Supplementary Information

Glycogen shortage during fasting triggers liver-brain-adipose

neurocircuitry to facilitate fat utilization

Supplementary Figure S1.

Liver-Brain-Adipose neurocircuitry

Supplementary Figure S1.

Graphical abstract.

Liver glycogen shortage activates a liver-brain-adipose neural axis composed of afferent vagal and efferent sympathetic nerves, promoting fatty acid and glycerol release from white adipose tissue as a response to starvation.

Supplementary Figure S2.

No significant difference vs Sham

No significant difference vs Sham

No significant difference vs Sham

No significant difference vs Sham

Supplementary Figure S2.

Hepatic vagotomy does not affect post-operated body weight, epididymal fat weight and lean body weight and the amount of food intake.

a, Sequential body weight, epididymal fat weight and lean body weight were measured by dual energy X-ray analysis (DEXA). No significant difference. Error bars, S.E.M. (n=7) **b**, The amount of food consumption was measured after hepatic vagus nerve resection (HVx). No significant difference. Error bars, S.E.M. (n=7)

Supplementary figure S3.

а

Capsaicin

Unmyelinated fiber

Myelinated fiber

b

Supplementary Figure S3.

Effect of neural circuit blockade with hepatic vagotomy or capsaicin.

a, Trans Emission Microscopy (TEM) appearance of vehicle or capsaicin treated hepatic vagus nerve Upper, vehicle treated; lower, capsaicin treated group. Left, unmyelinated fiber x5000, Bar 10 μ m; right, myelinated fiber x10000, Bar 2 μ m **b**, Body weight of sham operated (Sham), capsaicin treated (CAP), or vagotomized (HVx) mice. Statistical comparisons were made by Tukey's post-hoc test. No significant difference. Error bars, S.E.M. (n=4-12)

Supplementary Figure S4.

Supplementary Figure S4. Full length images of immunoblotting.

Supplementary Figure S5.

а

vs. Vehicle Sham N.S. Tukey' s post-hoc test

Supplementary Figure S5.

Effect of sympathetic neural circuit blockade on epididymal fat tissue.

a, Catecholamine content of epididymal white adipose tissue in mice, either sham or hepatic vagotomized model ablated with sympathetic nerve neurotoxin guanethidine (GD) or vehicle administration (Veh). **b**, Body weight of sham and hepatic vagotomized mice administrated with vehicle or guanethidine. *p<0.05 by Tukey's post-hoc test. Error bars, S.E.M. (n=5)

Supplementary Figure S6.

Supplementary Figure S6.

Liver mRNA expression after selective hepatic vagotomy

Effects of hepatic-vagotomy on hepatic gene expression was analyzed by northern blotting of livers in hepatic-vagotomized mice after 24h fasting (pooled individual three samples).

Supplementary Figure S7.

Supplementary Figure S7.

Plasma hormone profiles in the experimental mice.

a, Plasma glucagon, leptin, and FGF21 levels in hepatic vagus nerve transected mice fasted for 24 hours. **b**, Plasma catecholamine levels in vagotomized mice with or without guanethidine treatment on a 24-hour fasting condition. *p<0.05 by Tukey's post-hoc test. Error bars, S.E.M. (n=4-6)

Supplementary Figure S8.

vs. LacZ
* p<0.05 Tukey' s post-hoc test</pre>

Supplementary Figure S8.

Effect of glycogen accumulation in primary isolated hepatocytes infected with Ad-CMV-Gys2 or Ad-CMV-TFE3 *in vitro*.

a, Primary hepatocytes, isolated from wild mouse were infected with adenovirus vectors, at titer of 5 x 10^9 pfu expressing *LacZ*, *Gys2* or *TFE3*. Gys2 mRNA steady state levels were assessed by qRT-PCR analysis and quantified by densitometric measurement using 36B4 mRNA as a reference. There was an Gys2 dose-dependent increase in Ad-CMV-Gys2 transduced livers. **b**, Glycogen content in primary hepatocytes infected with Ad-LacZ, Ad-Gys2, or Ad-TFE3. *p<0.05 by Tukey's post-hoc test. Error bars, S.E.M. (n=4)

Supplementary Table S1.

	Sham		HVx		
	LacZ	Gys2	LacZ	Gys2	
Body Weight (g)	18.9±1.0	20.7±0.7	20.8±0.3	20.2±0.3	n.s. <i>vs.</i> LacZ-Sham

	Sham		HVx		
	LacZ-i	Gys2-i	LacZ-i	Gys2-i	
Body Weight (g)	19.4±0.3	18.3±0.5	20.2±0.4	19.9±0.4	n.s. <i>vs.</i> LacZ-i -Sham

	Sham		HVx		
	LacZ-i	Pygl-i	LacZ-i	Pygl-i	
Body Weight (g)	19.4±0.3	20.4±0.3	20.2±0.4	20.5±0.3	n.s. <i>vs.</i> LacZ-i-Sham

Supplementary Table S1.

Body weight change after administration of adenovirus vectors overexpressing *Gys2* or those expressing short-hairpin RNA targeted for *Gys2* or *Pygl*.

Body weight change after 24 hour fasting. v.s. each sham-control vectors. Tukey's post-hoc test. No significant difference. Mean± S.E.M. (n=4) Supplementary Table S2.

Northern blot reference set

Probe	Sequence
Gys2	NM_145572.2:1669-2252
Tcfe3	NM_172472: 911-3266
Ppargc1a	NM_008904: 140-2533
lrs2	NM_001081212: 1971-3442
Pck1	NM_011044: 126-523
G6pc	U00445: 25-1169
Fasn	NM_007988: 6189-7453
Cpt1a	NM_013495: 1859-2358
Fgf21	NM_020013: 185-817

Supplementary Table S2. List of cDNA probes used for Northern blotting. Supplementary Table S3.

	Sequences of qPCR Primers
Srebf1c	5'-CGGCGCGGAAGCTGT-3'
_	5'-TGCAATCCATGGCTCCGT-3'
Lipe (HSL)	5'-TGGTTCAACTGGAGAGCGGAT-3'
	5'-TGATGCAGAGATTCCCACCTG-3'
Atgl	5'-AACACCAGCATCCAGTTCAA-3'
	5'-GGTTCAGTAGGCCATTCCTC-3'
Pdk4	5'-AGAAGACCAGAAAGCCCTGTCA-3'
	5'-GCCATTGTAGGGACCACATTATG-3'
Gys2	5'-GGAAGAAACTCTATGACGGGTTATT-3'
	5'-TCATCGATCATATTGTGAGTGGTC-3'
Pygl	5'-GCACTACTACGACAAGTGTCCC-3'
	5'-TAAATGGCCTCATCGCAG-3'
Cpt1a	5'-CCTGGGCATGATTGCAAAG-3'
	5'-GGACGCCACTCACGATGTT-3'
Rplp0(36B4)	5'-GAAGACAGGGCGACCTGGAA -3'
	5'-TTGTCTGCTCCCACAATGAAGC-3'

Supplementary Table S3. List of primer sets used for Q-RT PCR.

Supplementary Table S4.

Antibody	Company, Cat. Number	Dilution
Phospho-AMPKα (Thr172) Antibody	Cell Signaling technology #2535	x1000
AMPKa Antibody	Cell Signaling technology #2603	x1000
Phospho-AMPKβ1 (Ser108) Antibody	Cell Signaling technology #4181	x1000
AMPKβ1/2 Antibody	Cell Signaling technology #4150	x1000
HSL Antibody	Cell Signaling technology #4107	x1000
Phospho-HSL (Ser563) Antibody	Cell Signaling technology #4139	x1000
ATGL Antibody	Cell Signaling technology #2138	x1000
Phospho-CREB (Ser133) Antibody	Cell Signaling technology #9198	x250
Glycogen Synthase Antibody	Cell Signaling technology #3893	x1000
PYGB/L/M Antibody	Santa Cruz technology sc-46347	x1000

Supplementary Table S4. List of Antibodies used for immunoblotting

Supplementary Methods

Transmission electron microscopic analyses of vagal nerves — Seven days after perivagal treatment with capsaicin or vehicle, nerves were fixed in 2.5% glutaraldehyde in 0.1M sodium cacodylate buffer (pH 7.4), and postfixed in 1% osmium tetroxide. They were dehydrated in graded alcohols and embedded in Epon812. Ultrathin sections were stained with uranyl acetate and lead, and then examined under a transmission electron microscope (H-7600, Hitachi, Tokyo, Japan).

Metabolic measurements — Epinephrine, norepinephrine and dopamine were measured in plasma using a LaChrom Elite® HPLC system (Hitachi, Tokyo, Japan) according to the manufacturer's instructions.

Isolation and culture of primary hepatocytes and glycogen synthesis — We prepared primary cultures of mouse hepatocytes and subjected them to adenovirus infection as previously described ⁵. Briefly, primary hepatocytes were isolated from 7-week-old male ICR mouse (CLEA, Tokyo, Japan). Cells were resuspended in William's E medium containing 100 nM insulin and 10 nM dexamethasone on 100-mm collagen-coated dishes at a final density of 8 x 10⁶ cells. After incubation for 20 h to allow attachment, the medium was replaced with high glucose DMEM with 100 nM insulin containing each 5 MOI adenovirus. Using mouse hepatocytes, studies of glycogen synthesis, gene expression and immunoblotting were performed as described previously ⁵. Briefly, Glycogen storage in hepatocytes were determined after washing the cells twice with ice-cold saline and by using amyloglucosidase digestion and subsequent glucose measurement. For RNA analysis, we incubated cells at 37 °C for 48 h after adenovirus infection at 5 MOI. For protein analysis, we stimulated adenovirus-infected cells with 100 nM insulin after a 48-h incubation.

Assessment of sympathetic activity by measurement of catecholamine content after blockade of the sympathetic nervous system — Measurement of catecholamine content in tissues was according to previously published methods ¹⁷. Briefly, epididymal white adipose tissue (WAT) was removed and frozen. Free catecholamines were extracted from WAT as follows: 100 mg WAT was homogenized on ice in 3 ml of 0.4 N perchloric acid with 0.2% EDTA-2Na and 0.002% L- ascorbic acid. Homogenized samples were centrifuged at 3500 r.p.m. for 20 min on ice, and the supernatant was used. The concentration of catecholamines was determined using a

LaChrom Elite® HPLC system (Hitachi, Tokyo, Japan) with electrochemical detection.

Supplementary References

5. Nakagawa, Y. et al. TFE3 transcriptionally activates hepatic IRS-2, participates in insulin signaling and ameliorates diabetes. *Nat Med* **12**, 107-13 (2006).

17. King, V. L. et al. Cold exposure regulates the norepinephrine uptake transporter in rat brown adipose tissue. *Am J Physiol* **276**, R143-R151 (1999).