They are given by

Ξν,3(~S, λ̂) =− iλ̂
′
α

M
+ iλ

′
αλ̂

′
α + iλαλ̂α − βφ

(
λ
′
α

)
− βφ (λα)

+
1

M

∑

µ6=ν

log
[
(hµ

0 + hµ
2e
−iλ̂α)(hµ′

0 + hµ′
2 e−iλ̂

′
α) + hµ

1h
µ′
1 e−iλ̂α−iλ̂

′
α

]
(S74)

Ξν,4(~S, λ̂) =− iλ̂
′
α

M
− iλ̂α

M
+ iλ

′
αλ̂

′
α + iλαλ̂α − βφ

(
λ
′
α

)
− βφ (λα)

+
1

M

∑

µ6=ν

log
[
(hµ

0 + hµ
2e
−iλ̂α)(hµ′

0 + hµ′
2 e−iλ̂

′
α) + hµ

1h
µ′
1 e−iλ̂α−iλ̂

′
α

]
. (S75)

Differentiating with respect to λ
′
α we find that the saddle point equation obtained from

both Ξν,3 and Ξν,4 are identical and given by

λ
′
α =

1

M


1 +

∑

µ6=ν

hµ′
2 e−βφ′(λ

′
α)
[
hµ

0 + hµ
2e
−βφ′(λα)

]
+ hµ

1h
µ′
1 e−βφ′(λα)−βφ′(λ

′
α)

[hµ
0 + hµ

2e
−βφ′(λα)]

[
hµ′

0 + hµ′
2 e−βφ′(λ′α)

]
+ hµ

1h
µ′
1 e−βφ′(λα)−βφ′(λ′α)


 . (S76)

We express hµ′
0 , hµ′

1 and hµ′
2 in terms of the zν

l ’s as for deriving Eq. (S67). These give the
following equation in λ

′
α

λ
′
α =

1

M
+

1

M

∑

µ6=ν



Λν + (1− Λν)

e−βφ′(λ
′
α)
∑k−1

(lr) zν
l zν

r + e−βφ′(λ
′
α)zν

∑k−1
l=1 zν

l[
1 + e−βφ′(λ′α)

∑k−1
(lr) zν

l zν
r

]
+ e−βφ′(λ′α)zν

∑k−1
l=1 zν

l




(S77)

which is very similar to Eq. (S67) except for the first term 1
M

and the summation which

runs over all communications other than ν. This expression leads to λ
′∗
α = 1 when M = 1,

which is equivalent to multiplying the fields hν
1 and hν

2 by a constant factor e−βφ′(1) and
an energy increase whenever ν passes the node, thus an exact counting of energy when
M = 1. On the other hand, when M →∞, 1/M → 0 and λ

′
α gives the correct counting of

the normalized traffic through the node as in Eq. (S67). While we expect Eq. (S67) and
Eq. (S77) to become identical as M → ∞, Eq. (S67) provides an additional term for low
M values.

As Eq. (S77) depends on the communication ν, we will define a communication de-
pendent function fν(x; ~z1, . . . , ~zk) where λ∗ν = f−1

ν (0; ~z1, . . . , ~zk) gives an estimate of λ∗ν for
each individual communication ν. The function fν(x) is given by

fν(x; ~z1, . . . , ~zk) = x− 1

M
− 1

M

∑

µ 6=ν

{
Λν + (1− Λν)

e−βφ′(x)
∑k

(lr) zµ
l zµ

r

1 + e−βφ′(x)
∑k

(lr) zµ
l zµ

r

}
. (S78)

The final recursion equation for w(~z) is identical to Eq. (S71) except for f−1(0; ~z1, . . . , ~zk)
which is replaced by f−1

ν (0; ~z1, . . . , ~zk) in the delta function of λ∗ν . The equation is given
by Eq. (S79) in the next subsection.
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1.3.6 Summary of the solution for finite M

Here we summarize the obtained solution to highlight the main results. After the replica
calculation, we obtain a self-consistent equation for the distribution w(~z), where ~z is an
M -dimensional field vector. The self-consistent equation is given by Eq. (S71),

w(~z) =
∞∑

k=1

kρ(k)

〈k〉
k∏

l=1

[∫
d~zl w(~zl)

]∏
ν

1∑
Λν=0

[
δΛν ,0 +

2

N
δΛν ,1

]

×
∏
ν

{∫
dλ∗νδ

[
λ∗ν − f−1

ν (0; ~z1, . . . , ~zk)
]}

×
∏
ν

δ

{
zν − (1− Λν)

e−βφ′(λ∗ν)
∑k−1

l=1 zν
l

1 + e−βφ′(λ∗ν)
∑k−1

(lr) zν
l zν

r

− Λν
1∑k−1

l=1 zν
l

}
. (S79)

where fν(x; ~z1, . . . , ~zk) is given by Eq. (S78),

fν(x; ~z1, . . . , ~zk) = x− 1

M
− 1

M

∑

µ 6=ν

{
Λµ + (1− Λµ)

e−βφ′(x)
∑k

(lr) zµ
l zµ

r

1 + e−βφ′(x)
∑k

(lr) zµ
l zµ

r

}
. (S80)

This recursion equation for w(~z) resembles an ordinary RS cavity equation except that
the product for w(~zl) runs from l = 1 to k, instead of from l = 1 to k − 1. The origin
of the difference is the approximation we employed in Eq. (S43). The analytic solution
yields results that are in good agreement with simulations obtained using the suggested
algorithm in most of the parameter space. Moreover, comparison of the results with those
obtained by the full cavity equations, which are computationally feasible only for systems
with small M values described in Sec. S2.4 show excellent agreement between the two.
These numerical results provide a justification for using this approximation, especially
since the conventional cavity equations are exact but infeasible for realistic systems. More
detailed discussions are also found in Section S2.5.

Note that the suggested approach is highly efficient computationally in comparison
with the conventional cavity method. If we were to use the conventional cavity approach,
a cavity field spanning the domain of all the possible 2M states of each node would had
to be established, representing each of the M possible communications that potentially go
though any of the nodes in the graph. We have derived the corresponding equations and
numerically compared them in Sec. S2.4 for small M values only, due to the prohibitive
computational cost; the results obtained are consistent with those obtained via the ap-
proximate algorithm. The suggested replica approach incorporates the interaction of the
M communications into the variable λ∗ν , which results in an equation of M -dimensional
fields which is feasible to solve even for large M .

To compute physical quantities of interest, we first obtain a stable w(z) by iterating
Eq. (S79) until convergence and use it to compute the distribution P (I), where I denotes
the number of communications passing through a node and is defined by Eq. (S67). The
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equation for P (I) is given by

P (I) =
∞∑

k=1

ρ(k)
k∏

l=1

[∫
d~zl w(~zl)

]∏
ν

1∑
Λν=0

[
δΛν ,0 +

2

N
δΛν ,1

]

×
∏{∫

dλ∗νδ
[
λ∗ν − f−1

ν (0; ~z1, . . . , ~zk)
]}

×
∏
ν

δ

{
I −

∑
ν

[
Λν − (1− Λν)

e−βφ′(λ∗ν)
∑k

(lr) zν
l zν

r

1 + e−βφ′(λ∗ν)
∑k

(lr) zν
l zν

r

]}
, (S81)

where fν(x; ~z1, . . . , ~zk) is given by Eq. (S80). With 〈. . . 〉 denoting the average over P (I),
the average energy is given by 〈E〉 = MN〈φ(I/M)〉, the average path length is the average
occupancy per node and is given by 〈L〉 = 〈I〉/M and the fraction of idle node is given by
fidle = 〈δ(I)〉.

1.4 The zero temperature solution

After obtaining the solution at finite temperature, the zero-temperature solution is straight-
forward. In all previous derivations, we can substitute

hν
0 = e−βEν

0 (S82)

hν
1 = e−βEν

1 (S83)

hν
2 = e−βEν

2 . (S84)

We then define zν = e−βuν
such that from Eqs. (S49) and (S52), we obtain the following

recursion of u’s as β →∞

uν = Eν
1 + φ′(λ∗ν)−min[Eν

0 , Eν
2 + φ′(λ∗ν)]

= (1− Λν)



φ′(λ∗ν) + min

l≤k−1
[uν

l ]−min


0, min

l,r≤k−1
l 6=r

[φ′(λ∗ν) + uν
l + uν

r ]





− Λν min

l≤k−1
[uν

l ]

= (1− Λν)



min

l≤k−1
[uν

l ]−min


−φ′(λ∗ν), min

l,r≤k−1
l 6=r

[uν
l + uν

r ]





− Λν min

l≤k−1
[uν

l ]. (S85)
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The self-consistent equation for the distribution w(~u) is given by the zero-temperature
limit of Eq. (S79)

w(~u) =
∞∑

k=1

kρ(k)
〈k〉

k∏

l=1

[∫
d~ul w(~ul)

]∏
ν

1∑

Λν=0

[
δΛν ,0 +

2
N

δΛν ,1

]

×
∏
ν

{∫
dλ∗νδ

[
λ∗ν − f−1

ν (0; ~u1, . . . , ~uk)
]}

×
∏
ν

δ



uν − (1− Λν)


 min

l≤k−1
[uν

l ]−min


−φ′(λ∗ν), min

l,r≤k−1
l 6=r

[uν
l + uν

r ]




− Λν min

l≤k−1
[uν

l ]



 .

(S86)

where fν(x; ~u1, . . . , ~uk) is given by the zero-temperature limit of Eq. (S80), i.e.

fν(x) = x− 1

M
− 1

M

∑

µ 6=ν



Λµ + (1− Λµ)Θ


−φ′(x)− min

l,r≤k
l 6=r

[uµ
l + uµ

r ]





 . (S87)

One may solve the Eq. (S87) by setting x = I/M and testing integer values of I from
I = 0 until a solution is found; if no solution is found we use the two x values that give
the smallest positive and the largest negative value of fν(x) and extrapolate to obtain a
fractional x∗ which gives fν(x

∗) = 0. Methods to reduce computational complexity in
solving Eq. (S87) are discussed in Section S2.2.

Similarly, the distribution P (I), of the number of communications passing through a
node is given by

P (I) =
∞∑

k=1

ρ(k)
k∏

l=1

[∫
d~ul w(~ul)

]∏
ν

1∑

Λν=0

[
δΛν ,0 +

2
N

δΛν ,1

]

×
∏
ν

{∫
dλ∗νδ

[
λ∗ν − f−1

ν (0; ~u1, . . . , ~uk)
]}

×
∏
ν

δ



I −

∑
ν


Λν − (1− Λν)Θ


−φ′(λ∗ν)− min

l,r≤k
l 6=r

[uν
l + uν

r ]







 , (S88)

where fν(x; ~u1,. . ., ~uk) is given by Eq. (S87). Physical quantities such as 〈E〉=MN〈φ(I/M)〉,
〈L〉 = 〈I〉/M and fidle are computed as in the case of finite temperature (section 1.3.6).

1.5 The directed formulation

In this subsection, we show that the present framework accommodates directed communi-
cations and will lead to the algorithm expressed by Eqs. (S103) to (S106) in Section S2;
it involves passing a pair of messages aν

j→i and bν
j→i, that correspond to the correspond-

ing energy terms when communication ν passes from i towards j and from j towards i,
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respectively. Since the calculation is rather involved and greatly resembles the derivation
in previous Section S1.1 to S1.3, we will only outline the main steps of the derivation. We
start with the partition function

Z =
N∏

i=1

[∫
dλidλ̂i

2π
eiMλiλ̂i−βMφ(λi)

]∏

iν

[
1

C2
n

∫

¯
d~Sν

i

∫

¯
d~Ziν

]∏

iν


 ∑

σiν=0,1

(
1− σiν + σiν

~Sν
i · ~Ziν

)



×
M∏

ν=1




∏

(ij)

[(
σiνσjνe

− iλ̂i+iλ̂j
2 Zν

i,aS
ν
j,a

)Λν
ij(1−Λν

ji)

+
(

σiνσjνe
− iλ̂i+iλ̂j

2 Sν
i,aZ

ν
j,a

)Λν
ji(1−Λν

ij)
]

×
∏

(kl)

[
1 + Aklσkνσlνe

− iλ̂k+iλ̂l
2

(
~Sν

k · ~Zν
l + ~Zν

k · ~Sν
l

)]


 , (S89)

which differs from the partition function in Eq. (S2) in the following:

1. Additional 0-vector variables ~Ziν are introduced such that ~Sν
i and ~Ziν of node i

correspond to its outgoing and incoming cavity for communication ν. As we can see
from the last line of the partition function, the edge (kl) either connect the outgoing
cavity of node k to the incoming cavity of node l, or the incoming cavity of node k
to the outgoing cavity of node l when Akl = 1.

2. The variable σiν = 0, 1 and the factor
(
1− σiν + σiν

~Sν
i · ~Ziν

)
are introduced for each

node i and communication ν; σkν = σlν = 1 when ν passes the edge (kl), such that

the factor
(
1− σkν + σkν

~Sν
k · ~Zν

k

)
connects one of the incoming cavities of node k to

one of its outgoing cavities when ν passes through k.

3. The variable Λν
ij is directed, such that Λν

ij = 1 (Λν
ji = 1) when ν corresponds to

a communication from source i to sink j (source j to sink i) and Λν
ij = Λν

ji = 0
otherwise; the two terms Zν

i,aS
ν
j,a and Sν

i,aZ
ν
j,a thus correspond to communications in

the respective directions.

One can proceed with the derivation as in Section S1 to arrive at the corresponding
saddle point equations (similar to Eqs. (S19) and (S20)) for the functional order parameter

P (S,Z, λ̂, ~σ) and P̂ (S,Z, λ̂, ~σ)

P (S,Z, λ̂, ~σ) =
∑

k

ρ(k)
Dk

∏
α

[∫
dλα

2π
eiMλαλ̂α−βMφ(λα)

]

× k[P̂ (S,Z, λ̂, ~σ)]k−1e
P

ν Q̂(Sν,a,Zν,a,λ̂,σα
ν )
∏
να

(
1− σα

ν + σα
ν

~Sα
ν · ~Zα

ν

)
(S90)

P̂ (S,Z, λ̂, ~σ) = 〈k〉
∏
να


 ∑

σα
ν
′=0,1


∏

να

[∫

¯
d~S

′α
ν

∫

¯
d~Z

′α
ν

]∏
α

[∫
dλ̂

′
α

]

× P (S′, ~Z ′, λ̂′, ~σ)
∏
να

(
1 + σα

ν σα
ν
′e−

iλ̂α+iλ̂
′
α

2 (~Sα
ν · ~Z

′α
ν + ~Zα

ν · ~S
′α
ν )

)
(S91)
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where Dk is given by

Dk =
∏
α

[∫
dλαdλ̂α

2π
eiMλαλ̂α−βMφ(λα)

]∏
να

[∫

¯
d~Sα

ν

∫

¯
d~Zα

ν

]∏
να


 ∑

σα
ν
′=0,1




× [P̂ (S,Z, λ̂, ~σ)]ke
P

ν Q̂(Sν,a,Zν,a,λ̂,σα
ν )
∏
να

(
1− σα

ν + σα
ν
~Sα

ν · ~Zα
ν

)
(S92)

To solve the above saddle point equations, we employ an ansatz for P̂ (S,Z, λ̂, ~σ) similar

to the ansatz for P̂ (S, λ̂) in Eq. (S23), given by

P (S,Z, λ̂, ~σ)=
∏
α

[∫
dλα

2π
eiMλαλ̂α−βMφ(λα)

] ∫
d~h w(~h) (S93)

×
∏
να

[
(1− σα

ν )hν
0+σα

ν hν
1e
− iλ̂α

2 (Zα
ν,a)

2Sα
ν,a+σα

ν h̃ν
1e
− iλ̂α

2 (Sα
ν,a)

2Zα
ν,a+σα

ν hν
2e
−iλ̂α(Sα

ν,a)
2(Zα

ν,a)
2

]
.

Similarly, this ansatz relates to the cavity approach [S1, S2], where hν
0, h

ν
1, h̃

ν
1, h

ν
2 resemble

the cavity fields where communication ν does not pass through the node (hν
0), passes

through the node via the outgoing cavity to the ancestor (hν
1), passes through the node via

the incoming cavity to the ancestor (h̃ν
1), or passes the node without going through the

cavity (hν
2), respectively. To derive the recursion relation involving only the cavity fields,

one can first show that

eQ̂(Sν,a,Zν,a,λ̂,σα
ν ) (S94)

=
1∑

Λν=−1

[
δΛν ,0 +

1
N

δΛν ,1 +
1
N

δΛν ,−1

]∏
να

[
δΛν ,0 + δΛν ,1e

− iλ̂α
2 Zα

ν,a + δΛν ,−1e
− iλ̂α

2 Sα
ν,a

]
,

which is similar to Eq. (S41). Inserting Eqs. (S93) and (S94) into Eq. (S90), one can derive

the following recursion relation in terms of cavity fields hν
0, h

ν
1, h̃

ν
1 and hν

2 (as in Eqs. (S45)
to (S47)),

hν
0 = δΛν ,0

k−1∏

l=1

[
hνl

0 + hνl
2 e−βφ′(λ∗νl)

]
(S95)

hν
1 = δΛν ,0

k−1∑

l=1

hνl
1 e−βφ′(λ∗νl)

∏

j 6=l

[
hνj

0 + hνj
2 e−βφ′(λ∗νj)

]
+ δΛν ,1

k−1∏

l=1

[
hνl

0 + hνl
2 e−βφ′(λ∗νl)

]
(S96)

h̃ν
1 = δΛν ,0

k−1∑

l=1

h̃νl
1 e−βφ′(λ∗νl)

∏

j 6=l

[
hνj

0 + hνj
2 e−βφ′(λ∗νj)

]
+ δΛν ,−1

k−1∏

l=1

[
hνl

0 + hνl
2 e−βφ′(λ∗νl)

]
(S97)

hν
2 = δΛν ,0

∑

(lr)

hνl
1 h̃νr

1 e−βφ′(λ∗νl)−βφ′(λ∗νr)
∏

j 6=l,r

[
hνj

0 + hνj
2 e−βφ′(λ∗νj)

]

+δΛν ,1

k−1∑

l=1

h̃νl
1 e−βφ′(λ∗νl)

∏

j 6=l

[
hνj

0 +hνj
2 e−βφ′(λ∗νj)

]
+δΛν ,−1

k−1∑

l=1

hνl
1 e−βφ′(λ∗νl)

∏

j 6=l

[
hνj

0 +hνj
2 e−βφ′(λ∗νj)

]

(S98)
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Following Eq. (S49), we denote

zν =
hν

1e
−βφ′(λ∗ν)

hν
0 + hν

2e
−βφ′(λ∗ν)

, z̃ν =
h̃ν

1e
−βφ′(λ∗ν)

hν
0 + hν

2e
−βφ′(λ∗ν)

, (S99)

which lead to the following recursion relations, similar to Eq. (S52),

zν = δΛν ,0
e−βφ′(λ∗ν)

∑k−1
l=1 zν

l

1 + e−βφ′(λ∗ν)
∑k−1

(lr) zν
l z̃ν

r

+ δΛν ,1
1∑k−1

l=1 z̃ν
l

, (S100)

z̃ν = δΛν ,0
e−βφ′(λ∗ν)

∑k−1
l=1 z̃ν

l

1 + e−βφ′(λ∗ν)
∑k−1

(lr) zν
l z̃ν

r

+ δΛν ,−1
1∑k−1

l=1 zν
l

, (S101)

such that λ∗ν = f−1(0) as in Eq. (S80), where f(x) is given by

fν(x) = x− 1

M
− 1

M

∑

µ6=ν

{
|Λµ|+ (1− |Λµ|)

e−βφ′(x)
∑k

(lr) zµ
l z̃µ

r

1 + e−βφ′(x)
∑k

(lr) zµ
l z̃µ

r

}
. (S102)

To derive the corresponding optimization algorithm, we further substitute zν = e−βaν
and

z̃ν = e−βbν
. In the zero-temperature limit, these give rise to the message passing algorithm

of Eqs. (S103) to (S106) we are going to describe in Section S2 except that we have set the
message bν

j→i = 0 when Λν
j = −1 to prevent indefinite looping of messages.

2 The algorithm

The analytic solution gives rise to a message passing algorithm, which identifies the path
configuration that minimizes a given form of H on real instances. In contrast to the
local tree structure assumed by the cavity approach, short loops are present in real in-
stances which makes the direct algorithmic implementation of the cavity equation (S85)
non-convergent. As the direct algorithmic interpretation does not distinguish between the
two ends of a polymer, it happens that the iterative cavity equation does not converge
since a shorter loop back to the starting point is preferred over one leading to the desti-
nation. We thus adopt the slightly modified formulation in Section S1.5 to identify one
end of the polymer as the source and the other as the destination; this gives rise to a
message passing algorithm the involves two messages aν and bν , which correspond to the
cases where polymer ν passes via an outgoing and an incoming node-cavity en route to its
ancestor, respectively. This also enables one to accommodate directed polymers or com-
munications. The relation between the un-directed and directed formulation can be seen
by the resemblance between Eq. (S85) and the zero-temperature limit of Eqs. (S100) and
(S101) in the Section S1.5. To prevent infinite looping of messages, we set the message
from the destination to zero which greatly improved convergence. From Eqs. (S100) and
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(S101), the derived algorithm reads (Eq. (3) in the paper):

aν
j→i =





min
l∈Lj\{i}

[
aν

l→j

]−min


−φ′(λν∗

j ), min
l,r∈Lj\{i}

l 6=r

[
aν

l→j + bν
r→j

]

 , Λν

j = 0

− min
l∈Lj\{i}

[
bν
l→j

]
, Λν

j = 1

∞, Λν
j = −1

(S103)

bν
j→i =





min
l∈Lj\{i}

[
bν
l→j

]−min


−φ′(λν∗

j ), min
l,r∈Lj\{i}

l 6=r

[
aν

l→j + bν
r→j

]

 , Λν

j = 0

∞, Λν
j = 1

0, Λν
j = −1

(S104)

where Lj denotes the neighboring nodes of j, Λν
j = 1,−1, 0 corresponds respectively to node

j being the source, destination or otherwise. The value of λν∗
j is given by λν∗

j = g−1
ν (0)

where gν(x) is given by Eq. (S102) (Eq.(4) of the manuscript)

gν(x) = x− 1

M
− 1

M

∑

µ 6=ν



|Λµ|+ (1− |Λµ|)Θ


−φ′(x)− min

l,r∈Lj

l 6=r

[
aµ

l→j + bµ
r→j

]




 ,

(S105)

where Θ(x) is the step function with Θ(x) = 0, 0.5, 1 for x < 0, x = 0, x > 0, respectively.
The correspondence between the algorithm and the analytic solution is illustrated by com-
paring Fig. S2(a) and (b). Finally, after the messages converge for a real instance, we use
an equation that resembles the definition of I in Eq. (S88) to obtain the optimal path
configuration (Eq.(5) of the paper)

σν
j = |Λν |+ (1− |Λν |)Θ


−φ′

(
λν∗

j

)− min
l,r∈Lj

l 6=r

[
aν

l→j + bν
r→j

]

 , (S106)

where λν∗
i = g−1

ν (0) and σν
i = 1 if the communication ν passes i and otherwise σν

i = 0.
The traffic Ii on node i is given by Ii =

∑
ν σν

i .
We remark that when γ = 1 with the cost function defined by φ(x) = xγ, the above

algorithm becomes exact and reduces to a shortest path algorithm. One can see this from
Eqs. (S103) and (S104), when the cost function is φ(λν∗

j ) = λν∗
j (i.e. γ = 1), the message

passing of any individual communication ν becomes independent of all other communica-
tions. This is because the original interaction between communications is embedded in λν∗

j

given by the solution of Eq. (S105); when γ = 1, φ′(λν∗
j ) = 1 becomes independent of λν∗

j ,
as well as of the other communications. In this case, the messages aν or bν increase by 1
unit (since φ′(λν∗

j ) = 1) every time communication ν passes a node, effectively counting
the distance from the source or sink of ν. One can further show that the algorithm is
equivalent to a cavity algorithm which aims to find the shortest path.
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2.1 Introducing quenched random bias

As discussed in the main article, the RSB-like behavior hinders algorithmic convergence in
some instances. Convergence is improved by assigning a random bias εi to each node [S10],
akin to an external field, guiding the system to one of the local minima. These biases can
be easily incorporated in the present formalism by replacing φ(x) with φi(x) for each node
i such that φi(x) = φ(x) + xεi. While sub-optimal, the obtained local minima typically
provide close-to-optimal solutions. Details of how RSB is examined in the present system
are given in Section S5.

Cases of variable size communications, where a large number of unit source-destination
pairs are identical, give rise to degeneracy among communications; to break the degeneracy
in this case, brought by Eq. (S105), we replace εi by εν

i for each communication ν. These
give rise to a slight modification of Eqs. (103) - (106), where the messages aν and bν are
updated by

aν
j→i =





min
l∈Lj\{i}

[
aν

l→j

]−min


−φ′(λν∗

j )− εν
j , min

l,r∈Lj\{i}
l 6=r

[
aν

l→j + bν
r→j

]

 , Λν

j = 0

− min
l∈Lj\{i}

[
bν
l→j

]
, Λν

j = 1

∞, Λν
j = −1

(S107)

bν
j→i =





min
l∈Lj\{i}

[
bν
l→j

]−min


−φ′(λν∗

j )− εν
j , min

l,r∈Lj\{i}
l 6=r

[
aν

l→j + bν
r→j

]

 , Λν

j = 0

∞, Λν
j = 1

0, Λν
j = −1

(S108)

and λν∗
j is given by λν∗

j = g−1
ν (0), such that gν(x) is given by

gν(x) = x− 1

M
− 1

M

∑

µ6=ν



|Λµ|+ (1− |Λµ|)Θ


−φ′(x)− εµ

j − min
l,r∈Lj

l 6=r

[
aµ

l→j + bµ
r→j

]




 .

(S109)

The optimized state σν
j of communication ν on node j is obtained by

σν
j = |Λν |+ (1− |Λν |)Θ


−φ′

(
λν∗

j

)− εν
j − min

l,r∈Lj

l 6=r

[
aν

l→j + bν
r→j

]

 . (S110)

We found that εν
i with magnitude of the order O[0.01 · φ′(1/M)] is usually sufficient to

break the degeneracy in paths in the presence of identical source-destination pairs. In
cases where a large number of source-destination pairs are identical, larger εν

i would be
beneficial.
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2.2 Computational complexity

As mentioned in the paper, the computation complexity of the algorithm where costs
are defined on vertices is O (N(M + M2〈I〉)). The factor N comes from the passing of
messages among the N nodes until convergence, while the factor M comes from the update
of messages a and b in Eqs. (103) and (104), and the factor M2 comes from the computation
of λν∗

i for each of the M communications, each of which involves a summation of M ; and
finally, the average flow factor 〈I〉 comes from solving Eq. (S105) by setting x = I/M and
increasing the integer I from I = 0 until a solution x for fν(x) = 0 is found. We remark
that if costs are defined on edges only, the algorithm has a much lower complexity O(NM)
making it more suitable for very large systems. We refer readers to Section S3.2 for details.

To reduce the computational complexity of the algorithm with vertex cost, we note
that for a node j, all communications ν with −φ′(1/M) − minl,r∈Lj |l 6=r

[
aν

l→j + bν
r→j

]
< 0

do not contribute to the summation over µ 6= ν in Eq. (S105). In other words, by denoting
the set of all the other communications as M, the summation in Eq. (S105) runs over the
set M\{ν}. We also note that all communications ν /∈ M have the same λν∗

i given by
λν∗

i = g−1(0) where g(x) is given by

g(x) = x− 1

M
− 1

M

∑
µ∈M



|Λµ|+ (1− |Λµ|)Θ


−φ′(x)− min

l,r∈Lj

l 6=r

[
aµ

l→j + bµ
r→j

]




 .

(S111)

This reduces the computational complexity for obtaining λν∗
i to 〈I〉2, and thus reduces the

complexity of the algorithm to O(N(M + 〈I〉3)). This can also be used to solve Eq. (S86)
for obtaining an analytic solution. A further simplification is noted in the cases of convex
φ(x), since the summations in both gν(x) and g(x) (Eqs. (S105) and (S111), respectively)
are decreasing functions of x, and thus the solutions of g−1

ν (0) and g−1(0) differ at most by
1/M .

Another way to reduce computational complexity is to adopt a decimation procedure
similar to [S8, S9], i.e. fix a communication path and thus the messages a and b, which
are already biased towards a particular choice of routes. Detailed results are shown in the
next subsection.

2.3 Convergence

We ran the algorithm (S107) to (S110) on random regular graphs with various values of
N and M values, and show in Fig. S3(a) the fraction of instances where the algorithm
converges; we also monitor the validity of solutions obtained in cases when the algorithm
does not converge. As we can see, the convergence ratio slightly decreases with increasing
M and N . As suggested by the higher fraction of valid solutions compared with the
convergence ratio, when the iteration procedure is terminated, the algorithm is able to
establish complete paths for all communications in many instances even for which it does
not converge. Indeed, the algorithm finds a valid solution for more than 80% of the

32



instances even at large M and N without decimation. The results shown in Fig. S3 are
obtained with γ = 2 in φ(x) = xγ whereas the cases with γ = 0.5 show similar behaviors
but a higher fraction of convergence and validity.

In Fig. S3(b), we show that the average convergence time increases for small M values
and becomes saturated at large M for various values of N , and increases slightly when N
increases from N = 100 to N = 1000. By employing a decimation procedure to fix com-
munications that are strongly biased towards a particular path, a much faster convergence
is obtained as shown by the dashed lines in Fig. S3(b). We remark that (i) all obtained
solutions are valid when decimation is added to the algorithm, and (ii) the trade-off in
energy increase (with respect to the optimal solution) is smaller than 1% for almost all
cases shown in Fig. S3(b). For graphs with a large number of short loops, convergence is
more difficult and decimation is useful. Nevertheless, most of our results were obtained
without the decimation procedure, with the iterations terminated after messages converge
or if the state of all communication paths stabilizes for a certain number of steps.

In Fig. S3(c), we show that convergence is greatly improved by running the algorithm
(S129) to (S133) derived in Section S3.2 where the cost is defined on edges only. A similar
picture is obtained when separate costs are defined on each direction of the edges, where
optimal solutions are obtained by the algorithm defined by equations (S134) to (S138)
derived in Section S3.3. We remark that these two algorithms also have a much lower
computational complexity as discussed in Section S3.2 and 3.3.

2.4 Comparison with the conventional cavity approach

In this section, we apply the cavity approach directly to derive an algorithm without the
backward messages from nodes uplink and compare the results obtained to those obtained
via our algorithm, where backward messages originate from the approximation of Eq. (S43).
As will be shown below, the conventional cavity method involves 3M states, but its perfor-
mance is matched by the simplified approach involving only 2M states. This justifies the
approximation of Eq. (S43). Since the conventional cavity approach involves 3M states, we
can only compare the algorithmic results up to a small value of M , e.g. M ≈ 7, due to the
prohibitive computational cost, in both time and memory.

To write the conventional cavity equation, we first denote σν
j→i = +1, 0,−1 to represent

the cases where communication ν goes from node j to i, does not go through the edge
between i and j, and goes from i to j, respectively. We denote the vector of σν

j→i over the
index ν by a vector ~σj→i of 3M states. We then define the cavity energy Ej→i(~σj→i) to be
the optimized energy of the tree terminated at node j without the edge connecting it to
i, as a function of the state ~σj→i at j. One can then write a recursion equation relating
Ej→i(~σj→i) to the neighboring nodes cavity energies Ek→j(~σk→j) as

Ej→i(~σj→i) = min
{{~σk→j}|~Λj−~σj→i+

P
k∈Lj\{i} ~σk→j=~0}


φ(Ij) +

∑

k∈Lj\{i}
Ek→j(~σk→j)


 , (S112)
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Fig. S 3: (a) The fraction of convergent (solid lines with symbols) and valid solution for
instances (dashed lines) obtained by the algorithm (S107) to (S110) (without decimation)
within 104 × N iterations on random regular graphs of average degree 〈k〉 = 3 of size
N = 100, 200, 500 and 1000, averaged over 2000 instances. Valid solutions for instances
are defined as instances where complete paths are established for all communications when
the iteration terminates. (b) Average convergence times with and without decimation,
represented by dashed lines and solid lines with symbols, respectively. Solutions for all
instances are valid when decimation is added to the algorithm. (c) The fraction of conver-
gent instances where costs are defined on vertices (algorithm (S107) to (S110)), on edges
only (algorithm (S129) to (S133) with random bias), and where separate costs are defined
on each direction of the edges (algorithm (S134) to (S138) with random bias).
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where ~Λj denotes the vector (Λ1
j , · · · , ΛM

j ) with each Λν
j = {±1, 0} defined as in Eqs. (S103)

and (S104), and Ij =
∑M

ν=1

[
|Λν

j |+ (1− |Λν
j |)Θ(|σν

j→i|+
∑

k∈Lj\{i} |σν
k→j|)

]
the number of

communications/polymers which pass through node j; Θ(x) = 0 with x ≤ 0 and otherwise
Θ(x) = 1.

One can now optimize real instances by passing messages consisting of the cavity energy
function Ej→i(~σj→i) until convergence, and evaluate the optimized state ~σ∗j of node j by

σν∗
j = |Λν

j |+ (1− |Λν
j |)Θ


 ∑

k∈Lj\{i}
|σν∗

k→j|

 (S113)

with σν∗
k→j obtained by

~σ∗k→j = argmin
{{~σk→j}|~Λj+

P
k∈Lj

~σk→j=~0}


∑

k∈Lj

Ek→j(~σk→j)


 . (S114)

Equation (S112)-(S114) constitute an algorithm, which we refer to as the conventional cav-
ity algorithm, for solving the system of interacting polymers/communications. In general,
this algorithm does not always find optimal solutions due to the presence of degenerate
paths. One can then adopt the same method as in our algorithm and introduce a small
random bias εi on each node, akin to an external field, which breaks the path degeneracy.
Moreover, due to the presence of short loops or possibly the influence of RSB-like behav-
ior in finite systems, the conventional cavity algorithm does not always converge. In our
algorithm we found that the influence of short loops can be reduced by setting messages
from destinations to be zero (i.e. the last message in Eq. (S104)); this contributes to a
much improved convergence rate. In the present case of Eq. (S112) we do not have a trivial
way to implement a similar trick. Nevertheless, the state of communication paths usually
stabilizes after a number of iteration, resulting in convergence of a (sub-)optimal state in
spite the non-converging messages.

As mentioned before, the 3M -dimension of the cavity energy Ej→i(~σj→i) limits the use-
fulness of the conventional cavity algorithm. In addition, the constrained integer optimiza-
tion of Eq. (S112) requires an exhaustive search in state space, implying an O((3M)kj−1)
operations for each iteration on node j with degree kj. Due to these limitations, we have
only tested the conventional cavity algorithm on random regular networks with k = 3.

We compare results obtained by our algorithm with those obtained by the conventional
cavity algorithm by running them on instances of identical quenched disorders (i.e. identi-
cal topology and source-destination communicating pairs). The corresponding optimized
energy E is shown in Fig. S4. The difference in optimized energy is extremely small and
of the order of less than 1%. Remarkably, our algorithm performs slightly better than the
conventional cavity algorithm in most of the cases. We remark that such a small differences
may not be representative due to the small number of communications; it may result from
the influence of small loops or RSB-like behavior, such that different local minima have
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Fig. S 4: The optimized energy E = 1
N

∑
i I

γ
i obtained by the conventional cavity al-

gorithm in Eqs (S112)-(S114) compared to that obtained by our approximate algorithm
using Eqs. (S103)-(S106). Simulations are conducted by running the two algorithms on
2000 pairs of identical instances of random regular graphs with N = 100 and k = 3, from
M = 1 to M = 5, 1000 pairs for M = 6 and 400 pairs for M = 7. Error bars are smaller
than symbol size for all curves. Inset: the percentage difference of the optimized energy.

slightly different energies. In general, we found that running any of the algorithms sep-
arately on the same instance but with different update sequences may result in different
optimized states with a slight difference in energy (despite these variations, we show in
Sec. S4 that our algorithm always provides a lower bound of the optimized energy with
respect to the other congestion-aware algorithm we tested). Nevertheless, the results sug-
gest that the difference between our algorithm and the conventional cavity algorithm is
negligible while our algorithm is much more efficient computationally with much shorter
computing time, better convergence and easier implementation. These results also support
the approximation Eq. (S43) used in deriving the algorithm.

2.5 Discrepancy between simulations and analytic solution

To validate the ansätze used we examine the agreement between analytical and simulation
results.

For the Hamiltonian H ∝∑i I
γ
i , i.e. φ(x) = xγ, we found a good agreement of average

energy 〈E〉 and path length 〈L〉 between simulations and analytical solution is good for
γ ≥ 1 and improving with the increase in system size. For γ ≤ 1, larger discrepancy in 〈E〉
and 〈L〉 are observed for larger N and M and small γ. Results presented in Fig. S5, show
good agreement between simulations and the analytical predictions of 〈L〉 for all N and M
with γ = 2, and for all M at N = 100 with γ = 0.5, but discrepancy starts to appear at
M > 100 with N = 200 and N = 500 with γ = 0.5. In this case the simulation results still
look reasonable, but the analytical results show an abrupt increase at M > 100. A possible
reason for this discrepancy is that for small γ, the flow pattern is tree-like (as mentioned
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Fig. S5: The analytical and the simulation results of average path length 〈L〉 as a function
of M in the optimized solution of H ∝ ∑i I

γ
i on random regular graphs, with (a) γ = 2

and (b) γ = 0.5.

in the paper), and when N and M are large the inaccuracies due to the approximation
made influence the collective choices of paths.

3 Generalized formulation and algorithms

In this section, we generalize the previous formulation to derive algorithms which accom-
modate other communication scenarios: when communications are weighted, costs are
defined on edges, and separate costs are defined on each direction of edges. The resulting
algorithms for the various cases were tested on random regular graphs and yield favorable
results. In particular, as we will see in the following subsections, the computation complex-
ity of the algorithm is greatly reduced when costs are defined on edges only. We remark
that better convergence is also obtained for these algorithms as discussed in Section S2.3.

3.1 The algorithm for weighted communications

We first derive the algorithm when communications are weighted. This is in particular
relevant when a large number communications share the same source and destination and
can be grouped during transmission and in cases where different communications have
different corresponding priorities. More specifically, we define wν to be the weight of
communication ν such that the weighted sum of traffic on node i is given by Ii =

∑
ν wνσ

ν
i ,

where σν
i = 1 when communication ν passes node i and σν

i = 0 otherwise. We can then
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write down the partition function to accommodates weighted communications, given by

Z =
N∏

i=1

[∫
dλidλ̂i

2π
eiMλiλ̂i−βMφ(λi)

]∏
iν

[
1

Cn

∫

¯
d~Sν

i

]

×
M∏

ν=1


∏

(ij)

(
e−wν

iλ̂i+iλ̂j
2 Sν

i,aS
ν
j,a

)Λν
(ij)∏

(kl)

(
1 + Akle

−wν
iλ̂k+iλ̂l

2 ~Sν
k · ~Sν

l

)
 , (S115)

which is identical to Eq. (S2) except the presence of weight factors wν in the exponentials

e−wν
iλ̂i+iλ̂j

2 and e−wν
iλ̂k+iλ̂l

2 . The integration of λ̂i leads to λi =
∑

ν wνσ
ν
i /M ; λi is thus the

weighted sum of traffic through node i. One can then follow the same derivations as in
Section S1 to arrive at the corresponding Eqs. (S85) and (S87) given by

uν = (1− Λν)



min

l≤k−1
[uν

l ]−min


−wνφ

′(λ∗ν), min
l,r≤k−1

l 6=r

[uν
l + uν

r ]





− Λν min

l≤k−1
[uν

l ], (S116)

fν(x) = x− wν

M
−
∑

µ6=ν

wµ

M



Λµ + (1− Λµ)Θ


−wµφ

′(x)− min
l,r≤k
l 6=r

[uµ
l + uµ

r ]





 . (S117)

By similar arguments suggested in the Section S1.5, the above equations give rise to an
algorithm capable of optimizing weighted communications,

aν
j→i =





min
l∈Lj\{i}

[
aν

l→j

]−min


−wνφ

′(λν∗
j ), min

l,r∈Lj\{i}
l 6=r

[
aν

l→j + bν
r→j

]

 , Λν

j = 0

− min
l∈Lj\{i}

[
bν
l→j

]
, Λν

j = 1

∞, Λν
j = −1

(S118)

bν
j→i =





min
l∈Lj\{i}

[
bν
l→j

]−min


−wνφ

′(λν∗
j ), min

l,r∈Lj\{i}
l 6=r

[
aν

l→j + bν
r→j

]

 , Λν

j = 0

∞, Λν
j = 1

0, Λν
j = −1

(S119)

such that the value of λν∗
j is given by λν∗

j = g−1
ν (0) where gν(x) is defined by

gν(x) = x− wν

M
−
∑

µ6=ν

wµ

M



|Λµ|+ (1− |Λµ|)Θ


−wµφ

′(x)− min
l,r∈Lj

l 6=r

[
aµ

l→j + bµ
r→j

]




 ,

(S120)
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Fig. S 6: (a) The graph with cost φV (I) defined on nodes and φE(I) defined on edges,
and (b) the factor graph representation of the corresponding network where edges are
represented square factor nodes.

and the optimized state is given by

σν
j = |Λν |+ (1− |Λν |)Θ


−wνφ

′ (λν∗
j

)− min
l,r∈Lj

l 6=r

[
aν

l→j + bν
r→j

]

 . (S121)

One can see that when wν = 1 for all ν, the above algorithm reduces to Eqs. (S103)-(S106).
To break path degeneracy, small quenched biases εi can be introduced as in Section S2.1
by replacing φ(x) with φi(x) + xεi.

3.2 The algorithm for costs defined on edges

We will now derive the algorithm when costs are defined on both vertices and edges. As
shown in Fig. S6(a), we denote φV (I) and φE(I) as the cost function on vertices and edges
respectively, and represent the network as a factor graph by considering edges as factor
nodes as shown in Fig. S6(b). We can then write the corresponding partition function
where edges are labeled by e, given by

Z =
N∏

i=1

[∫
dλidλ̂i

2π
eiMλiλ̂i−βMφV (λi)

]∏
iν

[
1

Cn

∫

¯
d~Sν

i

]

×
E∏

e=1

[∫
dλedλ̂e

2π
eiMλeλ̂e−βMφE(λe)

]∏
eν

[
1

Cn

∫

¯
d~Sν

e

]

×
M∏

ν=1


∏

(ij)

(
e−

iλ̂i+iλ̂j
2 Sν

i,aS
ν
j,a

)Λν
(ij) ∏

(ke)

(
1 + Akee

− iλ̂k+iλ̂e
2 ~Sν

k · ~Sν
e

)
 . (S122)

One can then proceed with the calculation following Section S1.
Alternatively, we can use Fig. S6(b) and Eqs. (S103)-(S106) to derive the corresponding

algorithm. We first write the messages from a vertex j to an edge node e, which are identical
to the previous case and are given by
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Messages from a vertex to an edge

aν
j→e =





min
e′∈Lj\{i}

[
aν

e′→j

]−min


−φ′V (λν∗

j ), min
e′,e′′∈Lj\{i}

e′ 6=e′′

[
aν

e′→j + bν
e′′→j

]

 , Λν

j = 0

− min
e′∈Lj\{i}

[
bν
e′→j

]
, Λν

j = 1

∞, Λν
j = −1

(S123)

bν
j→e =





min
e′∈Lj\{i}

[
bν
e′→j

]−min


−φ′V (λν∗

j ), min
e′,e′′∈Lj\{i}

e′ 6=e′′

[
aν

e′→j + bν
e′′→j

]

 , Λν

j = 0

∞, Λν
j = 1

0, Λν
j = −1

(S124)

such that the value of λν∗
j is given by λν∗

j = g−1
ν (0) where gν(x) is

gν(x) = x− 1

M
− 1

M

∑

µ6=ν



|Λµ|+ (1− |Λµ|)Θ


−φ′V (x)− min

e′,e′′∈Lj

e′ 6=e′′

[
aµ

e′→j + bµ
e′′→j

]




 .

(S125)

We can then write the messages from an edge node to a vertex by using Eqs. (S103)-
(S106). Since all edge nodes are of degree two and they are neither source nor destination,
the messages from edge node e to node i in Fig. S6(b) are given by

Messages from an edge to a vertex

aν
e→i = aν

j→e + φ′E(ην∗
e ) (S126)

bν
e→i = bν

j→e + φ′E(ην∗
e ) (S127)

such that ην∗
e is given by ην∗

e = h−1
ν (0) where hν(x) is

hν(x) = x− 1

M
− 1

M

∑

µ 6=ν

Θ
(−φ′E(x)−min

[
aµ

j→e + bµ
i→e, a

µ
i→e + bµ

j→e

])
. (S128)

Indeed, one can use the above relations to devise a message passing algorithm involving
vertices only. We let aν

j→i = aν
e→i and bν

j→i = bν
e→i such that Eqs. (S123), (S124), (S126)

and (S127) combine to become
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Combined message passing which involves vertices only

aν
j→i =





min
l∈Lj\{i}

[
aν

l→j

]
+ φ′E(ην∗

ji )−min


−φ′V (λν∗

j ), min
l,r∈Lj\{i}

l 6=r

[
aν

l→j + bν
r→j

]

 , Λν

j = 0

− min
l∈Lj\{i}

[
bν
l→j

]
+ φ′E(ην∗

ji ), Λν
j = 1

∞, Λν
j = −1

(S129)

bν
j→i =





min
l∈Lj\{i}

[
bν
l→j

]
+ φ′E(ην∗

ji )−min


−φ′V (λν∗

j ), min
l,r∈Lj\{i}

l 6=r

[
aν

l→j + bν
r→j

]

 , Λν

j = 0

∞, Λν
j = 1

φ′E(ην∗
ji ), Λν

j = −1

(S130)

such that the value of λν∗
j is given by λν∗

j = g−1
ν (0) where gν(x) is

gν(x) = x− 1

M
− 1

M

∑

µ 6=ν



|Λµ|+ (1− |Λµ|)Θ


−φ′(x)− min

l,r∈Lj

l 6=r

[
aµ

l→j + bµ
r→j

]




 .

(S131)

The value of ην∗
ji is given by

ην∗
ji =

1

M
+
∑

µ 6=ν

σµ
ji, (S132)

such that σν
ji is given by

σν
ji = δΛν ,1Θ

(
min

l∈Lj\{i}

[
bν
l→j

]− bν
i→j

)
+ δΛν ,−1Θ

(
min

l∈Lj\{i}

[
aν

l→j

]− aν
i→j

)

+ δΛν ,0Θ


min


−φ′V (λν∗

j ), min
l,r∈Lj\{i}

l 6=r

[
aν

l→j + bν
r→j

]



−min

[
aν

i→j+ min
l∈Lj\{i}

[
bν
l→j

]
, bν

i→j+ min
l∈Lj\{i}

[
aν

l→j

]]
)

, (S133)

which also corresponds to the optimized state of the edge (ij) after the convergence of
messages: σν

ji = 1 if the communication ν passes the edge and σν
ji = 0 otherwise. We

remark that when no cost is defined on vertices, i.e. φV (x) = 0, the computation of λν∗
j by

Eq. (S131) can be omitted. The computation of ην∗
ji for all ν in Eq. (S132) involves only
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O(M) operations since one can first compute the sum
∑M

µ=1 σµ
ji and then compute each

ην∗
ji by ην∗

ji = (
∑M

µ=1 σµ
ji) − σν

ji + 1/M ; the computational complexity of the algorithm is

thus greatly reduced from O(N(M +M2〈I〉) to O(NM).The optimized path configurations
obtained by this algorithm for the London subway data are shown in Fig. S7.

3.3 The algorithm for separate costs defined on each direction
of edges

Finally, we derive the algorithm when separate costs are defined on each direction of the
edges. This is in particular relevant to transportation networks where congestion may
appear only in one direction. Since traffic direction is in general not well-defined on
vertices, we will derive the algorithm assuming only edge costs are present, i.e. H =∑

(ij)[φE(Ii→j/M) + φE(Ij→i/M)] where Ii→j and Ij→i correspond to the traffic from i to-
wards j, and from j towards i, respectively. As discussed in Section S1.5 and the paragraph
above Eq. (S103), our algorithm already accommodates directed communications; we can
then write an algorithm for two-way traffic based on Eqs. (S129) and (S130) assuming a
vertex cost function φV (x) = 0

aν
j→i =





min
l∈Lj\{i}

[
aν

l→j

]
+ φ′E(ην∗

j→i)−min


0, min

l,r∈Lj\{i}
l 6=r

[
aν

l→j + bν
r→j

]

 , Λν

j = 0

− min
l∈Lj\{i}

[
bν
l→j

]
+ φ′E(ην∗

j→i), Λν
j = 1

∞, Λν
j = −1

(S134)

bν
j→i =





min
l∈Lj\{i}

[
bν
l→j

]
+ φ′E(ην∗

i→j)−min


0, min

l,r∈Lj\{i}
l 6=r

[
aν

l→j + bν
r→j

]

 , Λν

j = 0

∞, Λν
j = 1

φ′E(ην∗
i→j), Λν

j = −1

(S135)

where aν
j→i and bν

j→i correspond to the energy when communication ν passes from j to-
wards i and from i towards j, respectively. The variables ην∗

j→i and ην∗
i→j correspond to the

normalized traffic from j towards i and from i towards j, respectively; they are given by

ην∗
j→i =

1

M
+
∑

µ6=ν

σµ
j→i, ην∗

i→j =
1

M
+
∑

µ6=ν

σµ
i→j, (S136)
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Fig. S 7: Optimized traffic for the London underground data obtained by the algorithm
defined in (S129) - (S133). A total of 2316 real passenger source-destination pairs were
optimized, corresponding to 5% of data recorded by the Oyster card system between 8:30am
- 8:39am on one Wednesday in November 2009. The corresponding costs are (a)H ∝∑i Ii

2,
and (b) H ∝ ∑i Ii

0.5. Red nodes correspond to stations with non-zero traffic. The size
of each node and the thickness of each edge are proportional to traffic through them. By
comparing the results obtained by our algorithms with those obtained by Djisktra’s shortest
path algorithm as in Table 1 of the main paper, we find (EP −ED)/ED and (LP −LD)/LD

to be 23.7% and −4.6% for γ = 2 and 7.0% and −6.5% for γ = 0.5, respectively.
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such that

σν
j→i = δΛν ,1Θ

(
min

l∈Lj\{i}
[
bν
l→j

]− bν
i→j

)
(S137)

+ δΛν ,0Θ


min


0, bν

i→j+ min
l∈Lj\{i}

[
aν

l→j

]
, min
l,r∈Lj\{i}

l 6=r

[
aν

l→j + bν
r→j

]

−

[
aν

i→j+ min
l∈Lj\{i}

[
bν
l→j

]]



σν
i→j = δΛν ,−1Θ

(
min

l∈Lj\{i}
[
aν

l→j

]− aν
i→j

)
(S138)

+ δΛν ,0Θ


min


0, aν

i→j+ min
l∈Lj\{i}

[
bν
l→j

]
, min
l,r∈Lj\{i}

l 6=r

[
aν

l→j + bν
r→j

]

−

[
bν
i→j+ min

l∈Lj\{i}
[
aν

l→j

]]



We remark that the computational complexity of the above algorithm is also O(MN).

4 Comparison with existing multi-commodity flow op-

timization algorithms

In this section we discuss the principal differences between our algorithm and existing
routing algorithms, especially those devised in the study of multi-commodity flow. We will
also give a quantitative comparison of the optimized energy obtained by our algorithm and
by a state-of-the-art multi-commodity flow algorithm.

Multi-commodity flow problem corresponds to the minimization of a weighted linear
cost of the form

C =
∑
ij

wijIij (S139)

where Iij represents the flow on the edge ij and wij is the corresponding weight, which
can be interpreted as the local cost of using edge ij for transportation/communication; the
minimization is typically subject to constraints on edge capacity cij and flow conservation,
to satisfy M source-destination pairs (also called commodities) kl with demand Dkl. If
we denote each commodity by ν, the flow Iij on an edge ij is the sum of the flow of each

commodity, i.e. Iij =
∑M

ν=1 Iν
ij.

Conventional multi-commodity flow problems allow for the transportation of each com-
modity via multiple paths, thus considering the Iν

ij as a real variable. The linear cost in
Eq. (S139) and the real-valued flow Iν

ij facilitates the use of linear programming to solve
the optimization problem. However, as linear programming for large systems can be time
consuming, large effort has been devoted to the derivation of controlled approximations,
which gave rise in efficient algorithms [S11, S12, S14, S13, S15]. Many of these algorithms
follow the rationale of [S11] and assign a distance on edges, which is dynamically updated
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to satisfy the required constraints while minimizing the cost. Thus, most of these algo-
rithms rely on centralized computations to find shortest path according to the (weighted)
distance function.

While the majority of multi-commodity flow studies focus on real-valued variables, in-
teger multi-commodity flow problems are also studied being more suitable to a range of
applications from airline fleet assignment and schedule planning [S17, S16] to optical net-
works [S18]. Integer multi-commodity flow problems are considered more difficult than
their real-valued counterparts and more advanced techniques for integer programming,
such as branch-and-price restricted column generation [S19, S20] and primal partition-
ing [S21], have to be employed. They usually require more complicated implementations
and simplifications are restricted to linear costs.

To solve the problem we have introduced, namely a system of interacting polymers/
communications, an algorithm capable to solve an integer programming problem with non-
linear cost is required (let alone concave cost functions); while most multi-commodity
flow algorithms are limited to the case of linear cost. Non-linear cost optimization has
been studied in the context of transportation and flow networks but usually with a single
commodity only [S22, S23, S24]. An integer problem with non-linear cost is studied in
optical networks but only on circular networks with a specific setting of source and des-
tination [S18]. To the best of our knowledge, there is no simple distributive algorithm
capable of solving an integer multi-commodity flow problem with a generic non-linear cost
function (especially concave).

Nevertheless, it is useful to compare the performance of our algorithm with those of
existing state-of-the-art algorithms. We thus adapt the multi-commodity flow optimization
algorithm [S11], designed for real-valued variables, and then for each commodity identify
the path with the largest flow to be the one connecting the source and destination, resem-
bling the idea of linear programming relaxation. We remark that this approach [S11] is the
basis of many existing congestion-aware algorithms, but congestion is reduced only in the
sense that edge capacity restrictions are satisfied. In addition, to optimize the non-linear
(quadratic) cost used in our set-up, and straightforwardly minimized by our algorithm,
we introduced a tunable parameter α to the algorithm [S11] and optimize the cost by an
extensive search over all α values. Without such parameter search, the multi-commodity
flow algorithm performs very unfavorably compared to our algorithm.

The algorithm of Ref. [S11] maximizes the concurrent flow given a set of edge ca-
pacities, or equivalently, minimizes the edge capacity such that the specified demand is
satisfied (which is called the minimum capacity utilization problem [S11]). In this sense,
the algorithm mitigates congestion by uniform distribution of traffic. As only linear cost
is originally considered [S11], we slightly modify this algorithm to minimize a quadratic
traffic cost. We term it as the min-cap algorithm, characterized by a weight parameter α;
the algorithm is determined as follows:

1. Assign a distance di = 1/N for each node. For each source-destination pair i and j,
we set the flow I(p∗ij) = 1, where p∗ij is one of the shortest paths connecting i and j.

2. Normalize I(p) subject to the constraint
∑

p∈P ′ I(p) = 1, where P ′ is the set of active
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paths, i.e. paths with non-zero flow. Normalize di subject to
∑

i di = 1. Evaluate
Ii =

∑
p∈Pi

I(p), where Pi is the set of active paths passing through i.

3. Update di by the formula:

di =
eαIi

∑
j eαIj

. (S140)

4. For all source-destination pair i and j, compute the shortest path (with the new set
of distances di) and denote it by p∗ij. Among all the non-zero flow paths for a source-
destination pair i and j, denote its longest one by pL

ij. Find the source-destination
pair k, l such that (k.l) = argmax[

∑
i′∈pL

ij
di′ −

∑
i′∈p∗ij

di′ ]. Compute

σ =
1

2α
log

∑
i∈p∗kl\pL

kl
di∑

i∈pL
kl\p∗kl

di

(S141)

where p∗kl\pL
kl denotes the nodes in path p∗kl but not in pL

kl. If I(pL
kl) > σ, re-route σ

units of flow from path pL
kl to p∗kl; otherwise, re-route all flow from pL

kl to p∗kl.

5. Repeat step 2 to step 4 until σ = 0. For each source-destination pair i and j, identify
the dominant path, i.e. a single path with maximum flow among all active paths
connecting i and j. Compute Ii as the number of dominant paths passing node i.
Compute energy E = 1

N

∑
i I

2
i .

In Fig. S8, we show three examples of the optimized energy E = 1
N

∑
i I

2
i as a function of

parameter α, compared to the optimized energy obtained by our algorithm and Dijkstra
algorithm. As we can see, an extensive search over α is required to achieve an optimized
energy close to the optimized energy obtained by our algorithm, especially for the global
airport network and random regular graph where E does not show a smooth behavior.
In addition, the optimal α is not universal and has to be found individually for different
instances and is problem-dependent. Without such a search over α, for example, if a small
α value is used as suggested by Ref. [S11], the optimized energy found will be much higher
than the one obtained by our algorithm.

The average optimized energies at individual optimal α∗ obtained by the min-cap al-
gorithm is compared to those obtained by our algorithm in Table S1. The energy gain is
modest with respect to those achieved with respect to the Dijkstra’s shortest path algo-
rithm as shown in Table 1 of the article. Nevertheless, our algorithm always provides the
lower bound of energy, which is not achievable by the min-cap algorithm (see Fig. S5).
Our algorithm also results in shorter average path lengths L and lower energy E in random
regular graphs, used as a controlled benchmark problem.

To further compare the performance of our algorithm with that of the min-cap algo-
rithm, we tested both on two sets of multi-commodity flow benchmark graph instances,
namely the Mnetgen and the PDS instances [S25]. We remark that our algorithm has
not been designed to consider edge capacities (although an extension in this direction is
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Fig. S 8: The optimized energy E = 1
N

∑
i I

2
i obtained by (top to bottom) the Dijkstra

algorithm, the min-cap algorithm and our routing algorithm, on (a) the London subway
network with 246 real passenger source-destination pairs, (b) the global airport network
with 300 random source-destination pairs, (c) a random regular network with N = 100,
k = 3 and M = 40, (d) a Mnetgen graph instance with N = 128 and M = 50, and (e) a
PDS graph instance with N = 256 and M = 50.
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feasible and will be studied elsewhere) and they were therefore ignored in this compari-
son. Moreover, the demand in these instances, e.g. distributed source and sink nodes of
the same commodity over the network, are different from our setting of individual source-
destination pairs; we thus randomly draw source-destination pairs instead of implementing
the demand as stated in the instances. The optimized results are shown in Table S1. Re-
sults are qualitatively similar to all previous examples, except that the min-cap algorithm
slightly outperforms our algorithm in energy by 0.1% on the Mnetgen instances, although
this result is not statistically significant. We note that our algorithm provides lower energy
E as well as shorter average path length L for the PDS graph instances, similar to that
observed for random regular graphs. Figure 8(d) and (e) show similar plots of the exten-
sive search over α to optimize the required energy on both Mnetgen and PDS instances,
separately.

In addition to the reduced energy obtained, we emphasize that our algorithm is dis-
tributive rather than centralized, principled rather than heuristic, and does not rely on
free parameters. Most importantly, this comparison is only limited to congestion-aware
algorithms while our algorithm is generic and can accommodate any non-pathological cost
function designated to suit the specific objectives and characteristics of the problem. For
instance, we cannot find any efficient algorithm which for optimizing path-sharing as ob-
tained by our algorithm for γ < 1.

γ = 2

EP−EMC(α∗)
EMC(α∗)

LP−LMC(α∗)
LMC(α∗)

London subway network −0.70± 0.05% +0.72± 0.10%
Global airport network −3.09± 0.59% +0.90± 0.64%
Random regular graphs (N = 100, k = 3)

M = 10 −0.01± 0.06% −2.53± 0.09%
M = 20 −1.02± 0.04% −0.80± 0.05%
M = 40 −0.66± 0.02% −0.20± 0.03%

Mnetgen graphs (N = 128, M = 50) +0.11± 0.17% −0.78± 0.16%
PDS graphs (M = 50) −1.85± 0.15% −1.35± 0.21%

Table S 1: A comparison of optimized energy E =
∑

i I
2
i and path length L = 1

M

∑
i Ii

obtained by our algorithm (P) and the min-cap algorithm (MC) at individual optimal α∗

for each instance. Results are averaged over sets of source-destination pairs recorded in
each 1 minute interval between 8:30 am – 9:00 am on the London subway network; 5 sets
of 300 randomly drawn source-destination pairs for the global airport network; 2000 sets
of random regular graphs with N = 100 and k = 3; 100 sets of 50 randomly drawn pairs
on each of the first 12 graph instances of the Mnetgen generator [S25] with N = 128; and
100 sets of 50 randomly drawn pairs on each of the first 5 graph instances of the PDS
problem [S25] with N ranging from 126 to 686.
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5 The emergence of replica symmetric breaking (RSB)

Replica symmetric breaking (RSB) [S1, S2] is a phenomenon which describes the emer-
gence of numerous local minima separated by high energy barriers. Although RSB is a
phenomenon that primarily occurs in infinite systems, it may hinder algorithmic conver-
gence in finite systems and is potentially one of the reasons for non-convergence we have
experienced in some real instances.

To test the emergence of RSB, we examine the Hamming distance between two infinite
systems which share the same quenched disorders, i.e. identical topology and source and
destination for each communication, but different initial conditions. We denote the cavity
field ~u in the two systems by ~uα and ~uβ respectively, and start with a random initial
condition, iterate the following equation to obtain the distribution w(~uα, ~uβ)

w(~uα, ~uβ) =
∞∑

k=1

kρ(k)
〈k〉

k∏

l=1

[∫
d~ulαd~ulβ w(~ulα, ~ulβ)

]∏
ν

1∑

Λν=0

[
δΛν ,0 +

2
N

δΛν ,1

]

×
∏
ν

δ



uν

α − (1− Λν)


 min

l≤k−1
[uν

lα]−min


−φ′(λ∗να), min

l,r≤k−1
l 6=r

[uν
lα + uν

rα]




− Λν min

l≤k−1
[uν

lα]



 .

×
∏
ν

δ



uν

β − (1− Λν)


 min

l≤k−1
[uν

lβ]−min


−φ′(λ∗νβ), min

l,r≤k−1
l 6=r

[uν
lβ + uν

rβ]




− Λν min

l≤k−1
[uν

lβ]



 .

(S142)

where λ∗να = f−1
να (0) and λ∗νβ = f−1

νβ (0), with fνα(x) and fνβ(x) given by

fνα(x) = x− 1
M

− 1
M

∑

µ6=ν



Λµ + (1− Λµ)Θ


−φ′(x)− min

l,r≤k
l 6=r

[uµ
lα + uµ

rα]





 (S143)

fνβ(x) = x− 1
M

− 1
M

∑

µ6=ν



Λµ + (1− Λµ)Θ


−φ′(x)−min


 min

l,r≤k−1
l 6=r

[uµ
lβ + uµ

rβ ], min
l≤k−1

[uµ
lβ + uµ

l=k,α]









(S144)

where the slightly more complicated definition of fνβ(x) is introduced to make sure that
the additional k-th field arising from the approximation (S43) is the same for both systems
α and β.

To examine the evolution of Hamming distance between the two systems as the cor-
responding fields propagate, we define R as the ratio of Hamming distances (between ~uα

and ~uβ) at the current and previous levels, given by

R =

√∑M
ν=1(u

ν
α − uν

β)2

1
k−1

∑k−1
l=1

√∑M
ν=1(u

ν
lα − uν

lβ)2

(S145)
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Fig. S9: The average ratio 〈R〉 (defined by Eq. (S145)) between Hamming distances at the
current and previous levels as a function of M , at N = 100, γ = 2 for H ∝∑i I

γ
i . Inset:

the same plot for γ = 0.5.

where uν
α and uν

β are computed by the delta function in Eq. (S142) in terms of uν
lα’s and

uν
lβ’s. After a stable solution w(~uα, ~uβ) is obtained, we evaluate the average value 〈R〉 by

computing R in every iteration of Eq. (S142). In cases of 〈R〉 < 1, the Hamming distance
vanishes as N → ∞ which corresponds to the replica symmetry (RS) behavior. On the
other hand, when 〈R〉 > 1 the hamming distance diverges as N → ∞, corresponding to
the RSB behavior. The results are shown in Fig. S9, where for both cases of γ = 2 and
γ = 0.5, 〈R〉 is slightly larger than 1 for all M except M = 1, suggesting the system is
characterized by the RSB behavior in most of the parameter space.

We understand that incorporating the RSB ansatz into the algorithm may lead to
different energy solutions in both artificial and real single instances. However, we do not
expect the true physical picture to be qualitatively different from the results shown in
Fig. 6 of the main paper. In extreme traffic conditions the optimized path length shown
in Fig. 6(a) agrees well with our expectation: when M = 1, we obtain the shortest path;
when M is large, the path length approaches the shortest path again as communications
are expected to go through the shortest path when traffic become homogeneous in the large
M limit. In regimes with intermediate M values we expect a peak in path length, which
may be marginally lower if RSB would be used, based on our experience with other hard
problems of this type. Thus, we expect the true physical pictures to agree qualitatively
with the results shown in Fig. 6 of the main text.

6 The optimal path length in ER and SF graphs

In Fig. S10 we show the rescaled path length (〈L〉 − L1)(N/ log N) in Erdös-Rényi (ER)
graphs as a function of rescaled number of communication M/(N log N). As we can see, 〈L〉
increases as M increases and then slowly decrease as M increases further, which is similar
to what has been observed in regular graphs. We also observe a similar data collapse for
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Fig. S10: The rescaled path length (〈L〉−L1)(N/ log N) as a function of rescaled number of
communication M/(N log N), for Erdös-Rényi (ER) graphs with N = 100, 200, 500, 1000
and 〈k〉 = 3, in results obtained for H ∝ ∑

i Ii
2. The value of L1 corresponds to the

value of 〈L〉 when M = 1 for the corresponding system, i.e. shortest path. Inset: (〈L〉 −
L1)(N/ log N) as a function of M/(N log N) for scale-free (SF) graphs.

systems with different N values in ER graphs after rescaling with N/ log N . A similar
plot for the scale-free (SF) graphs is shown in the inset of Fig. S10. The decrease of 〈L〉
is much slower after the peak when compared to regular and ER graphs, possibly due to
the intrinsic node degree inhomogeneity in SF graphs which leads to traffic inhomogeneity
even at large M . In addition, the data scaling with N log N is not as accurate as that
observed in regular and ER graphs.

7 The fraction of idle nodes and the phase transition

at γ = 1

In addition to the dependence on M , we examined the influence of the choice of cost
exponent γ on the optimized states. As we can see from the inset of Fig. S11, the minimum
of 〈L〉 is observed at γ = 1 which corresponds to the case where all communications are
routed through the shortest paths, while both cases of γ > 1 and γ < 1 show a longer
average path 〈L〉 to avoid congestion or aggregate traffic, respectively. Interestingly, the
fraction fidle of idle nodes shows a prominent jump at γ = 1 in simulations, resembling
a phase transition. While noting the deviation between theory and simulations, one also
observes a small jump at γ = 1 for the curves obtained from the theoretical equations,
which is visible at a larger scale (inset). Discrete jumps and large deviations of this type
are not observed for 〈L〉 or average cost 〈E〉. A similar phase transition at γ = 1 is
reported in [S26] with regard to flow patterns of electric currents in resistor networks.
In the present context the implication is that even a small change at γ = 1 is sufficient
to effectively power down unnecessary routers or close redundant subway stations (higher
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Fig. S11: Dependence of the optimized state on the cost exponent. The fraction fidle of
idle nodes as a function of γ for random regular graphs of sizes N = 100, 200, 500 and
k = 3, with M ≈ N/(k log N) communications that approximate peak positions in Fig. 6
of the main article. Inset: 〈L〉 as a function of γ for the networks with N = 100. Small
inset: enlarged plot for the analytical results of fidle as a function of γ around γ = 1. The
error bars for simulation results are of the order of the symbol size. All simulation results
are averaged over 1000 realizations.

fidle), with little impact on the cost or average route length 〈L〉.
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