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I Data

Trip records were collected from Singapore’s smart-card-based fare collection system, covering more than
96% of public transit trips. The system collects data for both bus and MRT (subway) modes. We employ
bus – not MRT (Mass Rapid Transit, railway based) – trip records in this study, since it is difficult to
identify close proximity interactions on the large MRT trains. For buses, once a smart card holder boards a
vehicle (tapping-in), the system will generate a temporary transaction record; after he/she leaves the vehicle
(tapping-out), a complete record will be stored with detailed information on the trip. A comprehensive
summary on utilization of smart card data is presented in Ref. [1].

Figure S1: Layout of the Scania K230 single decker lower floor bus and location of smart the card readers

Fig. S1 shows design and layout of most common bus type in Singapore – Scania K230UB Euro V bus.
Passengers can only board at front doors and are advised to alight at the rear door. Two smart card readers
are employed on both sides of each door.

In general, a full bus trip may contain more than one stage with transfers from one route/vehicle to
another; stage records are generated separately in the smart card system. Since our goal is to identify in-
vehicle encounters and the people one may encounter in vehicles will differ from stage to stage, we use the
term trip to represent stage in this document (see Ref. [2]). After processing the raw data, we obtained the
trip records used in this study. Fields and their contents are provided in Tab. S1.

This study was performed on trip records for the week from 11, April, 2011 (Monday) to 17, April, 2011
(Sunday). The dataset contains 21,814,448 bus trip transaction records from 2,895,750 individual smart card
holders.
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Table S1: Fields and contents of trip record dataset

Field Description

Trip ID A unique number for each transit trip
Card ID A unique coded number for each smart card (anonymized)
Passenger Type The attribute of cardholder (Adult, Senior citizen and Child)
Service Number Bus route service number (e.g. 96)
Direction Direction of the bus route (0 and 1)
Bus Registration No. A unique registration number for each vehicle (e.g. ‘0999’)
Boarding Stop ID A unique number for boarding stop (e.g. 40009)
Alighting Stop ID A unique number for alighting stop (e.g. 40009)
Ride Date Date of a trip (e.g. ‘2011-04-11’)
Ride Start Time Start (tapping-in) time of a trip (e.g. 08:00:00)
Ride End Time End (tapping-out) time of a trip (e.g. 08:00:00)
Ride Distance Distance of the trip (e.g. 12.0 km)

II Social demographic dependency

The use of transit services in general – and buses in particular – is differentiated along lines of ethnicity,
gender, age and income. As a result, similar to residential segregation - metropolitan areas are organized
with respect to ethnicity and income – daily transit use might exhibit social segregation patterns as well.

To address dependency and segregation of bus use on social demographic attributes, we incorporated
two additional datasets in the analyses:

(1) Census of population and Population Profile: This dataset provides a statistical analysis of Singa-
pore’s changing population profile. The report presents trends and changes in geographic distribution
and transport characteristics of Singapore’s resident population [3].

(2) HITS, 2008: The Household Interview Travel Survey (HITS) is conducted every four to five years
by the Land Transport Authority (LTA) of Singapore. HITS (2008) is the latest released survey.

II.1 Singapore population

These analyses are based on the population trends dataset. The total population of Singapore was 5.31
million in June, 2012.

Tab. S2 shows the share of transport modes for working residents older than 15. We see that public transit
covers more than 40% of the overall working transport modes. Overall, about 50.5% of Singaporean resi-
dents (excluding foreigners) go to work using only public transit (excluding private bus/van, e.g. company
bus).
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Table S2: Key indicators of the resident population on transport by ethnicity (2010) (adapted from Ref. [3])

Transport mode (%) Total Chinese Malays Indians Others

Resident working persons by
usual transport mode to work

(aged above 15) 100.0 100.0 100.0 100.0 100.0
Public bus only 19.3 18.3 24.1 22.3 18.2

Metro/Metro with bus 31.2 30.6 30.2 34.4 39.9
Car only 24.8 27.8 12.7 17.6 17.6

Private chartered bus/van only 3.6 3.5 4.2 4.4 3.2
Motocycle/scooter only 3.8 2.4 13.1 4.6 2.0

Others or no transport required 17.3 17.4 15.7 16.7 19.1

II.2 Social profile of bus users

With the increasing quantity and range of urban mobility, public transit is becoming more and more impor-
tant as a mode of individual mobility. However, similar to other social activities, transit use pattern is also
highly determined by individual social profile, such as gender, age and income. To have a comprehensive
understanding of bus users’ social profiling, we explored bus use dependency based on the following social
attributes: gender, age and income.

II.2.1 Dependence on gender and age

We employed HITS (2008) dataset to explore social segregation of bus use on gender, age, and income.
In Singapore, nation wide HITS is conducted every four to five years by the Land Transport Authority
(LTA), to provide insight into residents’ traveling and commuting behavior for transportation planners and
policy makers. The 2008 survey covers about one percent of all Singapore households, with each household
member answering detailed questions about their trips and social attributes.

The survey also aims at understanding challenges and policy issues facing Singapore’s land transport
use. Such surveys benefit research as well, by providing constructive insights on residents’ commuting
behaviors and their evolving traveling patterns: particularly transit use patterns distributed over individual
social attributes.

Tab. S3 and the blue bars in Fig. S2a show gender and age distribution over all 35122 individuals from
10641 households in HITS (2008). Looking at all individuals, sex composition and age structure in HITS
show similar patterns to results over the whole population. Based on this nation wide survey, we then explore
dependence of transit use on gender and age. The last two columns of Tab. S3 and the red bars in Fig. S2a
show the proportion of bus users over each sample group.

From the symmetrical pattern of Singapore bus users’ proportion over gender (see Fig. S2), apparently
bus use does not differ significantly by gender; both males and females show similar proportion of bus user
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Figure S2: Gender and age distribution from HITS (2008). (a), Gender and age distribution in HITS (2008). The blue
bars indicate all individuals in the survey, while the red bars show only the individuals who used public transit services
on the surveyed day. (b), Detailed proportion of public transit users over age, for both genders.

Table S3: Gender and age distribution from HITS (2008) (all v.s. bus users)

Age
HITS all HITS bus

Age
HITS all HITS bus

Male Female Male Female Male Female Male Female

4-9 1509 1312 152 121 50-54 1362 1378 423 581
10-14 1477 1300 592 559 55-59 963 1033 300 368
15-19 1415 1371 1044 1025 60-64 795 871 223 258
20-24 933 1356 598 754 65-69 493 574 152 163
25-29 1101 1766 598 749 70-74 428 520 139 111
30-34 1228 1727 581 712 75-79 231 269 69 36
35-39 1300 1666 499 677 80-84 146 227 29 18
40-44 1536 1713 562 714 85+ 65 144 13 4
45-49 1450 1463 481 599 Total 11949 13674 5107 5910

across all age groups.
However, from the proportion shown in Fig. S2b, we can see that bus use shows clear differentiated

pattern by age. Children under 9 and senior citizens above 70 seldom take buses. There are more bus users
among the young (15∼25) than among the adults over 30. With the age increase from 30 to 70, we also
observed a decreasing proportion of bus use.

II.2.2 Dependence on income and housing

To characterize income dependency, we first show income distribution over all individuals in HITS (2008).
As shown in Fig. S3, over all individuals who agreed to report their monthly incomes in HITS (2008), more
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Figure S3: Dependence of bus use on income levels. (a), Distribution of income levels from HITS (2008) (Unit:SGD).
(b), Transport model share across different income levels from HITS (2008) (adapted from Ref. [4]) (Unit:SGD).

than 50% have no income (mainly children or retired).
To better understand how income affects mode choice, Fig. S3b provides the mode share breakdown by

private transport, taxi, bus and metro against income levels. We see that the share of metro and taxi remained
stable over various income levels. However, the mode share for buses was highest for the low-income group
(Singapore Dollar – SGD 0∼2000). With increase in income, mode share for buses begins to taper off.
Taking both income distribution and mode share into consideration, bus trips actually covered about 37%
of total urban mobility in the 2008 survey. Census of population 2010 also indicates that transport mode
share varies with housing type (Tab. S4). About 62∼69% of resident working persons staying in HDB 1-3
room flats commuted by public transit, while the proportion is 48∼56% for people living in HDB 4 room or
larger flats. Further analyses of transport mode by education (attending school) and travel time by different
transport modes can be found in Ref. [3].

Taken together, observations suggest that transit use in Singapore varies clearly with age and income,
while trends over ethnicity and gender are not clear. However, considering that the number of active indi-
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Table S4: Key indicators of the resident population on transport by housing (2010) (adapted from Ref. [3])

Transport mode HDB HDB HDB HDB Condo Landed
(%) 1/2 room 3 room 4 room 5 and and private properties

flats flats flats executive flats

Resident working persons
by usual transport mode
to work (aged above 15) 100.0 100.0 100.0 100.0 100.0 100

Public bus only 39.9 28.7 21.5 15.3 10.3 8.6
Metro only 10.8 12.2 12.5 12.4 8.9 5.5

Metro with bus 18.2 19.9 19.8 18 10.9 9.4
Metro with other 0.6 1.3 1.9 2.7 2.9 2.2

Car only 2.2 9.3 15.6 29.3 50.6 59.6
Private chartered

bus/van only 2.3 4.1 4.7 3.6 1.5 1.2
Motocycle/scooter only 4.4 5.1 5.2 3.3 0.8 0.6

Others 8.8 9.5 10.9 9.7 8.6 7.8
No transport required 12.9 9.9 7.8 5.9 5.6 5.1

viduals over one week is 2.9 million (covering 55% of the residents) and taking the observed patterns in Fig.
1C and 1D in the main paper into account, we conclude that public transit is the most important element of
daily commuting trips (go to work/school) for Singaporeans.

III Characterizing collective transit use

To explore the pattern of collective transit activities and the pattern of transit usage at city-scale, we first
characterized the following properties for all 21,814,448 trips:

(1) Trip start time

(2) Trip duration l (in-vehicle travel time)

III.1 Trip start time

Fig. S4a shows the number of bus boardings per hour during the week. Prominent morning and evening
peaks can be readily identified with departure rates greater than 300,000 passengers/hour, i.e. the daily
collective commuting flows in the city. Between the two peaks on weekdays, the buses are also highly
utilized with boardings higher than 100,000 passengers/hour. In addition, we find quite similar daily demand
patterns from Monday to Friday, revealing the regularity of collective transit use for both regular travelers
and other passengers, in both peak and non-peak time. Without the heavy commuting flows of weekdays,
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Figure S4: Collective transit activities. (a), Departure rate of bus trips during the week. The demand is shown in
number of boardings per hour. (b), The probability density function P(l) of trip durations. The inset plots P(l) in
semi-log scale (�).

demand patterns are more uniform on weekends. Collective movements and travel behaviors across the
world are reviewed in Ref. [5] for comparison.

III.2 Trip duration l (travel time)

Fig. S4b shows the distribution P(l) of trip duration during the week, defined as the time interval between
boarding (tapping-in) and alighting (tapping-out) activities. Considering that city transit route lengths are
always upper bounded, distribution of travel time is also bounded with an upper limit of 9041s (2.5 hours).
In addition, as the inset of Fig. S4b shows, we found that the tail of P(l) can be well characterized by an
exponential, when t ≥ 600s:

P(l)∼ e−
l

λl (S1)

with λl ≈ 704s.
As a bus system is a feeder mode in a city with a subway system, durations of bus trips are relatively

short. On average, durations of bus trips are 867.9±763.9s (14.5±12.7min, mean ± standard deviation).
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IV Characterizing individual transit use

To explore individual transit use patterns, we analyzed the following attributes for all 2,895,750 individual
smart card holders.

(1) Trip frequency f

(2) Number of encountered people n

(3) Time interval between consecutive bus trips τ

IV.1 Trip frequency f

The frequency of using bus services is the main indicator to characterize individual transit usage patterns.
We measured frequency f of taking buses during the week for all individuals. The distribution P( f ) is
shown in Fig. S5a. Given the fact that transit use is constrained by various personal and physical factors,
P( f ) is also upper bounded (upper limit: 116 week−1, the most active user) and exponentially distributed,
as the inset of Fig. S5a shows:

P( f )∼ e
− f

λ f (S2)

with λ f ≈ 5.9 week−1.
On average, stage frequency during the week is 7.5±6.6 week−1 (mean ± standard deviation).

IV.2 Number of encountered people n

Fig. S5b shows the distribution P(n) of number of encountered individuals during the week. Travelers are
grouped according to their bus trip frequencies f . Clearly, the more one travels, the more contacts he/she
tends to have. The standard deviation of contacts also increases with f .

IV.3 Inter-event interval τ

People’s communication activities via digital networks such as mobile phone calls, e-mails and online mes-
sages follow a non-Poissonian inter-event interval τ between consecutive communication activities,

P(τ)∼ τ
−β e−

τ

τc (S3)

with exponent β and cutoff value τc.
This distribution P(τ) characterizes the bursty nature of human communication activities, showing that

inter-event intervals τ are smoothly distributed as a truncated power-law [6, 7]. However, intuitively, transit
activities are typically more regular and rhythmic than communications, in particular for commuters with
daily work/home trips.

To explore transit use dynamics, we selected 2,507,783 individuals who take buses more than once
during the week (86.6% of all bus users), obtaining 18,985,800 inter-event intervals of consecutive bus trips.
The distribution P(τ) of intervals is shown in Fig. S5c. As can be seen, unlike the communication activities
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mediated by digital networks, P(τ) on bus activities has clear temporal patterns, neither exponentially nor
power-law distributed. In most cases, individuals take their next trips within 18 hours after previous trips.
Over this 18 hours, two peaks can be clearly identified:

• 0–2h, a prominent peak describing intervals between unlinked trips: including transfers to create a
linked trip between two activities, as well as activity chains with short duration activities at the first
stop;

• 8.5–14.5h, two close flat peaks, indicating intervals between daily home/work commuting trips;

When the interval is longer than 18 hours, the distribution shows repeated prominent peaks at 24h,
48h, 72h, 96h, 120h and 144h. In contrast with the smooth asymptotic distribution of inter-event intervals
obtained from digital communication networks, these prominent peaks capture the tendency of individuals
to take buses at daily intervals. Note that a similar tendency with peaks of people returning to locations
they previously visited is reported in Ref. [8] as well, showing that people’s transit use displays significant
regularity.

V Instantaneous in-vehicle encounter network

With the precise boarding/alighting times and the unique bus registration number, trip records provide us
with the opportunity to construct a city-scale, time-resolved, in-vehicle encounter network. Given that the
size of a bus is limited, encounters can be also considered as close physical proximity, important for un-
derstanding the spreading of airborne viruses and word-of-mouth information. Once an individual boards
the vehicle, edges with all other on-board passengers are created, representing encounters; and when he/she
leaves the vehicle, the edges with on-board passengers are destroyed. Thus, as a consequence of the time-
continuous boarding/alighting activities, a temporal contact network is created. Unlike static networks such
as road networks and internet networks, in temporal networks driven by activities, the edges are not contin-
uously active over time, resulting in network evolution in temporal scale. Hence, the temporal resolution
of edge-state (active or not) also determines the resolution of network evolution. Fig. S6a plots an instanta-
neous encounter network composed by individuals from 15 vehicles, at 9:00 a.m. on 11, April, 2011.

In contrast with temporal communication networks composed of a set of stars and lines instantaneously,
the encounter network is more like a collaboration network on scientific papers or movies, since all indi-
viduals from one collaboration are fully connected [9]. However, as authors and actors can participate in
more than one paper and movie at the same time, while one cannot appear in two vehicles instantaneously,
this contact network is composed of many distinct components, each of which represents a fully connected
contact network on one vehicle, as shown in Fig. S6a.

As opposed to collaboration networks (where the edges of a component are generally created and de-
stroyed when the collaboration is begun or ended, as a consequence of individuals’ boarding and alighting
activities), the encounter networks change over time with the creation and destruction of edges. To model
this temporal contact network, we defined two attributes to the edges: (1) creation time tcr, and (2) contact
duration td . Therefore, the edges of the contact network are denoted as etd

tcr , and the destruction time of

12



a

Time (t)

N
it

 

 

Mon Tue Wed Thu Fri Sat Sun
0

2

4

6

8

10
x 10

4

N
it

E
it

0

0.5

1

1.5

2

2.5
x 10

6

E
it

b

0  20 40 60 80 100 120 140
0

0.01

0.02

0.03

0.04

k

P
(k

)

 

 
11:00-12:00

0

0.01

0.02

0.03

0.04
P

(k
)

 

 
8:30-9:30

c

Figure S6: Instantaneous encounter network. (a), Contact network at 9:00 a.m. on 11, April, 2011. Here, we take
only a snapshot of the encounter network, with 15 vehicles out of 2519, shown in different colors (only one half of
on-board passengers from each vehicle are shown). (b), Number of vertices and number of edges of instantaneous
network G(t) during the week. Red solid curve shows number of vertices; green dashed line shows number of edges.
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etd
tcr is tcr + td . Consequently, at any time t, the instantaneous contact network G(t) can be defined as the

composition of edges which are created before t and destroyed at or after t:

G(t) =
⋃

tcr<t, tcr+td≥t

etd
tcr (S4)

Fig. S6b shows the instantaneous number of vertices and number of edges respectively. In fact, for the
instantaneous contact network G(t), if individuals are assumed to be uniformly distributed to m vehicles,
the number of edges may be written as:

Eit =
m
2
×
(

Nit

m
〈k〉it

)
=

m
2

(
Nit

m

(
Nit

m
−1
))
≈ N2

it

2m
(S5)

where Nit is number of vertices, and 〈k〉it =
(Nit

m −1
)

is average degree of G(t).
Therefore, with transit demand variation during the day, degree distribution P(k) of instantaneous net-

work G(t) also changes, as shown in Fig. S6c. Obviously, degree distributions are markedly different in
peak and non-peak hours.

VI Weekly-aggregated encounter network

To further explore encounter patterns, we extend the time dimension to an interval (t1, t2). Similar to instan-
taneous network G(t), the aggregated encounter network G(t1, t2) in interval (t1, t2) can be formulated by
selecting edges created before t1 and destroyed at or after t2:

G(t1, t2) =
⋃

tcr<t1, tcr+td≥t2

etd
tcr (S6)

We set Monday’s 0:00 a.m. as t1 = 0 and the end of Sunday as t2 = 7× 24 = 168h; thus, the weekly
aggregated contact network can be denoted as G(0,168h). Considering that two individuals can encounter
each other more than once during the week, it is possible that more than one time-labeled edge is created
between two vertices in this network.

To explore statistical properties of the weekly-aggregated encounter network, we measure the following
representative properties:

(1) Degree distribution P(k)

(2) Contact duration td

(3) Encounter frequency over the week fe

(4) Total encounter duration d
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Figure S7: Statistical properties of weekly-aggregated in-vehicle encounter network. (a), Distribution P(k) of de-
grees. (b), Probability density function P(td) of encounter durations. This distribution is also plotted in log-log scale,
as the yellow dashed line (•) shown in (d). (c), The distribution P( fe) of encounter frequencies by individual pairs
over the week. As a guide, the black line shows the slope with β = 4.8 for comparison. (d), Probability density
function P(d) (N) of total encounter duration of pairs over the week. As a guide, the solid line indicates slope with
β = 4.8.
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VI.1 Degree distribution P(k)

In the aggregated network, the degree k for an individual stands for the number of people he/she has en-
countered during the week. Previous studies have shown the scale-free nature of static networks such as
actor collaboration networks, internet and power grids, suggesting that the degree of these networks follows
a heavy-tailed power-law distribution:

P(k)∼ k−γ (S7)

with exponent γ .
However, as shown in Fig. S7a, we find that P(k) of the weekly-aggregated network shows a stable

long exponential tail for k ≥ 50: P(k) ∼ e−
k

λk , with λk ≈ 286. Unlike the scale-free property of some
networks [10], the exponentially bounded tail suggests that most individuals have only a limited number
of contacts during the week. Note that the exponential decaying of P(k) is also reported in other human
contact networks in Ref. [11, 12], suggesting similar patterns may exist in most, if not all, human physical
contact networks. In fact, on one hand, the physical constraints on humans might be one reason for the
short-tailed distribution given that one cannot take buses infinitely within one week. On the other hand,
no preferential attachment is exhibited since all individuals are essentially random strangers to each other
across the population. The average degree of the weekly-aggregated network is 〈k〉= 342±333.

VI.2 Contact duration td

In the weekly-aggregated network, 494,323,272 edges are created in total over the week. To explore the
property of physical proximity, we extract the contact duration td of each edge. In Fig. S7b, we plot the
distribution P(td) of contact durations, which is one main indicator to measure connection strength between
two individuals.

We observe that P(td) can be also characterized by an exponential distribution P(td)∼ e
− td

λtd when td ≥
600s, with λtd ≈ 498.4s. The exponential tail is strong evidence that human transit use is highly constrained.
It should be noted as well that td represents the length of overlap in two individuals’ travel time and the
shape of P(td) is quite similar to the distribution P(l) of travel time stated in Sec. III.2, together indicating
the homogeneity between collective behaviors and individual behaviors.

VI.3 Encounter frequency fe

For each individual pair, frequency of their encounters is a first indicator to quantify the strength of their
social relationship. If individuals are assumed to have no correlation in their transit use with others, it
might be rare that one encounters the same person repeatedly; however, frequent encounters are observed in
the dataset. To measure the probability of repeated encounters, we calculated the frequency of encounters
fe (i, j) for each individual pair (i, j). Fig. S7c shows the probability density distribution P( fe) for all pairs
during the week. Strikingly, we found that the frequency of encounters can be characterized by a power-law
distribution:

P( fe)∼ fe
−β (S8)
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with exponent β ≈ −4.8, suggesting that while most people rarely encounter the same person repeatedly,
there are still certain individuals who do encounter each other frequently during the week.

Hence, recurring encounters can represent substantial collective regularity of pairs of individuals re-
garding their transit use. This kind of social relation is the so-called “familiar stranger” [13, 14], the people
whom we may encounter repeatedly in daily life. Nevertheless, since more than 95% of the 494,323,272
encounters happened only once during the week, people hardly noticed the existence of the huge contact
network with their “familiar strangers”.

VI.4 Total encounter duration d

Beyond encounter frequency, we propose a second indicator to measure strengths of connections between
two individuals – total encounter duration d. For paired individuals who have encountered each other over
the studied week, their total contact duration is defined as the sum of durations of all encounters:

d (i, j) =
fe(i, j)

∑
k=1

td,k (i, j) (S9)

where fe (i, j) is the number of encounters between two individuals (i, j) during the week and td,k (i, j) is the
duration of their kth encounter.

Fig. S7d shows the distribution P(d) of total encounter durations over all pairs. As can be seen, the
probability density P(d) generally overlaps with the distribution P(td) shown in Sec. VI.2 when d ≤ 1200s,
as these individuals encounter each other only once in the studied period. However, the two distributions are
separated into the long-tailed P(d) and the short-tailed P(td) part. The difference between P(d) and P(td)
is due to the repeated encounters. When d ≥ 1200s, the P(d) can be well characterized by a power-law:

P(d)∼ d−β (S10)

with exponent β ≈ 4.8.
Therefore, with the contribution from repeated encounters, the total encounter duration has overtaken the

exponentially bounded td , resulting in the occurrence of heavy ties between two individuals in the aggregated
network.

VII Measuring individuals

To explore how individual behavior influences his/her encounter patterns, we propose two attributes to
capture the possibility of encounters and the regularity of transit use, respectively:

(1) Personal weight wi

(2) Absolute trip difference mi
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VII.1 Personal weight wi and rescaled encounter likelihood ri

To quantify encounter likelihood individually, we first measure the total number of encounters for each
individual, given as the sum of encounter frequency fe with each encountered person:

ui ≡ ∑
j∈N(i)

fe (i, j) (S11)

where N(i) is the set of encountered people (neighbors) of individual i.
However, since all the encounters are treated equally, ui fails to capture the likelihood to encounter

someone repeatedly. To measure the individual’s chance of repeated encounters, we propose the personal
weight wi, given by the number of recurring encounters.

wi ≡ ∑
j∈N(i)

( fe (i, j)−1) (S12)

hence, to individual i, the number of “familiar stranger” is ki = ∑
j∈N(i), fe(i, j)>1

1 (see Fig. S8 for ui, wi and ki).

Given that the possibility of recurring encounters is also influenced by travel time, we rescale wi to
encountering rate to avoid the bias:

ri =
wi

Ti
(S13)

where Ti = ∑
j

l j is the total travel time (l j is the duration of j th trip). Hence, ri is a more appropriate attribute

to capture a person’s encounter likelihood.
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Figure S8: Individual transit use. (a), Definitions of wi and ui. For individual i, his/her neighbour set is denoted as
N (i) = {1,2,3,4,5,6,7,8,9}, of which individual i encounters {1,2,3,7,8} more than once, such that ki = 5; thus,
the calculated personal weight and number of total encounters are wi = (2− 1)+ (2− 1)+ (3− 1)+ (1− 1)+ (1−
1)+(1−1)+(2−1)+(4−1)+(1−1) = 8 and ui = 2+2+3+1+1+1+2+4+1 = 17 respectively. (b), Transit
usage plots for 3 individuals. Each bus trip is shown as a colored solid line, from tstart to tend .
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VII.2 Absolute trip difference mi

The trip set of individual i is TRi. To find out whether trip trc is regular or irregular, we first measure its
similarity to the remaining trips, given by:

q(trc)≡ ∑
j 6=c,|t j−tc|≤45min

l j (S14)

where t j =
tstart+tend

2 is the mean of start and end times of the j th(k = 1,2, · · · ,n) trip – tr j, tc is mean time of
current trip trc and l j is the duration of the j th trip. Hence, q(trc) measure the total duration of trips within
45min from trc.

Therefore, for trip trc ∈ TRi, its outlyingness is defined as:

oc ≡
q(trc)

∑
j

q(tr j)
(S15)

such that a higher oc indicates trc is similar to other trips whereas a lower oc indicates that the corresponding
trip is irregular. Then, we define an irregular trip if oc < Mi−Di, where Mi and Di are the mean value and
standard deviation of {oc}.

To avoid over-removing, we set a threshold so that the total duration of removed trips should be less than
10% of the duration of all trips. If the ratio is higher than 10%, the irregular trips will not be removed from
TRi given their importance.

After this, we apply the general K-means method to all the individuals [15], with the distance calculated
as sum of absolute differences.

mi =


2
∑

k=1
∑

t j∈Sk
|t j−µk|

n if |µ1−µ2| ≤ 2h
∑
j

∣∣∣t j−
∑ t j

n

∣∣∣
n otherwise

(S16)

where µk is the mean of {t j|t j ∈ Sk}.
The general algorithm of calculating mi is shown as Algorithm S1:
In Fig. S8b, we show the transit use of 3 individuals. The top inset shows the transit use of a regular

transit user. Generally, this individual took buses at the same time from Monday to Friday, resulting in a
very low mi = 414s≈ 6.9min. Owing to the very regular transit use, the encounter rate of this individual is
ri = 41.21h−1, which is remarkably high. In the middle inset, we plot transit use of an irregular user. Clearly,
the times of this individual taking buses are random over the week, with a high mi = 8097s ≈ 135min and
a low ri = 1.23h−1. The transit use of the third user is a hybrid of regular commuting and random trips.
After measuring the total duration of random trips, they are not removed, given their importance. Thanks
to the regular commuting trips, the encountering rate ri = 7.14h−1 is not too low. However, the calculated
mi = 5596s≈ 93min is high, owing to the additional random trips.

VII.3 Distributions P(r) and P(m)

To explore how individual regularity influences his/her encounter likelihood, we chose all the individuals
who encounter at least one “familiar stranger” during the week, obtaining a population of 1,626,040 people.
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Algorithm S1 Calculating mi with irregular trips removed

for i = 1 to N do
TRi←{tr1, · · · , trn} trip set of individual i
{q(trc) |trc ∈ TRi}← Calculate q(trc) for each trip
for c = 1 to n do

oc← q(trc)
∑
k

q(trk)

end for
Mi← mean {oc|c = 1, · · · ,n}
Di← standard deviation {oc|c = 1, · · · ,n}
for c = 1 to n do

if oc < Mi−Di then
TRi← TRi\{trc}

end if
end for
({u},{S})← K-means(TRi)
mi← Calculate absolute trip difference.

end for

Thus, following the previous computation, we obtain parameters ri and mi for the selected population
and measure the distribution of P(r) and P(m) separately. Fig. S9a shows the distribution of P(r) over the
individuals with ri ≥ 1. We find P(r) is well characterized by a truncated power-law, indicating the rescaled
encounter likelihood varies strongly across the population, with most people having a small r. Next, we plot
the probability density function P(m) of absolute trip differences (Fig. S9b), finding P(m) is characterized
by a narrow peak followed by a fat tail. Given the definition of m, small m indicates regular behaviors while
high m suggests random traveling. Thus, the distribution results from a combination of regular commuters
and random travelers.

To explore whether ri is rooted in one’s transit use patterns, we then measure the joint distribution P(r,m)

over the selected population (Fig. S9c). Interestingly, with the increase of r, we observe a convergence to
m ≈ 10min. We find that for the people with small m, the distribution P(r) is wide, suggesting that it is
not clear that individuals with small m encounter more “familiar strangers” given other factors such as trip
timing and frequency. However, it is clear that people with larger r tend to behave more regularly. The dotted
line indicates the average trend of m < m0.95 (m0.95 is the 95th percentile of m), showing that the average
decreases with r. Taken together, the distribution shows that one’s high encounter likelihood is rooted in
one’s regular daily behavior.

VIII Evolution of aggregated network G(0, t)

To analyze the temporal contact network, we derive static networks to capture both temporal and topolog-
ical properties (Fig. S10). To explore the evolution and dynamics creating G(0,168h), we reconstruct the
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Figure S9: Probability distributions of rescaled encounter likelihood r and absolute trip difference m. (a), Prob-
ability density function of ri(ri ≥ 1) in log-log scale. The dashed line indicates a truncated power law P(r) ∼
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α

)
, with r0 = 22.8, β = 2.9 and α = 116. (b), Distribution P(m) over the selected population.

(c), Joint probability density P(r,m). Solid dotted line indicates the trend of mean value of m < m0.95 against r.

network in temporal scale, obtaining the evolution of the aggregated network G(0, t):

(1) Number of vertices Nt

(2) Degree distribution P(k)

(3) Average degree 〈k〉t

(4) Clustering coefficient ct

To distinguish regular commuters from random travelers, we divide the population into two groups:
regular commuters with personal weight wi ≥ 10, and the rest. Then we create randomly drawn populations
of 500,000 individuals, with different fractions of regular commuters from ρ = 0% to ρ = 100%.
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VIII.1 Number of vertices Nt

We first measure growth of the aggregated network G(0, t) in terms of number of vertices Nt until time t.
Fig. S11a shows the fraction of vertices — Nt

N , where N = 500,000 is the size of the final population.
We observe that, when the population is composed of regular commuters, the number of individuals Nt

exhibits a rapid increase at the beginning of the week, containing about 90% of the population after Monday,
followed by a slower growth to saturation. However, when we reduce the fraction of regular commuters,
growth rate is reduced. In fact, this pattern results from the difference of inter-event interval τ of different
types of transit users. Regular commuters tend to take buses every day, while random passengers appear
randomly in the transit system during the week. Thus, if the population is composed of random passengers
who take buses once and uniformly distributed during the week, we expect to observe a linear increase.

VIII.2 Degree distribution P(k)

Fig. S11b shows the degree distributions P(k|ρ). As can be seen, P(k|ρ = 0) can be well characterized by
an exponential distribution, while the share of low k is decreasing gradually in P(k|ρ) with the increase of
ρ from 0% to 100%. In fact, we know that most of the population are regular commuters, so they tend to
encounter more people, leading to the increase of P(k|ρ = 1) from k = 0 to k = 200. Despite the variation,
we find that all P(k|ρ) can be well-fitted with exponentially decaying tails, which is in accordance with the
degree distribution over the whole population (Fig. S7a).

Mon, Tue, Wed, Thu, Fri

Figure S10: The growth of a sample encounter network over weekdays. The colors of edges indicate their creation by
day of week. Please note that some pairs encounter each other more than once.
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Figure S11: Evolution of aggregated encounter networks created over populations with different fractions of regular
commuter. (We show only 6 of the 11 populations created for simplicity.) (a), Fraction of presented users. (b), Degree
distribution P(k). (c), Average degree 〈k〉. (d), Global clustering coefficient (solid lines) and average clustering
coefficient (dashed lines).

VIII.3 Average degree 〈k〉t

The average degree of aggregated network G(0, t) at time t is given by:

〈k〉t =
2Et

Nt
(S17)

where Et is the number of edges at t.
As stated before, the average degree of instantaneous networks can be estimated by 〈k〉it ≈ Nit

m . However,
the cumulative degree kt for one individual in an aggregated network is given by the sum of encounters
created over (0, t). In other words, kt is also influenced by the frequency of taking buses. If we assume the
number of encounters in each trip to be a constant n, the average degree may be calculated as:

〈k〉t = n f̄t (S18)

23



where f̄t is the average number of bus trips over (0, t), which is linear increasing with t. Thus, we may find
〈t〉 is also linear increasing with t without saturation.

As shown in Fig. S11c, we observe steady linear increases of 〈k〉t with t. Hence, unlike social networks
with stable relationships, even if we further extend the aggregation time, no saturation will be observed,
given the partially random characteristics of encounters in this contact network.

Evolution of the average number of encountered people 〈e〉 is presented in the manuscript, suggesting
that stronger social connections are emerging from the random daily encounters.

VIII.4 Clustering coefficient ct

Two clustering coefficients are measured here according to the definition in Ref. [16].
The global clustering coefficient or transitivity of a network is defined as:

c1 =
3×number of triangles in the network
number of connected triples of vertices

(S19)

and the average clustering coefficient of a network is defined as:

c2 =
1
n ∑

i
cli (S20)

where cli =
number of triangles connected to vertex i

number of triples centered on vertex i
is the local clustering coefficient of vertex i.

Therefore, both c1 and c2 lie in the range 0≤ ct ≤ 1. Fig. S11d shows the evolution of both global cluster-
ing coefficient and average clustering coefficient. Interestingly, we find the global clustering coefficients for
different combinations of regular and irregular users display a strong convergence to c1 = 0.1095±0.0093
(mean± standard deviation) after 168h, whereas the average clustering coefficients exhibit a more dispersed
pattern with c2 = 0.2649±0.0660.

In fact, as stated in [16], c2 tends to weight the contributions of vertices with low-degree more heavily
and users with lower degree tend to have higher local clustering coefficients due to less transit frequency
since the encounters of one individual are bounded in one or two vehicles. With the increase of ρ , the
average frequency of transit trips and average degree are increasing as well, resulting in c2 decreases from
0.3668 to 0.1656.

As opposed to c2, c1 actually measures the mean probability P(connected) that two vertices are con-
nected if they are connected to same third vertex. In terms of this encounter network, c1 represents the
probability of two individuals having encountered each other, if they both have encountered the same third
individual.

Thus, the strong convergence of c1 over the population with different ρ captures a general trend of
P(connected), although the population composition is quite different.

At the individual level, the local clustering coefficient cli has been widely used to describe individuals in
sociology. As reviewed in [16], many researchers found that cli ∼ k−1

i holds approximately true for certain
models of scale-free networks, such as it implies ln(cli) ∼ − ln(ki). However, the aggregated network
here is different from the previously studied scale-free networks, given their formation mechanism and the
evolution of cli with ki. To further explore the evolution of clustering coefficient individually, we measure
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Figure S12: Joint probability distribution P(k,c) of degree and local clustering coefficient at the end of each weekday.
The parameters k and c are obtained from 783,247 individual with person weight wi ≥ 10. (a), Evolution of P(k,c).
(b), Evolution of P(ln(k), ln(c)). The correlation coefficient r of ln(ki) and ln(cli) from Tuesday to Friday are r =
{−0.61,−0.60,−0.56,−0.52}. The standard deviation of ln(ki) and ln(cli) are σki = {0.69,0.66,0.62,0.59} and
σcli = {0.47,0.48,0.48,0.48}, respectively.
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the joint distribution P(ki,cli) over the population with wi ≥ 10 (ki here means number of encountered
people). The daily evolution of P(ki,cli) during the week is shown in Fig. S12a. From the movement of
the central cluster, it can be seen that cli decreases with the increase of ki. When looking into the variation
of (ln(k), ln(c)), strikingly, we found the distribution P(ln(k), ln(c)) presents a clear symmetrical pattern as
shown in Fig. S12b after Monday. We also observe that the central cluster of P(ln(k), ln(c)) is moving with
time, showing the general pattern that clustering coefficient c decreases with the increase of degree k.
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