Supporting Information

Boyd et al. 10.1073/pnas.1312793110

Fig. S1. (*A*) Average bioluminescence traces of wild type (WT) (blue trace) and *crm* deletion mutant (red trace) measured from *kaiBC::luc* reporter. Segregation of the mutant was confirmed via PCR. No substantial differences in gene expression rhythms were detected. (*B*) Start codon of *crm* ORF is required for complementation of arrhythmia of the *crm1* insertion strain. Representative bioluminescence traces of WT (blue), *crm1* (red), and *crm1* transformed with a construct wherein the start codon of *crm* is substituted with two consecutive TAG stop codons (violet) are shown. None of the 12 independent *crm* start \rightarrow stop strains tested demonstrated complementation of arrhythmia. LL, constant light.

Fig. S2. Combined fluorescence micrographs of WT, rpaA⁻, and crm1 strains expressing ZsGreen-tagged CikA (green). Autofluorescence from photosynthetic pigments is in red. Disruption of rpaA abolishes the polar localization of CikA, whereas CikA localization is not disrupted in crm1 cells.

Fig. S3. (A) Expression of native crm from the strong psbAl promoter results in significant damping of amplitude of rhythms in both WT and crm deletion backgrounds after several days in free run after 2 d of entrainment to a 12-h light:dark (LD) cycle. Average bioluminescence traces are shown. (B) Genetic disruption of rpaA in either a crm1 or a crm deletion background reflects phenotypes of an rpaA null. (Upper) Representative bioluminescence traces of kaiBC:: luc promoter activity. (Lower) Colony growth in LL vs. LD.

Table S1. RNA transcript expression in the crm genomic region

		Average cycle threshold	
Oligonucleotide primer set	Position relative to Tn5 insertion	WT	crm1
F1/R3	Downstream		
Forward: GCTATCTCAACAGCAGTTC		19	19
Reverse: CGTCATAGCCAGACATCTC			
F4/R4	Upstream		
Forward: CCTCAAGGCAGCCTAGA		20	19
Reverse: CTGAGCCTTGATCAACTCA			
Control	гроА	16	16

Table S2. Cyanobacterial strains used in this study

Strain	Genetic characteristics*	Antibiotic resistance	Source or reference
AMC06	WT	none	Laboratory collection
AMC541	WT P _{kaiBC} ::luc	Cm	Ditty et al. 2003 ¹
AMC601	WT P _{purF} ::luc	Km	Ditty et al. 2005 ²
AMC603	WT P _{psbAl} ::luc	Km	Ditty et al. 2005 ²
AMC704	kaiC in-frame deletion	Cm	Ditty et al. 2005 ²
AMC1722	Tn5 8S15-E11 in AMC541	Km, Cm	Dong et al. 2010 ³
AMC2051	uni-gene set (UGS) 18-B-10	Km	This study
	(Tn <i>5</i> 8S15-E11 in AMC06)		
AMC1782	pAM4420 in AMC06	Km	Takai et al. 2006 ⁴
AMC2082	pAM4226 in AMC1782	Km, Sp, Sm	This study
AMC2034	pAM4664 in AMC541	Km, Cm, Sp, Sm	This study
AMC2039	pAM4420 in AMC541	Km, Cm	This study
AMC2087	pAM2225 in AMC2051	Km, Sp, Sm	This study
AMC2086	pAM2224 in AMC2051	Km, Sp, Sm	This study
AMC2140	Tn5 8S15-E11 in AMC704	Km, Cm	This study

*pAM plasmids were used to transform cyanobacterial strains (AMC) by homologous recombination.

Cm, chloramphenicol; Km, kanamycin; Sm, streptomycin; Sp, spectinomycin.

1. Ditty JL, Williams SB, Golden SS (2003) A cyanobacterial circadian timing mechanism. Annu Rev Genet 37:513–543.

2. Ditty JL, et al. (2005) Stability of the Synechococcus elongatus PCC 7942 circadian clock under directed anti-phase expression of the kai genes. Microbiol 151:2605–2613.
3. Dong G, et al. (2010) Elevated ATPase activity of KaiC applies a circadian checkpoint on cell division in Synechococccus elongatus. Cell 140(4):529–539.

4. Takai N, et al. (2006) A KaiC-associating SasA-RpaA two-component regulatory system as a major circadian timing mediator in cyanobacteria. Proc Natl Acad Sci USA 103(32): 12109–12114.

Table S3. Plasmids used in this study

VAS PNAS

Plasmid	Characteristics	Antibiotic resistance	Source or reference
8S15-I10	Tn5 transposon insertion in crm	Km	Holtman et al. 2005 ¹
pAM1303	Promoter-less NSI vector	Sp, Sm	Laboratory collection
pAM2224	psbAI::luc promoter fusion	Sp, Sm	Laboratory collection
pAM2225	purF::luc promoter fusion	Sp, Sm	Laboratory collection
pAM4420	Km ^R cassette insertion in <i>rpaA</i>	Km	This study
pAM4226	WT rpaA	Sp, Sm	Laboratory collection
pAM4664	pSyn1_D/TOPO vector	Sp, Sm	Life Technologies
pSyn2.0	pSyn2_D/TOPO vector; psbAI promoter	Sp, Sm	Life Technologies
pAM4666	Genomic region containing antisense RNA in pSyn1_D/TOPO vector	Sp, Sm	This study

1. Holtman CK, et al. (2005) High-throughput functional analysis of the Synechococcus elongatus PCC 7942 genome. DNA Res 12(2):103–115.