Bayesian Gaussian Copula Factor Models for Mixed Data (Supplement)

1 Conditional independence

Assume $F(Y_1, Y_2, Y_3)$ has a Gaussian copula with correlation matrix C , that Y_3 is discrete, and that $r_{12} = 0$. Let $(Z_1, Z_2, Z_3) \sim N(\mathbf{0}, \mathbf{C})$ and $\mathcal{B}_c = (F_3(c-1), F_3(c)]$ for c in the domain of Y_3 and define $g_j(z_3) = \Phi (F_j(y_j) - c_{j3}z_3)/(1 - c_{j3}^2)^{1/2}$. It is straightforward to show that

$$
Pr(Y_1 \le y_1 | Y_3 = c) Pr(Y_2 \le y_2 | Y_3 = c) = E(g_1(z_3)) E(g_2(z_3))
$$
\n(1.1)

$$
Pr(Y_1 \le y_1, Y_2 \le y_2 | Y_3 = c) = E(g_1(z_3)g_2(z_3))
$$
\n(1.2)

where the expectations are with respect to $\pi(z_3|y_3 = c) = TN(0, 1, F_3(c-1), F_3(c))$ and [\(1.2\)](#page-0-0) holds because $\pi(z_1, z_2|z_3) = \pi(z_1|z_3)\pi(z_2|z_3)$ when $r_{12} = 0$. Since g_1, g_2 are monotone it is well known that $E(g_1(z_3)g_2(z_3)) \neq E(g_1(z_3))E(g_2(z_3))$ (and Y_1, Y_2 are dependent given Y_3) unless one or both functions are a.s. constant, which occurs only if one or both of Y_1, Y_2 are marginally independent of Y_3 ($c_{13}c_{23} = 0$). This result extends to conditioning on one discrete variable and any number of continuous variables since conditioning on a continuous variable $Y_4 = y_4$ implies that $Pr(z_4 = \Phi^{-1}(F(y_4)) =$ 1, and $\pi(z_3|y_3, z_4)$ is again univariate truncated normal (with a different mean and variance).

2 Posterior Predictive Conditional Distributions

To sample from conditional posterior predictive distributions such as $\pi(y_1^* | y_{(-1)}^*)$ (x, Y) we could sample from $\pi(y^*|Y)$ and discard draws where $y_j^* \neq x_j$ for any $2 \leq j \leq$ p. This approach can be wasteful computationally since even in moderate dimensions most samples will be discarded. Instead we might prefer to estimate this distribution directly. We can write $Pr(y_1^* \le y \mid \mathbf{y}_{(-1)}^* = \mathbf{x}, \ \mathbf{Y})$ as

$$
\int_{C \mathbb{R}^{p-1}} \left(\int_{-\infty}^{\hat{F}_1(y)} \pi(z_1^* | \mathbf{z}_{(-1)}^*, \mathbf{C}) dz_1^* \right) \pi(\mathbf{z}_{(-1)}^* | \mathbf{y}_{(-1)}^* = \mathbf{x}, \mathbf{C}) \pi(\mathbf{C} | \mathbf{Y}) dz_{(-1)}^* d\mathbf{C} \quad (2.1)
$$

Assume that $y_2, \ldots y_p$ are discrete, or that the empirical cdfs are used for \hat{F}_j (if y_j is continuous and \hat{F}_j is a smooth estimator then $z_j^* = \Phi^{-1}(\hat{F}(x_j))$ is fixed in the following). Then $\pi(z_{(-1)}^* | y_{(-1)}^* = x, C)$ is the $(p-1)$ -dimensional truncated normal distribution $N(\mathbf{0}, \mathbf{C}_{(-1)})$ where $\mathbf{C}_{(-1)}$ is obtained by dropping the first row and column of C, restricted to the set $\mathcal{B}_x = \{ \mathbf{z}_{(-1)}^*, \ \Phi^{-1}(\hat{F}_j(x_j))\}$ $(\bar{f}_j)(\bar{x}_j) < \bar{z}_j^* \leq \Phi^{-1}(\hat{F}_j(x_j)) \ \forall \ 2 \leq j \leq p$ (where $F(x^{-})$ is the lower limit of F at x). To estimate [\(2.1\)](#page-1-0) from MCMC output we need to draw from this distribution (at least) once for every sample of C . For a general C this is prohibitive unless p is very small, but our factor-analytic representation allows us to efficiently draw from $\pi(z_{(-1)}^* | y_{(-1)} = x, C)$ by sampling $(p-1)$ univariate truncated normals: Let $\Lambda_{(-1)}$ be Λ with the first row removed and $U_{(-1)}$ be U with the first row and column removed. Since $\mathbf{C}_{(-1)} = \tilde{\mathbf{\Lambda}}_{(-1)} \tilde{\mathbf{\Lambda}}'_{(-1)} + \mathbf{U}_{(-1)}$ we have

$$
\pi(\boldsymbol{z}^*_{(-1)} \mid \boldsymbol{y}^*_{(-1)} = \boldsymbol{x}, \boldsymbol{\tilde{\Lambda}}_{(-1)}) \propto N(\boldsymbol{z}^*_{(-1)}; \; \boldsymbol{0}, \boldsymbol{\tilde{\Lambda}}_{(-1)} \boldsymbol{\tilde{\Lambda}}_{(-1)}' + \boldsymbol{U}_{(-1)})\boldsymbol{1}\big((z^*_{(-1)} \in \mathcal{B}_{x})\big) \\ \propto \int_{\mathbb{R}^k} \prod_{j=2}^p \left(TN(\boldsymbol{\tilde{\lambda}}_j \boldsymbol{\eta}, u_j, a_j, b_j)\right) N(\boldsymbol{\eta}; \boldsymbol{0}, \boldsymbol{I}) \, d\boldsymbol{\eta}
$$

where $a_j = \Phi^{-1}(\hat{F}_j(x_i))$ j_j), $b_j = \Phi^{-1}(\hat{F}_j(x_j))$ and η is an auxiliary variable. Therefore we can approximate (2.1) as follows:

- 1. Draw $\tilde{\Lambda}$ via the PX-Gibbs sampler, and draw $\eta \sim N(\mathbf{0}, \mathbf{I})$
- 2. Draw $z_j^* \sim TN(\tilde{\lambda}_j \boldsymbol{\eta}, u_j, a_j, b_j)$ for $2 \leq j \leq p$
- 3. For each distinct value of y_1 set $\tilde{F}^{(t)}(y_i) = \int_{-\infty}^{\hat{F}_1(y_i)} N(z_1^*, m, v) dz_1^*$ where

$$
m = \tilde{\lambda}_{1}\tilde{\Lambda}'_{(-1)}[\tilde{\Lambda}_{(-1)}\tilde{\Lambda}'_{(-1)} + U_{(-1)}]^{-1} z_{(-1)}^{*}
$$

$$
v = 1 - \tilde{\lambda}_{1}\tilde{\Lambda}'_{(-1)}[\tilde{\Lambda}_{(-1)}\tilde{\Lambda}'_{(-1)} + U_{(-1)}]^{-1}\tilde{\Lambda}_{(-1)}\tilde{\lambda}'_{1}
$$
 (2.2)

where again the matrix inverses in (2.2) can be computed efficiently as in (2.2) . This procedure provides estimates of the conditional cdf at the observed data points. For a discrete response we can then directly compute conditional probabilities, odds ratios, and so on. When y_1 is continuous these can be interpolated to give a histogram estimate of $\pi(y_1|\mathbf{y}_{(-1)} = \mathbf{x})$ with support on the range of the observed data. A number of modifications to this approach are possible; for example, to condition on a subset of $y_{(-1)}$ we simply drop the irrelevant rows of $\Lambda_{(-1)}$ and only perform step 3 for the jth variable if we are conditioning on y_j .

This is a natural extension of factor regression models which posit a Gaussian factor model for $(y_i, x'_i)'$, implying a linear regression model for $\pi(y_i | x_i)$ [\(Carvalho et al.,](#page-3-0) [2008;](#page-3-0) [West,](#page-3-1) [2003\)](#page-3-1). These are especially useful when $p > n$ as a model-based form of reduced rank regression (automatically selecting batches of correlated predictors by loading them highly on the same factor), or when there is missing data in X . Here we have a flexible joint model which accommodates any ordered response or covariates while retaining the computational simplicity of factor regression models.

References

- Carvalho, C. M., Chang, J., Lucas, J. E., Nevins, J. R., Wang, Q., and West, M. (2008). High-Dimensional Sparse Factor Modeling: Applications in Gene Expression Genomics. Journal of the American Statistical Association, 103(484):1438–1456.
- West, M. (2003). Bayesian factor regression models in the large p, small n paradigm. Bayesian statistics, 7(2003):723–732.