
Bayesian Gaussian Copula Factor Models for Mixed

Data (Supplement)

1 Conditional independence

Assume F (Y1, Y2, Y3) has a Gaussian copula with correlation matrix C, that Y3 is

discrete, and that r12 = 0. Let (Z1, Z2, Z3) ∼ N(0,C) and Bc = (F3(c − 1), F3(c)]

for c in the domain of Y3 and define gj(z3) = Φ
(
Fj(yj)− cj3z3)/(1− c2j3)1/2

)
. It is

straightforward to show that

Pr(Y1 ≤ y1|Y3 = c)Pr(Y2 ≤ y2|Y3 = c) = E(g1(z3))E(g2(z3)) (1.1)

Pr(Y1 ≤ y1, Y2 ≤ y2 | Y3 = c) = E(g1(z3)g2(z3)) (1.2)

where the expectations are with respect to π(z3|y3 = c) = TN(0, 1, F3(c − 1), F3(c))

and (1.2) holds because π(z1, z2|z3) = π(z1|z3)π(z2|z3) when r12 = 0. Since g1, g2 are

monotone it is well known that E(g1(z3)g2(z3)) 6= E(g1(z3))E(g2(z3)) (and Y1, Y2 are

dependent given Y3) unless one or both functions are a.s. constant, which occurs only if

one or both of Y1, Y2 are marginally independent of Y3 (c13c23 = 0). This result extends

to conditioning on one discrete variable and any number of continuous variables since

conditioning on a continuous variable Y4 = y4 implies that Pr(z4 = Φ−1(F (y4)) =

1, and π(z3|y3, z4) is again univariate truncated normal (with a different mean and

variance).



2 Posterior Predictive Conditional Distributions

To sample from conditional posterior predictive distributions such as π(y∗1 | y∗(−1) =

x,Y ) we could sample from π(y∗|Y ) and discard draws where y∗j 6= xj for any 2 ≤ j ≤

p. This approach can be wasteful computationally since even in moderate dimensions

most samples will be discarded. Instead we might prefer to estimate this distribution

directly. We can write Pr(y∗1 ≤ y | y∗(−1) = x, Y ) as

∫
C

∫
Rp−1

 F̂1(y)∫
−∞

π(z∗1 | z∗(−1),C) dz∗1

 π(z∗(−1)| y∗(−1) = x,C)π(C | Y ) dz∗(−1) dC (2.1)

Assume that y2, . . . yp are discrete, or that the empirical cdfs are used for F̂j (if yj

is continuous and F̂j is a smooth estimator then z∗j = Φ−1(F̂ (xj)) is fixed in the

following). Then π(z∗(−1) | y∗(−1) = x,C) is the (p − 1)-dimensional truncated normal

distribution N(0,C(−1)) where C(−1) is obtained by dropping the first row and column

of C, restricted to the set Bx = {z∗(−1); Φ−1(F̂j(x
−
j )) < z∗j ≤ Φ−1(F̂j(xj)) ∀ 2 ≤ j ≤ p}

(where F (x−) is the lower limit of F at x). To estimate (2.1) from MCMC output we

need to draw from this distribution (at least) once for every sample of C. For a general

C this is prohibitive unless p is very small, but our factor-analytic representation allows

us to efficiently draw from π(z∗(−1) | y(−1) = x,C) by sampling (p − 1) univariate

truncated normals: Let Λ̃(−1) be Λ̃ with the first row removed and U(−1) be U with

the first row and column removed. Since C(−1) = Λ̃(−1)Λ̃
′
(−1) +U(−1) we have

π(z∗(−1) | y∗(−1) = x, Λ̃(−1)) ∝ N(z∗(−1); 0, Λ̃(−1)Λ̃
′
(−1) +U(−1))1

(
(z∗(−1) ∈ Bx)

)
∝
∫
Rk

p∏
j=2

(
TN(λ̃jη, uj, aj, bj)

)
N(η; 0, I) dη
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where aj = Φ−1(F̂j(x
−
j )), bj = Φ−1(F̂j(xj)) and η is an auxiliary variable. Therefore

we can approximate (2.1) as follows:

1. Draw Λ̃ via the PX-Gibbs sampler, and draw η ∼ N(0, I)

2. Draw z∗j ∼ TN(λ̃jη, uj, aj, bj) for 2 ≤ j ≤ p

3. For each distinct value of y1 set F̃ (t)(yi) =
∫ F̂1(yi)

−∞ N(z∗1 ;m, v) dz∗1 where

m = λ̃1Λ̃
′
(−1)[Λ̃(−1)Λ̃

′
(−1) +U(−1)]

−1z∗(−1)

v = 1− λ̃1Λ̃
′
(−1)[Λ̃(−1)Λ̃

′
(−1) +U(−1)]

−1Λ̃(−1)λ̃
′
1 (2.2)

where again the matrix inverses in (2.2) can be computed efficiently as in (??). This

procedure provides estimates of the conditional cdf at the observed data points. For a

discrete response we can then directly compute conditional probabilities, odds ratios,

and so on. When y1 is continuous these can be interpolated to give a histogram

estimate of π(y1|y(−1) = x) with support on the range of the observed data. A number

of modifications to this approach are possible; for example, to condition on a subset of

y(−1) we simply drop the irrelevant rows of Λ(−1) and only perform step 3 for the jth

variable if we are conditioning on yj.

This is a natural extension of factor regression models which posit a Gaussian factor

model for (yi,x
′
i)
′, implying a linear regression model for π(yi | xi) (Carvalho et al.,

2008; West, 2003). These are especially useful when p > n as a model-based form

of reduced rank regression (automatically selecting batches of correlated predictors by

loading them highly on the same factor), or when there is missing data in X. Here

we have a flexible joint model which accommodates any ordered response or covariates

while retaining the computational simplicity of factor regression models.
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