Chemistry & Biology, Volume 20

Supplemental Information

¹³C-Flux Spectral Analysis of Host-Pathogen

Metabolism Reveals a Mixed Diet for Intracellular

Mycobacterium tuberculosis

Dany J.V. Beste, Katharina Nöh, Sebastian Niedenführ, Tom A. Mendum, Nathaniel D. Hawkins, Jane L. Ward, Michael H. Beale, Wolfgang Wiechert, and Johnjoe McFadden

Inventory of Supplemental Information

Table S1, Related to Figure 1. ¹³C isotopomer abundance of protein amino acids extracted from *Mycobacterium tuberculosis* after 24, 48 and 72 hours growth in ¹³C pre-labelled THP-1 macrophages demonstrating isotopic steady state after 48 hours of the infection.

Table S2, Related to Figure 4. Experimental (GC-MS) mass distributions in the amino acid derivatives of $[U^{13}-C_6]$ glucose RPMI grown *Mycobacterium tuberculosis* H37Rv (MTB), intracellular MTB (extracted from THP-1 macrophages pre-labelled with $[U^{-13}C_6]$ glucose), infected and uninfected THP-1 macrophages pre-labelled with $[U^{-13}C_6]$ glucose after 48 hours of infection/growth.

Table S3, Related to Figure 6. Experimental (GC-MS) mass distributions in the amino acid derivatives of RPMI grown wild type *Mycobacterium tuberculosis*

(MTB), intracellular MTB, intracellular PEPCK KO and infected THP-1 macrophages cultivated with sodium [¹³C] bicarbonate.

Table S4, Related to Figure 5. Experimental (GC-MS) mass distributions in the amino acid derivatives extracted from \triangle PEPCK KO cultivated in [U¹³-C₆] glucose RPMI and intracellular \triangle PEPCK grown inside THP-1 macrophages which were pre-labelled with [U-¹³C₆] glucose.

 Table S5, Related to Experimental Procedures. Network reference model of the

 central metabolism of *Mycobacterium tuberculosis*.

Table S6, Related to Experimental Procedures. Experimental (GC-MS) andcalculated mass distributions in the amino acid derivatives of *Mycobacteriumtuberculosis* (MTB) residing in the macrophage environment (MAC)

Reaction	Stoichiometry and C-atom transitions
GlcUptake(_0/_1)	$GLC(#ABCDEF) \rightarrow G6P(#ABCDEF)$
GlycUptake(_0/_1)	$GLYC_{IN} (#ABC) \rightarrow GAP (#ABC)$
OLACUptake(_0/_1)	$OLAC (#AB) \rightarrow ACE (#AB)$
aceProd	ACE (#AB) \leftrightarrows ACCOA (#AB)
AlaUptake	ALA_IN (#ABC) \rightarrow ALA (#ABC)
AspUptake	$ASP (\#ABC) \rightarrow ASP (\#ABC)$
CO2out	$\operatorname{CO}_2(\#A) \to \operatorname{CO}_{2\mathrm{ex}}(\#A)$
GluUptake	$GLU_{IN} (\#ABCDE) \rightarrow GLU (\#ABCDE)$
GlycUptake	$GLYC (#ABC) \rightarrow GAP (#ABC)$
HisUptake	HIS_IN (#ABCDEF) \rightarrow HIS (#ABCDEF)
IsoUptake	$ISO_IN (\#ABCDEF) \rightarrow ISO (\#ABCDEF)$
LeuUptake	LEU_IN (#ABCDEF) \rightarrow LEU (#ABCDEF)
LysUptake	LYS_IN (#ABCDEF) \rightarrow LYS (#ABCDEF)
SerUptake	SER_IN (#ABC) \rightarrow SER (#ABC)
ThrUptake	THR_IN (#ABCD) \rightarrow THR (#ABCD)
TyrUptake	TYR_IN (#ABCDEFGHI) \rightarrow TYR (#ABCDEFGHI)
ValUptake	VAL_IN (#ABCDE) \rightarrow VAL (#ABCDE)
pgi	$G6P (\#ABCDEF) \leftrightarrow FBP (\#ABCDEF)$
fba	$GAP (\#CBA) + GAP (\#DEF) \leftrightarrow FBP (\#ABCDEF)$
gapA	$\text{GAP} (\#ABC) \leftrightarrow \text{PGA} (\#ABC)$
pykeno	$PGA (\#ABC) \leftrightarrow PYRPEP (\#ABC)$
gnd	G6P (#ABCDEF) \rightarrow P5P (#BCDEF) + CO ₂ (#A)
tkt1	$GAP (\#CDE) + G6P (\#ABabcd) \leftrightarrow P5P (\#ABCDE) + E4P (\#abcd)$
tkt2	S7P (#ABabcde) + GAP (#CDE) \leftrightarrow P5P (#ABCDE) + P5P (#abcde)
tal	$E4P (\#defg) + G6P (\#abcABC) \leftrightarrow GAP (\#ABC) + S7P (\#abcdefg)$
pdh	PYRPEP (#ABC) \rightarrow ACCOA (#BC) + CO ₂ (#A)
cs	MALOAA (#ABCD) + ACCOA (#ab) \leftrightarrows ICIT (#DCBbaA)
icdh	ICIT (#ABCDEF) \leftrightarrows OXG (#ABCDE) + CO ₂ (#F)
kor	OXG (#ABCDE) \leftrightarrows SUCCOA (#BCDE) + CO ₂ (#A)
SCS	$SUCCOA (\#ABCD) \leftrightarrow SUC (\#ABCD)$
sdh	SUC (#ABCD) \leftrightarrow FUM (#ABCD)
fum(a/b)	$FUM (\#ABCD) \leftrightarrow MALOAA (0.5 \#ABCD + 0.5 \#DCBA)$
icl	ICIT (#ABCDEF) \leftrightarrows GLX (#AB) + SUC (#FCDE)
ms	$GLX (#AB) + ACCOA (#ab) \rightarrow MALOAA (#ABba)$
pckmez	$PYRPEP (\#ABC) + CO_2 (\#a) \leftrightarrow MALOAA (\#ABCa)$
alaProd	$PYRPEP (#ABC) \leftrightarrows ALA (#ABC)$
kivProd	PYR (#ABC) + PYR (#abc) \rightarrow KIV (#ABCbc) + CO ₂ (#a)
valProd	$KIV (\#ABCDE) \leftrightarrows VAL (\#ABCDE)$
leuProd	$KIV (\#ABCDE) + ACCOA (\#ab) \leftrightarrows LEU (\#BCDEab) + CO_2 (\#A)$
serProd	$GAP (\#ABC) \leftrightarrows SER (\#ABC)$
gll	SEK (#ABC) \Rightarrow GLY (#AB) + MTHF (#C)
hisProd	$POP (\#ABUDE) + MTHF(\#F) \Rightarrow HIS (\#FEDUBA)$
gl2	$GLY (\#AB) \rightarrow M1HF (\#B) + CO2(\#A)$ $MALOAA (\#ABCD) \leftarrow ACD (\#ABCD)$
aspProd	MALUAA (#ABCD) \rightarrow ASP (#ABCD)

Table S5: Network reference model of the central metabolism of Mycobacterium tuberculosis

thrProd	ASP (#ABCD) \leftrightarrows THR (#ABCD)
metProd	$ASP (\#ABCD) \rightarrow MET (\#ABCD)$
lysProd(1/2)	PYRPEP (#ABC) + ASP (#ABCD) \leftrightarrows LYS (0.5 #BCabcd + 0.5 #ABCbcd) + CO ₂ (0.5 #A + 0.5 #a)
isoProd	THR (#ABCD) + PYRPEP (#abc) \leftrightarrows ISO (#ABCDbc) + CO ₂ (#a)
gluProd	$OXG (#ABCDE) \leftrightarrows GLU (#ABCDE)$
proProd	GLU (#ABCDE) \rightarrow PRO (#ABCDE)
ornProd	GLU (#ABCDE) \rightarrow ORN (#ABCDE)
pheProd1	E4P (#ABCD) + PYRPEP (#abc) \rightarrow CHO (#bcABCDa)
pheProd2	CHO (#ABCDEFG) + PYRPEP (#abc) \rightarrow PHE (#abcABCDEF) + CO ₂ (#G)
tyrProd	CHO (#ABCDEFG) + PYRPEP (#abc) \leftrightarrows TYR (#abcABCDEF) + CO ₂ (#G)
Bio	0.046 ALA+ 0.009 LEU+ 0.006 SER + 0.012 GLY + 0.012 LYS +0.005 ISO + 0.017 HIS + 0.026 ASP+ 0.007 THR+ 0.002 MET +0.007 PRO + 0.018 GLU + 0.002 TYR + 0.003 PHE + 0.026 VAL + 0.018 G6P + 0.041 F6P (taken from G6P pool) + 0.065 P5P + 0.001 GAP + 0.005 PGA + 0.015 PEP (taken from PYRPEP pool) + 0.015 PYR (taken from PYRPEP pool) + 0.589 ACCOA + 0.022 MALOAA + 0.015 OXG [all in mmol g_{DW}^{-1}] → 1 BIO [in g_{DW}]

Legend:

 \Rightarrow : net fluxes possible in both directions, zero exchange flux

 \rightarrow : net flux in specified direction, zero exchange flux

 \leftrightarrow : net flux possible in both directions, exchange flux present

Model assumptions and simplifications:

Linear reaction sequences without carbon cleavage were condensed for simplification. Metabolite pools F6P and G6P are lumped to one pool (G6P), as the interconverting phosphoglucose isomerase reaction has usually a high exchange rate. Pyruvate and PEP, malate and oxaloacetate were lumped to one pool PYRPEP and MALOAA, respectively. Irreversibility assumptions are due to thermodynamic considerations and indicated by directed arrows.