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SI Experimental Procedures
Media and Strains. Strains were maintained in duplicate at 16 °C in
10 mL soybean cultures (1) and subcultured every 6 mo. Frozen
stocks were concurrently maintained. Forty-eight hours before
an experiment, 50 μL of a soybean culture was used to inoculate
50 mL of the appropriate experimental growth medium. The
base growth medium is supplemented proteose peptone (SPP)
medium (1xR, “1× Rich”): 2% proteose peptone, 0.1% yeast
extract, 0.2% glucose, and 0.003% of the iron compound EDTA
ferric sodium salt (wt/vol) (Sigma E6760). Cultures were grown
at room temperature without shaking for 48 h before each ex-
periment in the appropriate medium. Media used in this study
are abbreviated in the main text as follows:1× SPP, 1xR; 2× SPP,
2xR; 1xR sterile filtered plus polymer beads, 1xB; Bacterized,
Bac; chemically defined medium, CDM.
The growth medium 2xR is 1xR with twice the concentration of

each ingredient (4% proteose peptone, 0.2% yeast extract, 0.4%
glucose, and 0.006% iron) (2). The growth medium 1xB is the
1xR medium that has been filtered with a 0.2-μm sterile filter and
then supplemented with 1.57-μm diameter polymethyl methac-
rylate beads (Bangs Laboratories; P0015700PN) at a density of
6,800 beads/mm3 or ∼ 3:2× 104 beads per chamber (3). Bacte-
rized medium was prepared by growing Escherichia coli (DH5α)
in 1xR media to an optical density of 0.6 before sterilizing via an
autoclave. Chemically defined medium was taken directly from
Szablewski et al. (4).
The two strains used in this study were Tetrahymena borealis

(SD01609) and Tetrahymena thermophila CU428.2 SD00178. All
strains were obtained from the Cornell Tetrahymena Stock
Center, http://tetrahymena.vet.cornell.edu.

Microscopy. Imaging. The imaging apparatus consists of a light-
emitting diode light source (LuxDrive; 5027 white), a condenser
lens (f = 35 mm), a sample stage, a focusing relay lens (NT45-
762; Edmund Optics), and an imaging sensor. The image sensor
is 1,600 × 1,200 pixels and was taken from a consumer webcam
(Logitech Quickcam 9000) that acquires images at 15 Hz. The
pixel size of this sensor is 33 μm. An image of the sample plane is
focused onto the sensor, using the 1× relay lens. In the arrange-
ment used here the magnification of the optical system is 0.78,
giving a pixel size in the object plane of 4:25± 0:04μm deter-
mined using a US Air Force test target (Edmund Scientific).
Movies were recorded using the commercially available Logitech
software, compressed, and stored to a disk to be processed at a
later time.
Imaging uncertainty. Uncertainty in the position as a result of the
imaging hardware (e.g., illumination variation, pixel noise, or
optical point-spread function) was evaluated using a USAF test
target. The movie was recorded for ∼1 min and the resulting
1,000 frames were processed using the same custom MATLAB
(Mathworks) algorithms developed for tracking (Tracking sec-
tion). The centroid positions of the objects from the resulting
segmented images were recorded and their deviations across the
1,000 frames were measured to be on average 0.2 μm, with
a maximum of 1 μm. There was no clear dependence on this
variance with the size of the objects between 10 and 4,500
square pixels.
Temperature control. Each microscope was assembled on an optical
rail and mounted to an optical breadboard. Four microscopes
were housed in a single light tight, thermally insulated box. The air
in the box was circulated with a fan. The temperature was con-
trolled using a custom feedback system, using a Peltier heating/

cooling element. The thermometer, located near the sample
stages, is a linearized thermistor (Omega Engineering; 44204)
with a custom amplifier (5). The thermometer amplifier output is
digitized via a LabJack U3 USB DAQ (Labjack; U3-HV) in-
terface with a precision of 1.2 mV (4.8 mK). This temperature is
controlled with a proportional integral (PI) feedback loop im-
plemented in MATLAB. This PI feedback stabilizes the mea-
sured temperature to the set point with SD of 4.6 mK from the
set point across all experiments. The thermometer is calibrated
to ±50 mK absolute accuracy. All of the experiments presented
here were carried out at 23 °C.
Chamber fabrication.Microfluidic chambers like the one shown in Fig.
1A of the main text were constructed from polydimethylsiloxane
(PDMS), using conventional soft lithography techniques (6).
SU8-2075 (Microchem) negative photoresist was spin-cast onto
a 4-inch diameter silicon wafer. Four milliliters of photoresist
was dispensed onto the center of the wafer and the wafer was
spun at 500 rpm for 10 s and then at 1,000 rpm for 30 s to a
thickness of 240 μm (Laurell, WS-600-6NPP spin coater). The
soft bake was 7 min at 65 °C followed by 45 min at 95 °C. The
wafer was then masked with a printed transparency mask (Pa-
geworks) and exposed to 575 mJ of radiation over 18 s and baked
postexposure for 5 min at 65 °C and 15 min at 95 °C. The re-
sulting mold was developed for 15 min in SU-8 developer. This
mold was exposed to tridecafluoro-1,1,2,2 tetrahydrooctyl tri-
chlorosilane for 1 h in mild vacuum to prevent sticking of PDMS.
Sylguard 184 Silicone Elastomer (Dow Corning) was mixed with
Sylguard 184 curing agent at a ratio of 8:1 and poured onto the
silicone mold. This was cured for 25 min at 80 °C and then al-
lowed to cool. The PDMS chamber was trimmed using a razor
blade and holes were punched using a syringe needle. The cham-
ber was then oxygen plasma treated (Harrick plasma cleaner) and
sealed to a glass coverslip before being cured for an additional 1 h
at 80 °C. The chambers used here were 4.9 mm in diameter and
240 μm deep for a total volume of 4.5 μL.
The single-layer chamber design used in this work is shown in

Fig. 1A. The central ring in the chamber is masked during plasm
bonding and is therefore not adhered to the coverslip. As a re-
sult, when pressure is applied to the input, the chamber distends
upward, allowing medium and organism to flow beneath. When
a single cell is observed in the chamber, the pressure is released,
and the ring of PDMS settles on the coverslip and traps the cell
in the chamber. Movie recording is then initiated.
Nutrient exhaustion. The volume of a single T. thermophila is ap-
proximately 1 millionth the volume of media in the chamber. We
have estimated the rate of nutrient uptake based on the work of
Andersen et al. (2) to be about 10−12g=min. Over the course of
the experiment, we therefore estimate on the order of 10−9g to
be consumed. The chamber starts with 10−4g of material; this
indicates that only 0.001% of the nutrients are used over the
course of the experiment.

Tracking. Image segmentation. To segment swimming cells from
stationary background we used a dynamically constructed back-
ground image. Each image is captured and imported intoMATLAB,
using the VideoIO toolbox (Gerald Daley, http://sourceforge.
net /projects/videoio/) as a matrix IijðtÞ with 1≤ i ≤ 1;200 and
1≤ j≤ 1;600, where IijðtÞ represents the value of the intensity of
the pixel at location ði; jÞ at time t. A dynamic background image
(B) is computed with Bij =maxðIijðtÞ; Iijðt+ τÞÞ, where τ is set
empirically to be 200 s. Thus, objects that do not move for 200 s
will not be detected. We find that Tetrahymena generally does
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not remain stationary for longer than this period. The back-
ground subtracted image is segmented for moving objects, using
a global threshold that was empirically determined to be 0.2 of
the maximum pixel value in an image. In this manner, artifacts
due to long-timescale changes in the image over the course of
the experiment can be avoided, such as changes in illumination
or shifts of the imaged volume.
Moving objects are filtered to retain only the expected number

N0 in the expected size range of the Tetrahymena (>25 square
pixels). For each retained segmented object the centroid, area,
orientation, and eccentricity are recorded using the regionprops
function in the MATLAB Image Processing Toolbox.
Tracking. We constructed swimming trajectories from segmented
images with custom-written MATLAB code that follows closely
a method developed by Jaqaman et al.(7). Trajectories are cre-
ated by matching objects in frame t with those in t + 1. This
problem can be posed as a linear assignment problem. Each
object xi in frame t can be linked to an object xj in frame t + 1 for
a cost clinkðxi; xjÞ. The cost function used is the sum of the
Euclidian distance between objects and a weighted difference in
area. Alternatively each xi can remain unlinked in frame t + 1 for
a cost close and xj can remain unlinked to an object in frame t for
a cost cfind. The total cost of an assignment for all blobs between
two frames is given by C=

P
ij Âijcij, where Âij is the assignment

matrix with Âij = 1 if xi is linked to xj and 0 otherwise. We use the
Jonker–Volgenant algorithm (8) to solve the linear assignment
problem and find the assignment matrix Âij that has the minimal
total cost of assignment between two frames.

Cost matrix construction: The list of N detected particles in frame
t is given as XNðtÞ= fxiðtÞg for i= 1 : N. For tracking we seek to
match these N particles to theM particles detected in frame t + 1
given by XMðt+ 1Þ. Here we define the costs for linking any two
particles between frames (clink) and for leaving particles unlinked
(close, cfind) and provide the construction of the cost matrix. Be-
cause particles may disappear and artifacts may arise during
object detection, N does not always equal M. We have used the
cost matrix formulation of Jaqaman et al. (7) to account for
these possibilities. The cost matrix C is constructed from the
actual N × M linking matrix cij = clinkðxiðtÞ; xjðt+ 1ÞÞ in the fol-
lowing way,

C=

����� cij close
�
XNðtÞ�IN

cfind
�
XMðt+ 1Þ�IM cTij

�����;
which is an ðN +MÞ× ðN +MÞmatrix, where close is the cost of an
object in frame t remaining unassigned, cfind is the cost of an
object in frame t +1 remaining unassigned, and In is the n × n
identity matrix. The cTij matrix is added to satisfy the require-
ments of the linear assignment formulation. We empirically de-
termined the values for finding and losing a particle in frame t as

close = cfind = 1:25×max
��

Âij
�
t′
�
pC
�
t′
�jt′= 1 : t; i<N; j<M

��
;

where N = jXNðtÞj and M = jXMðt+ 1Þj, and i<N and j<M en-
sure only linking assignments are considered.

Linking costs: The frame-to-frame linking cost function is given
by

clink
�
xiðtÞ; xjðt+ 1Þ�=Δr

�
xiðtÞ; xjðt+ 1Þ�+ αΔA

�
xiðtÞ; xjðt+ 1Þ�;

where Δr is the displacement of the centroids of the objects and
ΔA is the difference in area and α is a scaling factor. In our case,
α is set to 0.2. For the segment linking step, let SN be the set of N
segments si to be joined. The cost function to join segment si to
sj, i≠ j, is

clink
�
si; sj

�
=Δrij

�
si; sj

�
+ τΔtij

�
si; sj

�
−Δvij;

where Δrij is the displacement from the end of segment i to the
beginning of segment j, Δtij is the time of the gap in frames, τ is
a scaling factor (0.5 in this case), and Δvij is the projection of the
velocity in the last frame of si onto the velocity in the first frame
of sj, normalized to Δrij.
Tracking fidelity. Correct assignments are essential to maintain the
identity of individuals over the course of the experiment. In
general, when the ratio of the frame-to-frame displacement and
the interobject distance is ∼1 and each is small (<212 μm), there
is the possibility of an erroneous assignment. Sets of contiguous
frames in which this ratio is close to 1 are called “crossover
events”. This ratio is a function of the average speed of the
objects, the frame rate of the movie, and the density of objects.
In an average experiment, there are ∼25 crossover events per
object pair per “lifetime” in which the above ratio is <1.6. Across
all experiments, 96.2% of the crossover events are correctly as-
signed by the tracking algorithm. All crossover events are in-
spected manually and those that are not correctly assigned are
corrected by hand. The validity of the hand-scored trajectory is
verified by an analysis of the movie and comparison of the re-
sulting lifetimes of individuals, the speed of each, the angular
acceleration, and, importantly, the cell size before and after the
crossing. As a result, we can easily maintain identity with up to
eight individuals in the chamber.

Data Analysis. Speed and angular velocity. The trajectories resulting
from our tracking algorithm consist of ðx; yÞ coordinates for each
cell as a function of time at a frequency of 15 Hz. As discussed in
the main text, we transform trajectories into a time series of
speed and turning angle. Let v= ðvx; vyÞ= ððΔx=ΔtÞ; ðΔy=ΔtÞÞ.
Speed is then vj calculated between pairs of frames separated
by Δt= 1=15s, and angular velocity is calculated between pairs
of velocity vectors by

ωðtÞ= signðvðt+ 1Þ× vðtÞÞ
Δt

cos−1
ððvðt+ 1Þ·vðtÞÞ
ðjvðt+ 1ÞjjvðtÞjÞ: [S1]

From jvðtÞj and ωðtÞ we construct 2D histograms ðPðω; jvjÞÞ as
discussed below.
Boundary effects. The confined two-dimensional geometry of the
chambers used for these experiments requires that we investigate
the effects of interactions with the boundaries.
First, we study the effects of a cell’s proximity to the radial

boundary, or the “wall”, of the chamber (Fig. S1A, Inset). Fig.
S1B indicates that beyond a distance of ∼ 40 μm from the wall of
the chamber the density of segmented blobs is uniform. This
naturally defines a wall interaction region given by an annulus
that is 40 μm wide with its outer edge at the wall. We find that
the fraction of the total lifetime that an individual spends within
this region varies between 5% and 30% across conditions as
shown in Fig. S1C. Fig. S1B shows that there is no lasting,
measurable, effect on the speed and turning angle distributions
of these wall interaction events.
However, Pðω; jvjÞ distributions [Pðjvj;ωÞ histograms section]

differ significantly between cells swimming within the wall in-
teraction region and those swimming the bulk of the chamber.
The effect of these differences on the quantities calculated here
is shown in Fig. S2 B and C.
Next, we study the effect of interactions between the “ceiling”

and the “floor” of the chamber. These surfaces are perpendicular
to the optical axis of the microscope and composed of PDMS
and glass, respectively. Fluid dynamic studies of Tetrahymena in
confined spaces have been previously conducted by H. Winet (9).
These results indicate that the velocity of a swimming cell should
not be altered by confinement to a liquid layer of thickness four
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times the radius of the cell or ∼80 μm [figure 6 and table 4 in
Winet (9)]. We have confirmed this prediction by making mea-
surements of swimming T. thermophila in chambers of various
depths. Three sets of experiments (18 individuals per experi-
ment) were done at three chambers depths, 45 μm, 85 μm, and
240 μm. We see an effect in peak swimming speed, which is the
same for 85- and 230-μm geometries, but decreased for 45-μm
geometry (Fig. S1E). We conclude that for the swimming we
observe in the 240-μm–deep chambers, where our data were
taken, the cells’ swimming behavior is not significantly perturbed
by their interactions with the floor or the ceiling of the chamber.
Pðjvj;ωÞ histograms. The construction of Pðjvj;ωÞ histograms is
done in one of two ways. To measure changeability and memory,
where absolute time is considered, a trajectory is divided into
nonoverlapping windows of fixed width (tw). We denote these
histograms PNðtÞ, where N is the index of the individual and t the
time since the beginning of the lifetime in minutes (Fig. 1D and
Fig. 2B). We set the nonoverlapping window size to 2,000 frames
to maximize the temporal resolution while keeping finite sam-
pling effects to a minimum. With this window size the bias and
variance in our estimates of the Jensen–Shannon divergence are
small (∼0.01, Bias and Variance sections) and the timescale
of 2.2 min is short compared with the lifetime of an individual of
2–6 h, but fast compared with the behavioral dynamics we ob-
serve (Fig. 2 A–C, main text).
For measurements of individuality (and therefore plasticity and

heritability) we divide trajectories into a constant number of bins
(100 in all data presented in the main text). In these calculations
tw varies from one individual to the next, and a distribution of tw
values by condition for wild-type (WT) T. thermophila individuals
is shown in Fig. S2A. For these histograms time is normalized to
1 and indexed by s ðPNðsÞÞ. This was done because the compu-
tation of individuality matrices is costly, scaling as Oðn2Þ, where n
is the number of segments, and this becomes prohibitive for
n> 2× 104. Multidimensional scaling (MDS) embeddings are
computationally expensive as well, scaling as Oðn2deÞ, where de is
the dimensionality of the embedding space. Because embeddings
are calculated for large individuality matrices (171 individuals),
and repeatedly, to measure the sensitivity of the process to er-
rors, it is prohibitive to do so for individuality matrices with
hundreds of PNðsÞ histograms per individual. We therefore chose
100 as the largest number of segments per individual that was
computationally tractable while keeping the maximum tw used
shorter than the behavioral memory.
In subdividing the trajectory into nonoverlapping windows we

lose information regarding the dynamics on timescales shorter
than tw minutes and assume that behavior is not dependent on
the location of the individual in the PDMS chamber. Our data
indicate that the latter assumption is true except at the bound-
aries of the chamber. To show this we examined the spatial
correlation between individuals in the same chamber and com-
pared it to the spatial correlation of individuals in two different
chambers. If there were long-lasting spatial heterogeneities that
resulted in some “preferred” locations within the chamber, this
would be evident as a greater spatial correlation between in-
dividuals in the same chamber. We observed no such difference
(Fig. S1D), indicating no large-scale or long-lasting spatial het-
erogeneity. We also find that excluding the behavior from points
in time where the individual is in close proximity to the wall does
not alter our estimates of changeability or individuality significantly.
We find that the interactions with the boundaries do not signifi-
cantly alter our measurements of behavioral similarity (Fig. S2).
Jensen–Shannon divergence. As discussed in the main text, we
compare Pðjvj;ωÞ distributions [PNðtÞ and PNðsÞ], using the
Jensen–Shannon divergence, which for two distributions p and q
is given by

DðpjqÞ= 1
2

 X
i

�
pilog

pi
mi

�
+
X
i

�
qilog

qi
mi

�!
: [S2]

here mi = ðpi + qiÞ=2 and i is an index over all bins in the histo-
gram. To construct histograms we use the Freedman–Diaconis
method to determine the bin size (10). Histogram binning is
specified dynamically with this method for each pair of histo-
grams in a changeability or individuality matrix.
Statistical properties of divergence estimates. Given two histograms
h1, h2, which are estimates of distributions p1, p2, we want
to quantify the bias and variance of our estimates of Dðp1jp2Þ
given by Dðh1jh2Þ. Analytic expressions for the bias and un-
certainty are given in Grosse et al. (11).
Bias.The bias is given as the difference between the expected value
of Dðh1jh2Þ and that of Dðp1jp2Þ. Following Grosse et al. (11), let
us consider two sequences of observations of length N, each of
which can be in i= 1:::B “states” according to the unobserved
distributions p1 and p2. In our work, these states are bins in our
histograms. Let ni represent the number of observations in each
state i. Thus, our histograms h1,2 are given by

n
ni
N

o
i= 1:::B:

bias=
	
D
�
h1jh2�
−D

�
p1jp2�:

The bias is independent of the underlying distributions pα

ðα= f1; 2gÞ and depends only on the ratio of the number of
occupied states B and the number of observations N. State i is
occupied if pi ≠ 0. The bias is then given by

	
D
�
h1jh2�
−D

�
p1jp2�= B p − 1

2Nlnð2Þ:

The bias represents the average divergence one would expect to
measure between independent samples drawn from identical
distributions. This value is systematically biased upward from its
true value due to sampling error and decreases with better
sampling (larger N). In this work, Bp ∼ 40 and N ≥ 1;000, giving
a bias of 0.02 bit. We have confirmed this bias estimate by per-
forming numerical simulations on uniform distributions, for
which DJS can be calculated analytically. In this regime we find
that the bias correction performs well even when N ∼ 3B.
Combing the analytical bias correction with the optimal binning
strategy further reduces the bias to <3% even for modest values
of N. Therefore, we use both this analytical bias estimate and an
optimal binning strategy for correcting our measurement of DJS
on each pair of histograms.
Variance. The uncertainty is given as the variance of Dðh1jh2Þ:

uncertainty=V
�
D
�
h1jh2��: [S3]

Grosse et al. (11) show that the uncertainty V ½Dðh1jh2Þ� de-
pends on the number of observations, N, and depends only on
terms of Oð1=N2Þ and smaller. However, a quantitative estimate
of the variance in DJS is important for measuring the significance
of the stress in our MDS embeddings (Multidimensional scaling
analysis section). We have accomplished this by bootstrapping.
To do this we randomly chose 5,000 pairs of histograms from the
large individuality matrix used to construct the MDS embeddings
in Fig. 3 in the main text (171 individuals, 100 histograms per
individual). For each of these pairs of histograms we compute
500 bootstrapped histograms DJS between each pair. We find
σ100DJS

= 0:01, and this estimate is not strongly dependent on the
magnitude of DJS. This variance decreases as we increase the
number of bins per lifetime (longer tw). Bootstrapping yielded
σ50DJS

= 0:007 and σ25DJS
= 0:005.

Removing divisions.For all organisms observed, immediately before
division and for a short time after division, swimming ceases or
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nearly ceases (Fig. 1D). The duration of this period varied from
individual to individual and from condition to condition. These
periods were included for all analysis except for the analysis of
behavioral memory (Fig. 4 E and F), for which they were re-
moved in the following way. The speed as a function of time was
filtered with a median sliding window of 3.3 s. A threshold was
then applied at 0.6 of the maximum median filtered speed. All
frames before the first crossing and after the last crossing were
discarded.
Multidimensional scaling analysis. Multidimensional scaling is a di-
mensionality reduction technique that looks for a low-dimensional
representation of data that preserves distances between points.
MDS is well suited to our data because our statistical approach
measures the dissimilarity between histograms and not their ab-
solute location in a high-dimensional space. The result is a dis-
similarity matrix between behaviors. We apply MDS to this matrix.
For all of the embeddings shown we consider all sublifetime

representations of behavior. To do this, we divide each lifetime
into n nonoverlapping windows of variable length tw depending
on the lifetime of the individual, tw =Tlifetime=n. The resulting
individuality matrix is an M × M dissimilarity matrix with
M = n×N, where N is the number of individuals. We have per-
formed MDS embeddings for n = 25, 50, 100 and found that our
qualitative conclusions are unchanged over this range of n. We
perform MDS on a dissimilarity matrix Δ that is symmetric, has
zeros on the main diagonal, and entries δi;j with 0≤ δi;j ≤ 1.
We use the MATLAB built-in function “mdscale.m” to im-

plement metric MDS. In metric MDS the user specifies a num-
ber of embedding dimensions de for the embedding (de is less
than the rank of the dissimilarity matrix). The goal of the metric
MDS optimization is to find the configuration of M points in de
dimensions whose Euclidean distances correspond as closely as
possible to the δi;j. Briefly, a configuration of M points in de di-
mensions we denote by X = fx1 . . . xMg, where each x is a vector
with size 1× de. For a configuration we compute the distance

matrix D, where entry di;j =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi − xjÞ2

q
. The configuration X is

then optimized under the objective function:

stress=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i<j

�
δi;j − di;j

�2P
i<jδ

2
i;j

vuut : [S4]

This optimization is accomplished in the “mdscale” im-
plementation by gradient descent. For metric MDS embeddings
we used the “metricstress” criterion. For nonmetric MDS em-
beddings we used the “stress” criterion.
We note that DJS is not a metric because it does not satisfy the

triangle inequality. However, metric MDS seeks an embedding
of the DJS distances we calculate into a metric Euclidean space.
As a result, when we apply metric MDS to DJS, we find some
residual stress even when embedding in more than six di-
mensions (Fig. S4A and Fig. 3). However,

ffiffiffiffiffiffiffi
DJS

p
is a metric (12),

so we also performed metric MDS on
ffiffiffiffiffiffiffi
DJS

p
for n = 25, 50, 100,

where we find that the stress continuously decreases toward zero,
rather than saturating with a fixed amount of residual stress. This
indicates that the residual stress observed in the embedding
shown in Fig. 3 results from embedding nonmetric distances
ðDJSÞ in a Euclidean metric space.
Number of embedding dimensions. There is no general way to de-
termine the intrinsic dimensionality of our data, but in some cases
we can estimate the number of dimensions required to accurately
represent it. To do this we sought an estimate of the minimum
significant change in stress obtained by increasing de by 1
ðjΔSminjÞ. In essence, we must compute an uncertainty in the
stress and then ask whether increasing the dimensionality of the
embedding reduces the stress by more than this uncertainty. If it

does not, than adding a dimension is not significantly (in a sta-
tistical sense) reducing the stress. In Eq. S4 δi;j has a finite var-
iance due to uncertainty in DJS. We propagate this uncertainty to
an uncertainty in the stress:

jΔSminj= ∂s
∂δi;j

σDJS =
1
s

P
i<j

�
δi;j − di;j

�
P

i<jδ
2
i;j

−
P

i<j

�
δi;j − di;j

�2P
i<jδi;j�P

i< jδ
2
i;j

�2
0
B@

1
CAσDJS :

[S5]

In propagating this error we have assumed that ∂d
∂δ≈ 0. This

amounts to assuming that the embedded distances ðdi;jÞ do not
vary significantly for small changes in δi;j. For n = 25, 50 and DJS
we have found numerically that this assumption is a good one,
whereas for

ffiffiffiffiffiffiffi
DJS

p
this assumption breaks down—that is, the di;j

are changed significantly for small ð∼ 0:01Þ changes in the δi;j. In
the latter case errors do not propagate in any simple way. As
a result, Eq. S5 is approximately correct for embeddings per-
formed on the DJS, but does not provide a reliable measure of
uncertainty in the stress for embeddings done with

ffiffiffiffiffiffiffi
DJS

p
.

To verify this assumption we performed a bootstrapped esti-
mate of the change in stress arising from σDJS for embeddings with
n = 50, by adding independent and identically distributed (i.i.d.)
Gaussian random numbers with σ = 0.007 (which corresponds to
our bootstrapped estimate of the uncertainty in DJS) to the δi;j
and recomputing the embedding on these perturbed dissimilarity
matrices. We found that the analytical expression for the un-
certainty in the stress expressed in Eq. S5 ðjΔSjmin = 0:002Þ
compares well to bootstrapped estimates jΔSj= 0:0016± 0:0007.
Bootstrapping for n = 100 was found to be too computationally
expensive so these dissimilarity matrices were not included in
this analysis.
Fig. S4 C and D shows the reduction in stress from sequentially

adding dimensions to the embedding for n = 25, 50. For all of
these embeddings we find that two to four dimensions are sig-
nificant as measured by the uncertainty calculated in Eq. S5.
Nontriviality of low-dimensional embeddings.We contend that the fact
that our behavioral data can be represented in two to three
dimensions is nontrivial. Here, we address this in two ways,
simulations of synthetic trajectories and analytical limits on di-
mensionality reduction for random points in high dimensions.
First, we used simulations of trajectories constructed from syn-
thetic Pðjvj;ωÞ histograms (Fig. S5). We constructed three types
of mixture distributions with properties similar to those we ob-
serve in T. thermophila: One simulation generated trajectories
from distributions determined by 11 free parameters (3 hjvji, 3
σ2jvj, 3 σ2ω, and two mixing proportions) (Fig. S5 A and B), and
a second simulation generated the same histograms subject to
the hyperbolic constraint jvj×ω< 1. The hyperbolic constraint
mimics a physical constraint by lowering the accessible angular
velocities (ω) for rapidly moving cells. This constrained the his-
tograms to have a roaming–dwelling-like structure (Fig. S5 C and
D). Finally, we simulated trajectories from distributions de-
termined by only 3 free parameters (hjvji, σ2jvj, σ2ω) (Fig. S5 E and
F). For each simulation, trajectories were generated by drawing
2,000 i.i.d. samples from a distribution with randomly chosen
means and variances (log-normally distributed) and mixing
fractions (uniformly distributed), and this process was repeated
10 times for each simulation. Trajectories from these simulations
are shown in Fig. S5 A, C, and E. We then applied our procedure
to these trajectories, constructing matrices of DJS and performing
metric MDS on those matrices. Fig. S5 B, D, and F shows the
stress plots for these embeddings. We find that trajectories con-
structed from distributions with many free parameters require
much higher-dimensional embeddings to be accurately repre-
sented. We also find that constraints on the histograms reduce
the number of required dimensions for embedding (Fig. S5 F
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and G). This provides qualitative support for our claim that low-
dimensional embeddings accurately reflect the dimensionality of
Pðjvj;ωÞ distributions. It also shows that low-dimensional em-
bedding is not a trivial consequence of our data processing
scheme or a trivial property of 2D random trajectories.
Second, we consider the following question: Given a random

set of 8,550 points with the same dimensionality as our data, how
few dimensions would be required to embed those points in
a Euclidean space? This question has been considered analytically
and bounds on the number of dimensions required to embed
random points are known. Here we compare our results for
embeddings of

ffiffiffiffiffiffiffi
DJS

p
with these bounds. We find that the 2D

representation obtained here is well below the number of di-
mensions required to represent random points, supporting our
claim that our embeddings are nontrivial.
Formally, given a collection of M points fxi . . . xMg, where the

distance between them is given by an arbitrary metric Dðxi; xjÞ
(in our case this would be the JS divergence) gives a metric
space ðX ;DÞ. Let us consider maps from arbitrary metric spaces
ðX ;DÞ into Euclidean metric spaces, that is, those for which D
is the l2 norm, ld2, where d indicates the dimensionality of the
target metric space. Thus, we are looking for a map, such that
for every xi ∈X , there is a corresponding f ðxiÞ∈X ′ such that
Dðxi; xjÞ= ld2ðf ðxiÞ; f ðxjÞÞ.
Such a map is called an embedding. Exact embeddings are not

generally possible; however, approximate embeddings can often
be found if we allow the distances to be distorted. The expansion
of a mapping f : X →X ′ is given by

sup
xi ;xj∈X

ld2
�
f ðxiÞ; f

�
xj
��

D
�
xi; xj

�
and the contraction is the inverse,

sup
xi;xj∈X

D
�
xi; xj

�
ld2
�
f ðxiÞ; f

�
xj
��:

The distortion of a mapping is defined as the product of these
(13). This brings us to a general result of Bourgain, that any
n-point metric space ðX ; dÞ can be embedded in a Euclidean
metric space with distortion bounded by logðnÞ. However, this
bound does not allow us to fix the dimension d of the target
space. To do that, we must consider distortions given by OðnÞ for
d = 2 and Oðnð2=dÞplogð3=2ÞðnÞÞ for d≥ 3; see Matousek et al. (14).
In our global embedding, we are representing a set of 8,550

points ðn= 8;550Þ and the distortion is ∼2,000; in comparison,
the distortion of a random configuration of points is given by
OðnÞ≈ 10;000 (this bound is tight), in two dimensions. Thus, this
distortion incurred by embedding our data in two dimensions is
fivefold lower than expected for a random set of points. For 3D
embeddings, we would expect the distortion of a random col-
lection of points to be 12,000, although we find the distortion to
be ∼970. Clearly our data are not scattered randomly throughout
a high-dimensional metric space.
MDS results and consistency. In Fig. 3 of the main text we claim that
the two MDS dimensions correspond to changeability and in-
dividuality, respectively. Fig. S6 quantifies this relationship. The
correlation between the MDS dimensions and the definitions of
roaming and dwelling is discussed below (Definitions of roaming
and dwelling section).
To check that our dimensionality reduction results are not

idiosyncratic we performed multiple robustness checks on our
conclusions from Fig. 3. We performed both metric and non-
metric MDS on DJS dissimilarity matrices. Nonmetric MDS
preserves the rank order of distances without attempting to
minimize the differences between δ and d. We performed metric

MDS on
ffiffiffiffiffiffiffi
DJS

p
; in these embeddings formal bounds on di-

mensionality reduction in metric spaces are applicable (13)
(Nontriviality of low-dimensional embeddings section). For all of
the considered embeddings we found the stress in two dimen-
sions to be low (<0.22). In addition, our interpretation of the first
two MDS dimensions, corresponding to changeability and in-
dividuality, respectively, was consistent for all of the embeddings
we performed (Table S1).
The optimization in of Eq. S4 is nonconvex. Therefore, we

performed repeated embeddings from random initial config-
urations (for n = 50). We found that the stress varied by <1%
between embeddings. We observed that 0.1% of the points in the
embedding changed their relative position significantly from one
embedding to the next. These points corresponded to points with
high average stress. Given that the embedding does not change
significantly between runs we concluded that our results were not
strongly variable between local minima.
Finally, to check that our conclusions were not dependent on

comparing PNðsÞ using DJS we calculated individuality matrices
ðIN;MÞ, using two other metrics on distributions—the earth
mover’s distance (EMD) and the Kolmogorov–Smirnov (KS)
test statistic on jvj distributions alone. Embedding for both of
these distance metrics is shown in Fig. S6 C and D and our in-
terpretations of the dimensions in these embeddings are un-
changed (Table S1).
Definitions of roaming and dwelling. In Fig. 3 we claim that the first
two MDS dimensions correspond to a roaming and dwelling
model. Here we describe how behaviors are classified into
roaming and dwelling and show that these properties correlate
with theMDS dimensions. For each individual we construct a full-
lifetime histogram PN = hPNðtÞi where brackets denote an aver-
age over time. Two examples of such histograms are shown in
Fig. S7 A and B. We then fit a Gaussian mixture model of the
form

P̂Nðjvj;ωÞ=
X5
i= 1

πigi
�
μNi ;Σ

N
i

�
; [S6]

where giðμNi ;ΣN
i Þ is a bivariate normal distribution using expec-

tation–maximization with unconstrained covariance. πi are the
weights of gi such that

P
iπi = 1, μNi = ðjvj0;ω0ÞN;i, and

Σ
N

i
=

"
σ2jvj σ2jvj;ω
σ2jvj;ω σ2ω

#
N;i

; [S7]

where N is an index over individuals. Information criteria
(Bayesian or Akaike) indicate that five independent Gaussians
are needed to provide a good fit to the data. We note that this fit
could be improved by using a more appropriate mixture model
(e.g., one that accounts for the fact that jvj is strictly positive) but
that it does provide a reasonable classification of our data. Also,
we found that ad hoc thresholding procedures that detected
minima in PN give similar correlations between MDS dimensions
and properties of the behavior.
We fit Eq. S6 to PN , using expectation–maximization for all

171 individuals that were included in the individuality matrix
embedded in Fig. 3. Fig. S7C shows a scatter plot of jvj0 and σω
for all N and i. The gi with high jvj, low σω correspond to roaming
behavior as indicated in Fig. S7D. For each individual, we classify
gi as roaming if jvj0 > 100μm=s and σω < 7rad=s (this results in
two to three Gaussians for each individual). We designate the gi
with the highest jvj0 for each individual as the roaming state
mode gmax.
For each behavior, PNðsÞ, we then classify actions, i.e., ðjvj;ωÞ

pairs, as roaming or dwelling by clustering the data according to
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the Gaussian mixture model ðP̂NÞ. Examples of clustering results
for two full-lifetime histograms are shown in Fig. S7 A and B.
Using this classification, we calculate the fraction of the time
each PNðsÞ spends roaming and this quantity is correlated with
MDS dimension 1 in Fig. S7 D and G. Finally, for each PNðsÞ, if
more than 50% of the actions in a given behavior are clustered to
gmax, we compute the mode of speed distribution in the roaming
state. This amounts to finding the mode of the speed distribution
for behaviors with sufficient density in the roaming state to
specify this mode. The jvj corresponding to the this mode is
designated the “roaming speed” and is correlated with MDS
dimension 2 in Fig. 4 E and G. The correlation for all behaviors
from the embedding is shown in Fig. S7 D and E for WT
T. thermophila:1xR and in Fig. S7 F and G for all conditions.
Table S2 gives the correlation coefficients for the data in Fig.
S7 F and G.
We find that the correlations between the first two MDS

dimensions are qualitatively maintained irrespective of the type of
MDS applied to the data.
Hidden Markov models. As discussed in the main text, Gallagher
et al. (15) pursue a hidden Markov model (HMM) strategy for
describing behavioral recordings of Caenorhabditis elegans over
periods of 1–4 h. By fitting many independent HMMs for dif-
ferent individuals in various environments and with various
mutations, they find that the parameter space of HMMs is effec-
tively low dimensional. We explored the possibility of describing

behavioral variation in T. thermophila by a similar strategy.
However, we found that the nonstationarity present in our be-
havioral measurements resulted in HMMs describing the behav-
ioral variation poorly. In particular, by definition, the residence
time distribution for each state in an HMM is exponential. We
found that the HMMs inferred from our data produced state
residence time distributions that differed qualitatively from the
residence time distributions for T. thermophila (longer tails).
There are methods for constructing HMMs with nonexponential
residence time distributions; however, these models are ad hoc
and require inferring a large number of parameters (16). As
a result, we pursued the analytical method presented here.
Moreover, inferring HMMs for different portions of an in-
dividual’s lifetime resulted in qualitatively different transition
matrices—supporting our claim that behavioral dynamics are
nonstationary.
Ultimately, our results provide a route to a very similar be-

havioral characterization to that observed by Gallagher et al. (15);
however, we do not require explicit specification of emission
probability densities or inference of the number of hidden be-
havioral states. As a result our method is potentially more broadly
applicable. It is striking, however, that we find an effectively
similar set of behavioral states. It would be interesting to de-
termine whether this three-state characterization of C. elegans
behavior is maintained when full-lifetime behavioral variation is
measured.
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Fig. S1. Chamber homogeneity and wall interactions. (A–C) Wall interactions. (A) The radial average distribution of the centroid location as a function of the
distance from the center of the chamber (r). The six traces are constructed from the full lifetimes of all individuals from a single experiment. Note the uniform
distribution beyond ∼40 μm from the wall, naturally defining a wall interaction region. The fraction of the total lifetime that an individual spends within this
region varies between 5% and 30% across conditions as shown in C. The Bac individuals spend the largest fraction of their lifetime swimming rapidly and
therefore the greatest time interacting with the walls. B shows that there is no lasting, measurable, effect on the speed and turning angle distributions of these
wall interaction events. Jensen–Shannon divergence estimates are shown, using speed distributions alone, for short (10-frame) segments immediately before
and after a wall interaction event of varying durations (blue). The same analysis was repeated for randomly chosen sections of trajectories where no wall
interaction occurred (green). We conclude that there is no “memory” in terms of the speed distributions due to wall interaction events. (D–F) Chamber
homogeneity. (D) We compute the 2D spatial distribution of centroid locations ðρixyÞ for individual i over its full lifetime. We then compute the correlation

coefficient rij =
P

xy
ðρixy − ρixy Þðρjxy − ρjxy ÞP

xy
ðρixy − ρixy Þ2ðρjxy − ρjxy Þ2

, where h·i denotes a spatial average over x and y, for all pairs of individuals. We computed r for 36 pairs of individuals

residing in the same chamber and an additional 36 pairs residing in different chambers. ρixy was constructed by omitting the division portion of the lifetime,

Legend continued on following page
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where cells swim slowly or not at all, and the wall interaction region. (E) Effect of “floor” and “ceiling” interactions. Histograms of swimming speed for three
different chamber depths are averaged across n = 18 individuals (three families per chamber depth). Arrows indicate decreasing peak speed with decreasing

chamber depth. (F) An example of a full-lifetime average histogram ðPNÞ. (G) The phylogeny of an entire family (six WT T. thermophila:1xR individuals) in-
cluding their full-lifetime average histograms. The black dots indicate division events and the lower axis, time.
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Fig. S2. Box plot of tw for IN;Mðs; s’Þ calculations and effects of wall removal. (A) Variable tw . To compute the individuality matrices for Figs. 2 and 3 of the main
text we must divide each individual’s lifetime into n = 100 equal duration segments. As a result the length of these segments varies from one individual to the
next. Here we show a box plot giving the distribution of window sizes, for all 30 individuals in each of five conditions. The comparatively long windows in 1xB
are due to the long generation times in that condition. (B and C) Effect of wall removal on individuality and changeability. To measure the effect of wall
interactions on our changeability and individuality matrices we recalculated these quantities with and without the wall interactions included (for changeability
Cwalls and Cno walls, respectively) for n = 50. We then computed the difference between these matrices. (B) For all 171 individuals used in Figs. 3 and 4 the
distribution of these differences is shown. We repeated the calculation for the individuality matrices between all 171 individuals, and the results are shown in
C. Because these differences are small, we conclude that our estimates of changeability and individuality are not strongly influenced by cells interacting with
the walls of the chamber.
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Fig. S3. Stress as a function of the number of embedding dimensions for n = 25, 50, 100 for all 171 individuals embedded in Fig. 3H. (A) Stress plots for DJS. (B)
Stress plots for

ffiffiffiffiffiffiffi
DJS

p
. For all embeddings our interpretation of the first two MDS dimensions is consistent. (C and D) The change in stress jΔSj as a function of the

embedding dimension for n = 25 (C) and n = 50 (D). All embeddings are performed on DJS. Black lines with circles measure the decrease in stress by embedding
in the number of dimensions indicated on the x axis. The gray line is Eq. S5, indicating the minimum significant change in stress. At smaller n the effect of noise
is decreased because the number of points used to compute each PNðsÞ increases.
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Fig. S4. Simulations demonstrate that low-dimensional embeddings are nontrivial. We simulated trajectories for three types of synthetic PNðjvj;ωÞ histo-
grams: a “high-dimensional” histogram with 11 unconstrained free parameters (A and B), the same histogram with a hyperbolic constraint applied (C and D),
and a “low-dimensional” histogram with only 3 free parameters (E and F). A, C, and E show real-space trajectories, and Insets show jvj and ω time series. B, D,
and F show stress plots identical to those in Fig. S6 for the trajectories in A, C, and E, respectively. The red line is jΔSminj as in Fig. S6. Note that the low-
dimensional trajectory embeds in fewer dimensions.
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Fig. S5. For the embedding shown in Fig. 3H, changeability and individuality occur largely in MDS dimensions 1 and 2, respectively. (A) The fraction of
variance in each of the two MDS dimensions due to individuality is calculated for the embedding in Fig. 3H. This fraction is plotted by condition for each of the
five conditions where the WT T. thermophila strain was studied as well as for T. borealis. Because all points lie above the equality line, the variance due to
individuality in MDS dimension 2 is larger than that in MDS dimension 1. (B) For each individual we compute a SD along each of the two MDS dimensions in the
embedding shown in Fig. 3. A histogram of the ratio ðσMDS1=σMDS2Þ of these SDs shows that for most individuals (98%) it is larger than 1, indicating that
changeability occurs primarily in MDS dimension 1. C and D showMDS embeddings using other metrics to compare PNðsÞ. (B) We computed a distance between
PNðsÞ histograms, using the earth mover’s distance (EMD), and then performed an embedding. Because computing the EMD is computationally expensive, we
did this for 50 behaviors per lifetime for all 171 individuals. We then performed metric MDS on this dissimilarity matrix and the embedding in two dimensions is
shown in C with the corresponding stress plot (Lower). Again, we find that two dimensions capture the variation across the population well. As a second check,
we computed the distance between histograms of speed only (1D histograms), using the maximum distance between the cumulative distribution functions
[Kolmogorov–Smirnov (KS) test statistic]. (D) Using this metric to measure distances between behaviors, we computed a dissimilarity matrix and embedded the
matrix using metric MDS. Again we found that two dimensions were sufficient to represent the diversity represented by 50 behaviors per lifetime for all 171
individuals. For both the EMD and KS measurements of histogram dissimilarity the correlations between the two MDS dimensions and our two-state model of
behavior hold.
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Fig. S6. Correlation between MDS dimensions and two-state model. (A and B) Full-lifetime average histograms ðPNÞ for two individuals [WT T. thermophi-
la:1xR and T. borealis (Tb):1xR, respectively]. The density within the black line demarcates the roaming state and the green “+” sign shows the location of the
roaming speed. (C) A scatter plot of v0 and σω for Gaussian mixture model fits to all 171 individuals considered in Fig. 3 (all i and N, see Definitions of roaming
and dwelling section for definitions). The roaming and dwelling regions are labeled. (D) A scatter plot of the high-state residence time and the projection
along MDS dimension 1 for 30 WT:1xR individuals in Fig. 3A. The correlation coefficient ðρÞ is shown. (E) A scatter plot of the location of the high-state mode
and the projection along MDS dimension 2 for the same population. (F) Same as D except for all six populations from the full embedding in Fig. 3H of the main
text; applies to G as well. (G) Same as E except for all six populations of WT T. thermophila and T. borealis. Correlation coefficients are listed in Table S2.
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Fig. S7. (A) Memory plots identical to those shown in Fig. 4 E and F for all six populations studied. Each plot is labeled by strain:condition. For all five WT
T. thermophila strains each plot is composed of 30 individuals, and that for T. borealis (Tb) is composed of 21 individuals. The black line indicates the median of
the population and the gray lines the 0.1 and 0.9 quantiles. (B and C) Heritability control experiment. (B) To exclude the possibility that the heritability effects
we observe are due to environmentally specific heterogeneity we placed two unrelated WT T. thermophila:CDM individuals in the same chamber and
measured their behavior. The distribution of DJS distances for unrelated WT T. thermophila:CDM individuals in the same chamber is compared with the same
measurement for unrelated individuals in different chambers. Because unrelated individuals in the same chamber are slightly less similar than unrelated in-
dividuals in different chambers, we conclude that the heritability we observe does not arise from related individuals residing in the same chamber. (C) To
demonstrate that distributions of heritable behaviors are overlapping we show distributions of all DJS values for related and unrelated WT T. thermophila:CDM
individuals.
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Table S1. Analysis of MDS embeddings for different types of scaling and various n, with and
without

ffiffiffiffiffiffiffiffi
DJS

p

n
ffiffiffiffiffiffiffi
DJS

p
? MDS type σ2MDS2 Ind. σ2MDS1 Ind. σMDS1=σMDS2 > 1 Stress

25 No Nonmetric 0.42 0.1 0.96 0.12
25 Yes Metric 0.42 0.11 0.84 0.22
25 No Metric 0.42 0.1 0.96 0.12
50 No Nonmetric 0.35 0.1 0.99 0.11
50 Yes Metric 0.36 0.1 0.83 0.20
50 No Metric 0.36 0.1 0.98 0.11
100 No Nonmetric 0.31 0.1 0.91 0.12
100 Yes Metric 0.31 0.1 0.8 0.22
100 No Metric 0.31 0.1 0.95 0.12
50 EMD Metric 0.38 0.13 1 0.04
50 KS Metric 0.28 0.07 0.8 0.1

σ2MDS2 Ind. is the fraction of variance in MDS dimension 2 due to individuality and likewise for σ2MDS1. Because
a larger fraction of variance in MDS dimension 2 is due to individuality, this dimension is consistently associated
with individuality. σMDS1=σMDS2 > 1 is the fraction of individuals for which the variance in MDS dimension 1
exceeds that in dimension 2. Because this fraction is always large, changeability resides largely in MDS dimension
1. The bottom two rows show results for other metrics: the earth mover’s distance (EMD) and the Kolmogorov–
Smirnov test statistic (KS) on cumulative distribution functions of jvj alone.

Table S2. Behavioral memory, mean lifetimes, and correlation between changeability and
individuality and MDS dimensions

Condition Memory, min Average lifetime, min Memory/lifetime ρ1 ρ2

1xR 22 190 0.12 0.96 0.82
2xR 30 106 0.28 0.97 0.78
1xB 27 294 0.09 0.91 0.61
Bac 16 129 0.12 0.95 0.86
CDM 34 197 0.17 0.95 0.86
Tb:1xR 17 115 0.15 0.92 0.73

Memory is computed as the first zero crossing of the population’s median memory. The last two columns
show correlations between MDS dimensions and two-state model correlations. The correlations shown corre-
spond to the embedding in Fig. 3H. ρ1 is the correlation coefficient between MDS dimension 1 and the fraction
of time spent roaming, and ρ2 is that between MDS dimension 2 and the roaming speed. Correlations depend
quantitatively, but not qualitatively, on the type of MDS used or whether we embed
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Movie S1. An unprocessed movie of four WT T. thermophila (TtWT):1xR individuals in a microfluidic chamber like the one shown in Fig. 1A.

Movie S1

Movie S2. A background-subtracted version of Movie S1.

Movie S2
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