1 Supplementary Materials:

- 2 Material and Methods
- 3 Supplementary Figures 1 to 15
- 4 Supplementary Datasets 1 to 5

5 Material and methods

6 1. Fungal and plant material

Piriformospora indica Sav. Verma, Aj. Varma, Rexer, G. Kost & P. Franken (DSM11827, Deutsche Sammlung von
 Mikroorganismen und Zellkulturen, DSMZ, Braunschweig, Germany) cultures were propagated at 28°C in liquid

9 complete medium (CM) (1) with 2% glucose and 130 rpm shaking or on solid medium with 1.5% agar. Hygromycin

10 B (80 μg/ml) was supplemented for growth of *P. indica* transformants. For microarray experiments *P. indica* was

11 cultivated on 1/10 PNM plates (2) for 3 days. 1/10 PNM final concentrations: 0.5 mM KNO₃, 0.367 mM KH₂PO₄,

12 0.144 mM K₂HPO₄, 2 mM MgSO₄ x H₂O, 0.2 mM Ca(NO₃)₂, 0.25% (v/v) Fe-EDTA (0.56% w/v FeSO₄ x 7H₂O and

13 0.8% w/v Na₂EDTA x 2H₂O), 0.428 mM NaCl; pH-adjusted to 6.0 and buffered with 10 mM MES. For solid media,

14 0.4% (w/v) GELRITE (Duchefa) was added.

15 Barley seeds (Hordeum vulgare cv. Golden Promise, Ingrid or Ingrid mlo-5 mutants I22, kindly provided by Gregor 16 Langen) were surface sterilized with 70% ethanol for 1 minute, 12% sodium hypochlorite for 1.5 hours and washed 17 with sterile distilled water for 3 hours. Sterilized seeds were kept in the dark for 3 days on sterile wet filter paper at 18 room temperature. For colonization studies, three-day-old barley seedlings were transferred into sterile jars containing 1/10 PNM medium and inoculated with 3 ml chlamydospore suspension (5×10^5 ml⁻¹ in 0.002% 19 TWEEN20). Incubation was performed in a Conviron phytochamber with a day/night cycle of 16/8 hours (light 20 intensity: 110 µmol m⁻² s⁻¹) at a temperature of 22/18°C. Tween water (0.002% TWEEN20) treated seedlings were 21 22 used as control if required. Root samples were collected at different time points as described in the figure legends 23 and carefully washed in distilled water. The first 4 cm of the roots, starting from the seed, were excised and 24 immediately frozen in liquid nitrogen or used for microscopy. All experiments were prepared in 3 to 4 independent 25 biological repetitions of four plants per jar.

26 Arabidopsis thaliana seeds (ecotype Columbia-0) were incubated for 5 min in 70% ethanol, surface sterilized for 5 27 min with 6% sodium hypochlorite and washed 6 times for 5 min in sterile water. After stratification for 3 days at 28 4°C in the dark on 1/10 PNM medium, Arabidopsis seedlings were grown for 14 days under sterile conditions in a 29 phytochamber (Vötsch, Balingen-Frommern, Germany) at long day conditions (day: 16 h, 23°C, 350 µmol m⁻² s⁻¹; 30 night: 8 h, 18°C; 60% humidity). For inoculation of Arabidopsis roots with P. indica chlamydospores, plants of 31 roughly the same size were first transferred to square petri dishes containing 1/10 PNM and then inoculated directly 32 with either 5 x 10^5 P. indica spores per 20 seedlings or mock treated as described for barley. Root material was 33 harvested, washed carefully with distilled water and frozen liquid nitrogen after 3, 7 and 14 days. For each time 34 point roots from 80 to 100 plants were pooled and the experiments were performed in 3 to 4 independent biological 35 repetitions.

Chlamydospores were collected from 3 to 4 week-old CM plates using 0.002% TWEEN20 for all describedexperiments.

38 2. Growth promotion assays

39 For co-culture of A. thaliana with P. indica or P. williamsii and tests for plant growth promotion, seeds were

40 sterilized by incubation for 5 min in 70% ethanol followed by 2 min in 100% ethanol, left to dry and stratified as

- 1 described before either on a modified Hoagland's medium with four times more phosphate: 5mM KNO₃; 5mM
- 2 $Ca(NO_3)_2$; 2mM MgSO₄; 4mM KH₂PO₄; 0.03g/L Sprint 138 iron chelate; 0,1% micronutrients solution containing
- 2.86g/L H₃BO₃; 1.81 g/L MnCl₂.4H₂O; 0.08g/L CuSO₄.5H₂O; 0.02 g/L 85% MoO₃.H₂O, based on (3) or on 1/10
 PNM as described above. Media were solidified with 4g/L GELRITE (Carl Roth, Karlsruhe, Germany). For assays
- 5 on the modified Hoagland's medium, plants were grown for 7 to 10 days under long day conditions (16h light, at
- 6 23° C, 85 µmol m² s¹; 60% humidity), and on 1/10 PNM medium plants grew for 10 days (16h light, at 23°C, 350
- 7 μ mol m⁻² s⁻¹; 60% humidity; night: 8h, 18°C) before mock-inoculation with tween water or inoculation with either
- 8 *P. indica* or *P. williamsii* (when indicated) chlamydospores (5 x 10^5 ml⁻¹). The seeds that failed to germinate and the
- 9 seedlings that did not look healthy were removed from the plates preceding tween water or spore application. Plants
- 10 grown on modified Hoagland's were inspected for biomass 7 days post inoculation (dpi), and for seedlings grown on
- 11 1/10 PNM biomass was inspected 14 dpi. Statistical analyses of the results were performed in R 2.15.1 (4)
- 12 (<u>http://www.R-project.org/</u>). Pairwise comparisons of the different subsets of data were performed using ANOVA
- 13 followed by Tukey's HSD (honestly significant difference) on 95% family-wise confidence level. Homogeneous
- subsets were identified using the package multcompView (5) (<u>http://CRAN.R-project.org/package=multcompView</u>).
- Barley growth promotion experiments with *P. indica* WT, empty vector control and RNAi strains were carried outas described in (6).

17 3. DNA, RNA extraction and real time qPCR analyses

18 DNA from 200 mg of ground fungal or plant material was isolated using the protocol of Doyle and Doyle (7). Total 19 RNA from 200 mg of ground material was extracted using TRIzol (Invitrogen, Karlsruhe, Germany) following the 20 manufacturer's instructions. The amount and quality of the extracted RNA were estimated by using an agarose gel 21 and the NanoDrop-1000 Spectrophotometer (Agilent) or a 2100 Bioanalyzer (Agilent, Santa Clara, USA) for the 22 microarray experiments. For real-time qPCR analyses, two µg of RNA were used for DNase I digestion (Fermentas) 23 followed by cDNA synthesis (First Strand cDNA Synthesis Kit, Fermentas). Real-time qPCR analyses were 24 performed from 10 ng DNA or cDNA mixed with the appropriate primers (Dataset S5) in 10 µl SYBRgreen 25 Supermix (BIORAD) using the following amplification protocol: initial denaturation for 5 min at 95°C, followed by 40 cycles with 30 s at 95°C, 30 s at 59°C, 30 s at 72°C and a melt curve analysis. Relative DNA amount or relative 26 expression and its fold change values were calculated using the $2^{-\Delta\Delta Ct}$ method (8). 27

28 4. Microarray experiments

29 Microarray analyses were performed with 200 ng total RNA extracted from P. indica inoculated barley and 30 Arabidopsis roots at 14 dpi or from P. indica inoculated Arabidopsis roots at 3 dpi. As control total RNA from P. 31 indica grown on 1/10 PNM-agar was used. Here, 3 days old hyphae were thoroughly scratched from the agar surface 32 with a sterile scalpel and immediately frozen in liquid nitrogen. For the 3 dpi barley time point, data from Gene 33 Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/), accession number GSE31266 was used (9). For each 34 treatment, samples from three independent biological replicates were labeled and hybridized according to Agilent's 35 One-Color Microarray-Based Gene Expression Analysis Low Input Quick Amp Labeling protocol (version 6.5). 36 Cye-3-labeled probes were hybridized to 8x60k custom-designed Agilent microarray chips. The microarray design 37 was performed based on a previous 2x105k custom-designed Agilent microarray described in (9). For this, the best 38 performing probe (BP) per P. indica gene was selected from the existing probes based on the following criteria: 1) 39 Probes with a cross hybridization potential were discarded if an alternative probe for the gene could be used. If this 40 was not possible, three probes with different cross hybridization targets were chosen and used (XP1-XP3). 2) The signal intensity of each probe was compared to its position in the gene. The probe was defined to be a BP if its 41 42 signal intensity was high and its position was close to the 3' prime end of the respective gene. Thus, the BP probe for 43 each P. indica gene was selected as such if it had either the strongest signal of all probes of the respective gene and 44 was located at most 300 bp apart from the 3' prime end or if it was the closest to the 3' prime end and had at least 45 90% signal intensity of the strongest probe. 3) Non-uniformity outliers were detected by comparing the signal

1 intensity between biological replicates. The signal intensity of the best probe defined in step 2 was compared against 2 those of its intra- and inter-array replicates. If the signal intensity ranged between +/- 1.42 of the interquantile range, 3 it was accepted as the best probe. Alternatively, step 3 was repeated with the second (third, etc.) best probe. 4) New 4 probes (NP) were calculated via the eArray program (earray.chem.agilent.com/earray/) for those genes that had no 5 suitable BP probe. Control probes were additionally loaded on the chip as described before (9). Microarray image 6 files were analyzed using Agilent's Feature Extraction software v. 10.5 which calculates for each spot a background 7 corrected signal intensity value (gProcessedSignal) that was used for further analysis. For statistical analysis of the 8 raw data, the R environment (www.r-project.org; version 2.15.1) including the Bioconductor package 'Limma' was 9 used. In summary, raw data were standardized by quantile normalization, intensity values from replicate probes 10 were averaged, log2-ratios between experiments were calculated and Student's t-statistic applied to test for 11 significance. Quality and suitability of the applied statistics was estimated by generating density and MA plots. The 12 degree of variability between the experiments was shown by principle component analysis (Figure S15). Selection 13 of differentially expressed genes was based on a fold change of 2 and a false discovery rate-adjusted significance 14 level (adj. p-value) of less than 0.05. Expression data from all experiments are stored in the GEO database 15 (accession number GSE47775). Microarray data were verified by quantitative real-time PCR (qRT-PCR) as 16 described previously (9) from three biologically independent kinetics for each host (time points: 3, 7 and 14 dpi for 17 Arabidopsis; 3, 5, 10 and 14 dpi for barley).

18 5. Enrichment analysis

19 To identify significantly enriched gene ontology (GO) terms from the performed microarray experiments the Gene 20 Ontology Enrichment Analysis Software Toolkit (GOEAST) used was 21 (omicslab.genetics.ac.cn/GOEAST/index.php) with settings for customized microarray platform. GO's were 22 assigned to P. indica genes by using the Blast2GO suite (version 2.6.0) (10). Significantly higher expressed genes in 23 Arabidopsis roots colonized by P. indica at 14 dpi compared to barley roots colonized by P. indica at 14 dpi (and 24 vice versa) were analyzed using the recommended parameter settings. Datasets S4a and S4b, summarizing all 25 enriched GO terms (Arabidopsis: GO AT14up, Barley: GO HV14up), were prepared from the GOEAST outputs.

26 6. Confocal laser microscopy

27 Cell viability

Root colonization and Arabidopsis/barley epidermal and cortex cells viability were analyzed by confocal microscopy. Colonized roots were stained for 10 min with 10 µg/ml WGA-AF488 (Molecular Probes, Karlsruhe, Germany) to visualize fungal structures. Membranes were stained with 3 µM FM4-64 (Probes, Karlsruhe, Germany) for 5 min. Root samples were imaged with a TCS-SP5 confocal microscope (Leica, Bensheim, Germany) using an excitation at 488 nm for WGA-AF488 and detection at 500–540 nm. Excitation of FM4-64 was performed at 633 nm and detection at 650–690 nm.

34 Maximum projection and serial slices of barley root material

Root segments of *Hordeum vulgare* were fixed in FPA (formalin (37%): propionic acid (> 99%): ethanol (50%),
0.5:0.5:9) for three days and subsequently stored in 70% ethanol for further use. For microtomy the root segments
were dehydrated in an ascending ethanol series and embedded in UnicryITM (British Biocell Int.). For serial slices,
sequential series of 4 µm longitudinal and transversal sections (Leica Supercut 2065) were stained with toluidine
blue O (1 g toluidine blue O + 1 g sodium tetraborate in 100 ml distilled H₂O) and mounted in Corbit balsam.

- 40 Pictures were taken with a Leica DMRB or TCS-SP5 microscope, equipped with a digital camera (Moticam 2300).
- 41 For maximum projections the root of barley was stained with acid fuchsine and depicted by confocal laser scanning
- 42 microscopy using an Argon blue light laser (488 nm) as described in (11). The z-stack was used to compute a
- 43 Maximum Projection (LCS Version 2).

1 7. Yeast complementation assay

2 The ammonium import function of PiAmt1 (PIIN_02036) was verified by yeast complementation analysis. For this,

full length cDNA of *PiAMT1* was cloned into the *Not*I site of the pDR195 vector (kindly provided by Dr. Mike
 Guether, Karlsruhe Institute of Technology, KIT) with primers PiAMT1_SC_notI_F and PiAMT1_SC_notI_R

5 (Dataset S5) and the resulting plasmid was then transformed by heat shock into the ura-AMT-defective yeast

6 (Saccharomyces cerevisiae) strain 31019b; $\Delta\Delta\Delta$ mep1;2;3. Growth complementation assays were performed on solid

- 7 YNB medium (Yeast Nitrogen Base w/o N, Bacto) supplemented with 2% glucose and 1 mM or 5 mM (NH₄)₂SO₄
- 8 as sole nitrogen source.

9 8. RNAi vector construction and *P. indica* transformation

10 To perform RNAi silencing experiments, a 570 bp fragment of the PiAMT1 (PIIN 02036) cDNA was amplified by PCR with primers PiAMT1 RNAi ecoRV F and PiAMT1 RNAi ecoRV R (Dataset S5) and then inserted in the 11 12 EcoRV site of the convergent dual promoter vector pPiRNAi (6). PCR reactions were performed using a proof 13 reading Pfu Polymerase (Promega). The vector pPiRNAi-AMT1 and empty vector control were sequenced and 14 subsequently transformed into P. indica by PEG-mediated transformation as described in (6). Putative transformants 15 generated from three independent transformations were transferred onto new CM plates with 80 µg/ml hygromycin 16 B. Cloning was performed using T4 ligase (NEB), Antarctic phosphatase (NEB) and E. coli Top10 cells. Vector 17 sequencing was done by Eurofins MWG Operon. The success of transformation was confirmed by southern blot and 18 the efficiency of silencing was verified by qPCR experiments. All RNAi strains were analyzed for reduced growth 19 on minimal medium with ammonium as sole nitrogen source as described in the next chapter. Selected silenced 20 strains with a reduced growth phenotype on minimal medium supplemented with ammonium as sole nitrogen source

and with a normal growth phenotype on CM were chosen for *in planta* assays.

22 9. Ammonium feeding test of *P. indica* transformants

23 *P. indica* transformants harboring the RNAi construct were analyzed for ammonium uptake by using wild-type and 24 empty vector transformed strains as controls. Ten μ l of chlamydospores suspension with 10-fold serial dilutions 25 starting from 5×10^5 ml⁻¹ were inoculated onto YNB medium (Yeast Nitrogen Base w/o N, Bacto) supplemented with 26 2 mM NH₄Cl (Roth) for 14 days. The experiments were carried out in three replicates.

27 10. Measurment of caspase activity in roots

28 Barley and Arabidopsis roots were inoculated with P. indica WT, RNAi strains, empty vector controls or mock 29 treated. The first 4 cm of the roots, starting from the seed, were excised and immediately frozen in liquid nitrogen 30 from plant samples harvested at 3, 5, 10 and 14 dpi. One hundred mg ground roots were extracted with a buffer 31 containing 100 mM sodium acetate (pH 5.5), 100 mM NaCl, 1 mM EDTA, 2mM DTT and 1mM 32 phenylmethylsulfonyl fluoride. To measure caspase activities, 100 µM fluorogenic VPE substrate (Ac-ESEN-MCA, 33 Peptide Institute) was added to the root extracts. Fluorescence intensities were measured at 465 nm after excitation 34 at 360 nm using a fluorescence microplate reader (TECAN Safire). The emzyme activity was caculated as the 35 increasing unit of fluorescent intensity compared to the buffer+substrate control after 60 minutes incubation.

36 11. Preparation and assay of samples for amino acid concentration

Plant material was incubated for 60 minutes at 80°C in 80% ethanol and thereafter centrifuged for 10 minutes at

38 14000 rpm and 4°C. Supernatant were evaporated to dryness, re-suspended in purest water and used for HPLC

analysis. Prior to HPLC analysis samples were derivatized using a fluorescing reagent AQC (6-aminoquinolyl-N-

40 hydroxysuccinimidylcarbamat). 3 mg of self-made AQC (IPK, Germany) was dissolved in 1 ml acetonitrile and

41 incubated exactly for 10 minutes at 55°C. The prepared reagent was stored at 4°C and used up to four weeks. For

42 derivatization of the sample 0.01 ml of the prepared reagent solution was used for each sample which contained 0.8

1 ml of a buffer (0.2 M boric acid, pH 8.8) and 0.01 ml of the supernatant. Separation of soluble amino acids was 2 performed on a newly developed UPLC-based method using Ultra pressure reversed phase chromatography 3 (AcQuity H-Class, Waters GmbH, Germany). UPLC system consisted of a quaternary solvent manager, a sample 4 manager-FTN, a column manager and a fluorescent detector (PDA e Detector). The separation was carried out on a 5 C18 reversed phase column (ACCQ Tag Ultra C18, 1.7 µm, 2.1x100 mm) with a flow rate of 0.7 ml per min and 6 duration of 10.2 min. The column was heated at 50°C during the whole run. The detection wavelengths were 266 nm 7 for excitation and 473 nm as emission. The gradient was accomplished with four solutions prepared from two 8 different buffers purchased from Waters GmbH (eluent A concentrate and eluent B for amino acid analysis, 9 Germany). Eluent A was pure concentrate, eluent B was a mixture of 90% LCMS water (The Gever GmbH,

10 Germany) and 10 % eluent B concentrate, eluent C was pure concentrate (eluent B for amino acid analysis) and

- 11 eluent D was LCMS water (The Geyer GmbH, Germany). The column was equilibrated with eluent A (10%) and
- 12 eluent C (90%). The gradient was produced as indicated in the table below.

Retention time in min	Eluent A (%)	Eluent B (%)	Eluent C (%)	Eluent D (%)
0	10	0	90	0
0.29	9.9	0	90.1	0
5.49	9	80	11	0
7.10	8	15.6	57.9	18.5
7.30	8	15.6	57.9	18.5
7.69	7.8	0	70.9	21.3
7.99	4	0	36.3	59.7
8.59	4	0	36.3	59.7
8.68	10	0	90	0
10.2	10	0	90	0

13

14 12. Phylogeny

15 Phylogenetic relations of ammonium transporters from Piriformospora indica, Saccharomyces cerevisiae and 16 Hebeloma cylindrosporum were calculated using seaview (version 4) (12). Protein alignment was generated by 17 MUSCLE (v3.8.31) (13) and phylogenetic tree by PHYML (v3.0) (14) using standard settings. An approximate

18 *likelihood-ratio* test (aLRT) was performed to calculate branch support.

19 Legends for the supplementary figures

20 Figure S1. Host-dependent expression profiles of in planta-induced P. indica genes encoding intracellular (A) and 21 secreted (B) proteins at 3 and 14 days post inoculation (dpi) during Arabidopsis (PI_AT) and barley (PI_HV) 22 colonization, calculated versus PNM-control.

23 Figure S2. Heatmaps showing normalized, background-corrected log2 signal intensity values of 305 hydrolytic 24 enzymes (left) and 252 transporters (right) as previously classified (9). Columns represent biological independent 25 replicates of P. indica colonized barley roots 3 (PI HV 3) and 14 dpi (PI HV 14), P. indica colonized Arabidopsis 26 roots 3 (PI_AT_3) and 14 dpi (PI_AT_14) and P. indica on 1/10 PNM-agar alone 3dpi (PI_PNM_3). Signal 27 intensities (gProcessedSignal) from Agilent's feature extraction software (v10.5) were quantile normalized and intra-28 array replicates were averaged using R (www.r-project.org; version 2.15.1). Only those genes are shown for which a 29 best performing probe could be designed (see microarrays section in material and methods for details). Data from

30 the time point PI HV 3 is from Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/), accession number

31 GSE31266. Figure S3. Barley root colonized by *P. indica* 30 dpi. A colonized epidermal cell with larger hyphae and thinner hyphae in the cortex cells are visible. Hyphal contact with the endodermis layer results in autoflorescence which is visible as a diffuse white signal on the host cell wall. For maximum projections the root of barley was stained with acid fuchsine and depicted by confocal laser scanning microscopy using an Argon blue light laser (488 nm) as described in (11).

6 Figure S4. Growth promotion effect on Arabidopsis plants ecotype Col-0 colonized by P. indica or by the closely 7 related sebacinoid fungus P. williamsii (2). (A-C) Box-plots of the fresh weight of A. thaliana plants grown in the 8 presence or absence of P. indica or P. williamsii. In all 3 experiments, treatment had a significant effect on the mean 9 fresh weight of the plants (plot A: ANOVA, F_{2.74}=64.45, p<0.001; plot B: ANOVA, F_{2.28}=44.63, p<0.001; plot C: 10 ANOVA, F_{2,48}=14.07, p<0.001). Treatment with P. indica chlamydospores resulted in a significant increase on the 11 mean fresh weight of the plants in all treatments (Tukey's HSD, p<0.001), but treatment with P. williamsii 12 chlamydospores had no significant effect (A, C) or a small but significant effect on the mean fresh weight in 13 comparison with the mock-treatment (B) (Tukey's HSD for plot A: p= 0.51; for plot B: p=0.012; for plot C: 14 p=0.985). (D) Box-plot of the fresh weight of A. thaliana plants grown in the presence or absence of P. indica on 15 1/10 PNM. The mean fresh weight of P. indica treated plants was significantly increased compared to that of mock-16 treated plants (two-sided t-test, unpaired, equal variance: t = -3.04, df = 48, p-value < 0.01). In all plots, boxes not 17 sharing a letter are significantly different (based on Tukey'sHSD). Culture media (HO: modified Hoagland's; PNM: 18 1/10 PNM), plant age (dps = days post-sowing) and co-culture times on the respective plant media (dpi = days post 19 inoculation) are indicated in the upper left corner of each plot. (E) Representative plates containing sets of 14-day 20 old plants 7 days after mock-treatment with tween water (left) or inoculation with either P. indica (center) or P. 21 williamsii (right) chlamydospores.

Figure S5. *Piriformospora indica* biotrophic broad invasive hyphae (white asterisk) in Arabidopsis epidermal cell (A) 10 and (B) 21 dpi. In contrast to extracellular hyphae, IH are not stainable with WGA-AF488 (green) due to the presence of a plant-derived membrane. (C) After cooking with KOH for 5 minutes and infiltrating WGA for 10 minutes the hyphae of *P. indica* can be stained, indicating that chitin is still present in the cell wall of the fungus.

25 initiates the hypfiae of *T*. *matca* can be stanled, indicating that cirtuin is still present in the cent wan of the fungus.

Figure S6. Gene Ontology Enrichment Analyses for the GO category biological process performed using GOEAST (http://omicslab.genetics.ac.cn/GOEAST/index.php). Shown is the graphical output for the significantly enriched GO terms, as well as their relationships in the whole GO hierarchy, among the *P. indica* genes induced during colonization of Arabidopsis compared to barley at 14 dpi. Data displayed in this graphic show enrichment for genes involved in tRNA aminoacylation for protein translation, amino acid biosynthesis, glycolysis, tetracycline transport and mitochondrion organization.

Figure S7. Gene Ontology Enrichment Analyses for the GO category biological process performed using GOEAST (http://omicslab.genetics.ac.cn/GOEAST/index.php). Shown is the graphical output for the significantly enriched GO terms among the *P. indica* genes induced during colonization of barley compared to Arabidopsis at 14 dpi. Data displayed in this graphic show enrichment for genes involved in chitin catabolic process, L-arabinose metabolic process, xylan and cellulose catabolic processes and carbohydrate transport.

37 Figure S8. Analyses of *P. indica* ammonium transporter Amt1. (A) Expression of *PiAMT1* is ammonium depletion 38 responsive. P. indica was pre-grown on CM for one week (T_0) and then transferred to YNB medium supplemented 39 with different concentrations of ammonium: without nitrogen (w/o N); with 0.5 mM (NH₄)₂SO₄; with 2 mM 40 (NH₄)₂SO₄; with 10 mM (NH₄)₂SO₄. Mycelium was collected after 12 and 24 hours and immediately frozen in 41 liquid nitrogen prior to RNA extraction and cDNA synthesis for real time qPCR analyses. (B) PiAmt1 is related to 42 high affinity ammonium transporters. Phylogenetic relationships between the deduced amino acid sequence of P. 43 indica Amt1 and Amt2 and Hebeloma cylindrosporum and Saccharomyces cerevisiae ammonium 44 transporters/permeases. Sequences were obtained from the GenBank database. ScMEP2, HcAmt1, HcAmt2 are functionally characterized as high affinity ammonium transporters, whereas ScMEP1, ScMEP3 and HcAmt3 are low affinity ammonium transporters (15-16). (C) Yeast complementation assay for the high affinity ammonium transporter PiAmt1. Growth of ammonium uptake-deficient yeast strain $\Delta\Delta\Delta$ mep1;2;3 transformed with the empty control plasmid pDR195 or with pDR195::PiAmt1 on YNB medium supplemented with 5 mM or 1 mM (NH₄)₂SO₄ as the sole nitrogen source. Shown are serial dilutions of yeast cell suspensions ranging from 1 to 1x10⁻³. Experiments were performed in three independent biological repetitions. (D) Predicted topological structure of the *P. indica* Amt1.

- 8 Figure S9. Analyses of selected *PiAMT1* RNAi strains and controls in planta. (A-B) Relative expression of the P. 9 *indica* high affinity ammonium transporter AMT1 compared to PiTEF during colonization of barley and Arabidopsis 10 at 14 days post inoculation (dpi) in the wild type (WT), empty vector controls (EV) and RNAi strains (Amt9 and 11 Amt28). (C) Relative expression of the P. indica ammonium transporter PiAMT2 compared to PiTEF during 12 colonization of barley at 14 days post inoculation (dpi) in the wild type (WT), empty vector controls (EV) and RNAi 13 strains (Amt9 and Amt28). Error bars represent SE of the mean from three independent biological repetitions. No 14 compensatory upregulation of *PiAMT2* was observed in the *PiAMT1* RNAi strains. (D-E) Relative abundance of 15 fungal PiTEF transcripts compared to plant UBI transcripts in barley and Arabidopsis roots colonized by P. indica 16 wild type (WT), empty vector controls (EV) and RNAi strains (Amt9 and Amt28) at 14 dpi. Silencing of PiAMT1 17 results in a significant increased colonization of barley roots compared to WT and EV controls (t-test P<0.05). Error 18 bars represent SE of the mean from three independent biological repetitions. P. indica colonized Arabidopsis and
- barley plants were grown on 1/10 PNM medium.

Figure S10. Host-dependent expression profiles of *in planta*-induced *P. indica* genes encoding ABC transporters
 identified using the TCDB (<u>http://www.tcdb.org/</u>) and Blast2Go as described in (9).

22 Figure S11. Southern blot and colonies phenotype of the P. indica ammonium-uptake deficient RNAi strains. (A) 23 Southern blot analysis of P. indica WT and EV controls and RNAi strains. Genomic DNA from seven days old P. 24 indica cultures grown on CM was extracted and digested overnight with SacI (NEB). The digested DNA was 25 separated on 0.8% TAE agarose gel for 3 h at 80V. Blotting was performed using the DIG-labeling and detection kit 26 following the manufacturer's instructions (Roche Biochemicals). Hybridization was performed with a HYG probe. 27 (B) Colonies phenotype of P. indica WT and EV controls and RNAi strains on YNB medium supplemented with 10 28 mM NH₄Cl as sole nitrogen source. Plates were supplemented with 1% glucose and buffered with MES pH 5.6. Ten 29 microliters of chlamydospores suspension with 10-fold serial dilutions starting from 5×10^5 ml⁻¹ were used for the 30 growth assay The experiments were carried out in three replicates. Representative photographs were taken at 7 days 31 after inoculation.

Figure S12. Barley growth promotion experiment with *P. indica* WT, empty vector control and RNAi strains. Plants
were grown as described in (6) and harvested at 30 days post inoculation. (A) Length of leaves in cm. (B) Leaves
dry weight in grams. (C) Root dry weight (in grams) in colonized or non-colonized barley plants. Error bars
represent standard errors of the mean (n=20). Asterisks represent significant differences (ANOVA, P< 0.01). (D)
Growth promotion in representative non-colonized (left) and colonized barley plants by *P. indica* WT (middle) and
RNAi strain Amt28 (right).

- Figure S13. Concentrations of free amino acids in barley and Arabidopsis roots (4 cm below the seed). (A)
 Concentrations of the most abundant free amino acids in the roots of barley non-colonized or colonized by *P. indica* WT and RNAi strain Amt28 at 7 and (B) 14 dpi. Error bars represent SEM from three independent biological
 repetitions with two to three technical repetitions. (C) Concentrations of the most abundant free amino acids in roots
- 42 of Arabidopsis non-colonized and colonized by P. indica WT and RNAi strain Amt28 at 7 and (D) 14 dpi. Error
- 43 bars represent SEM from four independent biological repetitions. *T-test P<0.05, **T-test P<0.01.

- 1 Figure S14. Morphology of *P. indica* hyphae stained with WGA-AF488 grown on minimal medium containing (A)
- 2 nitrate NaNO₃ 2mM, (B) asparagine Asn 1mM, or (C) glutamine Gln 1mM as sole nitrogen source. (D) Average of
- 3 hyphal size on different nitrogen sources. (E-F) Enlarged, multilobed hyphae from *P. indica* grown on asparagine.
- 4 Figure S15. Principle component analysis (PCA) performed using R (www.r-project.org; version 2.15.1) with
- 5 normalized, background-corrected log2 signal intensity values. Shown are three main principle components (90.06%
- 6 of the total variability) in a x-y- (PC1 vs PC2) and z-y- (PC3 vs PC2) projection. The PCA shows that the whole
- 7 transcriptome of *P. indica* colonizing barley at 14 dpi (PI_HV_14) is most different from the other conditions
- 8 supporting the overall switch of the fungal transcriptome to a different feeding state. The second highest variation is
- 9 shown for *P. indica* colonizing Arabidopsis at 3 dpi (PI_AT_3).
- Dataset S1. Significantly differentially regulated genes from microarray data. AT, *Arabidopsis thaliana*; PNM,
 plant minimal medium; HV, *Hordeum vulgare*; dpi, days post inoculation.
- 12 Dataset S2. Expression data for the DELD protein family.
- **Dataset S3.** Top20 induced *P. indica* SSPs during colonization of Arabidopsidis and barley roots.
- 14 **Dataset S4.** Enrichment analysis performed using GOEAST for upregulated genes.
- **Dataset S5.** List of primers used in this study.

16 References

- Pham G. H. KR, Singh A., Malla R., Prasad R., Sachdev M., Kaldorf M., Buscot F., Oelmuller R.,
 Hampp R., Saxena A. K., Rexer K.-H., Kost G., Varma A. (2008) Axenic Culture of Symbiotic
 Fungus Piriformospora indica. Plant Surface Microbiology 593–613
- Basiewicz M, et al. (2012) Molecular and phenotypic characterization of Sebacina vermifera
 strains associated with orchids, and the description of Piriformospora williamsii sp. nov. Fungal
 Biol 116(2):204-213.
- Hoagland DR & Arnon DI (1950) The Water-Culture Method for Growing Plants without Soil.
 Calif. Agr. Expt. Sta. Circ. 347
- R-Core-Team (2012) R: A language and environment for statistical computing. R Foundation for
 Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, .
- Graves S, Piepho HP, & Selzer L (2012) multcompView: Visualizations of Paired Comparisons. R
 package version 0.1-5. <u>http://CRAN.R-project.org/package=multcompView</u>.
- Hilbert M, et al. (2012) Indole derivative production by the root endophyte Piriformospora
 indica is not required for growth promotion but for biotrophic colonization of barley roots. New
 Phytol 196(2):520-534.
- 32 7. Doyle JJ & Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf
 33 tissue. *Phytochemical bulletin* 19(1):11-15.
- 348.Livak KJ & Schmittgen TD (2001) Analysis of relative gene expression data using real-time35quantitative PCR and the 2(T)(-Delta Delta C) method. *Methods* 25(4):402-408.
- Juccaro A, et al. (2011) Endophytic Life Strategies Decoded by Genome and Transcriptome
 Analyses of the Mutualistic Root Symbiont Piriformospora indica. *PLoS Pathog* 7(10):e1002290.
- Conesa A, et al. (2005) Blast2GO: a universal tool for annotation, visualization and analysis in
 functional genomics research. *Bioinformatics* 21(18):3674-3676.
- 40 11. Rath M (2013) Combining Microtomy and Confocal Laser Scanning Microscopy for structural
 41 analyses of plant-fungus associations. *PhD thesis*.

- 1 12. Gouy M, Guindon S, & Gascuel O (2010) SeaView version 4: A multiplatform graphical user 2 interface for sequence alignment and phylogenetic tree building. *Mol Biol Evol* 27(2):221-224.
- 13. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space
 complexity. *Bmc Bioinformatics* 5:113.
- 5 14. Guindon S & Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large 6 phylogenies by maximum likelihood. *Syst Biol* 52(5):696-704.
- In the second sec
- 9 16. Javelle A, et al. (2003) Molecular characterization, function and regulation of ammonium 10 transporters (Amt) and ammonium-metabolizing enzymes (GS, NADP-GDH) in the 11 ectomycorrhizal fungus Hebeloma cylindrosporum. *Mol Microbiol* 47(2):411-430.
- 12
- 13

														Pills, 1120 – unclassified Pills, 1120 – unclassified Pills, 1120 – unclassified Pills, 1120 – metal, mitochondrion Pills, 1120 – metal, mitochondrion Pills, 1120 – metal, mitochondrion Pills, 1120 – unclassified Pills, 1120 – unclassifi
Pl_HV_14d3	Pl_HV_14d1	Pl_HV_14d2	Pl_AT_14d3	Pl_AT_14d2	Pl_AT_14d1	PI_HV_3d1	PI_HV_3d2	PI_PNM_3d3	PI_PNM_3d1	PI_PNM_3d2	Pl_AT_3d3	Pl_AT_3d1	PI_AT_3d2	

41/811 | 47/6866 (2.6e-29)

D

С

pDR195:PiAmt1

pDR195

Piriformospora indica Amt1

Southern blot

WT EV1 EV2 Amt1 Amt3 Amt5 Amt7 Amt9 Amt28

В

Α

P. indica strains on YNB + 10 mM ammonium

EV1 EV2 Amt1 Amt3 WT

Amt5 Amt7 Amt9 Amt28

В

Average size of hyphae

