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1 Creation of the random model

N reads (N was set to 1,000,000) of length l were created by generating a sequence of A, C, G and T's assuming each base
is equally likely. Each read is searched against the LMAT database and the classi�cation table is created (see Figure 2 of
the main text) to record the Pj proportion of k-mers in the read associated with each candidate taxonomic ID. Candidate
IDs with a zero proportion are discarded, and no longer considered in subsequent random model creation. Each remaining
taxonomic ID proportion is treated as a single observation. All of the randomly generated reads are examined and the highest
proportion value Pj is chosen as the random value PRj for taxonomy ID j. Since the GC content of a randomly generated
read on average will be 50% and the GC content across the di�erent taxon may di�er considerably, a su�ciently large number
of randomly generated reads is needed to observe a range of GC content values in the set of randomly generated reads. We
chose a minimum threshold of 1000 reads with a non-zero proportion for each taxonomic ID to capture a range for possible
GC content values.

Intuitively, taxonimc IDs associated with large numbers of k-mers such as NCBI taxonomy ID "131567" (cellular or-
ganisms) are expected to have many random reads with non-zero proportion, easily exceeding the threshold of 1000. In
contrast, a highly strain speci�c taxonomic ID for a single small genome with relatively few distinct k-mers will be associated
with very few random reads. The assumption is the maximum proportion of distinct k-mers is dominated by the number of
k-mers available to match for the taxonomic ID. To get around this problem, multiple taxonomic IDs with similar numbers
of distinct k-mers are grouped together. For example, taxonomic ID "40537" (Epsilon papillomavirus 1) is associated with
one genome and only 8481 distinct 20-mers. The one million randomly generated reads will generate relatively few cases
where a read's taxonomy IDs have a non-zero proportion value. Other taxonomic IDs with similar number of distinct k-mers
will be grouped with "40537". As an example, taxonomic ID "335963" (Hippeastrum latent virus) is also reported to have
8481 distinct 20-kmers. The number of random reads with non-zero proportion for each taxonomic ID are checked and the
maximum is taken from among the pooled group. In this example, if there were 500 random reads for "40537" and the max-
imum proportion value was 0.2 and there were 500 random reads for taxonomic ID "335963" and the maximum proportion
value was 0.3, the two taxonomic IDs combined would form the minimum number of 1000 random read observations and
both would be assigned the same random proportion value of 0.3 after taking the maximum between the two groups. In
general, the program enumerates over the list of taxonomic IDs in increasing order sorted by the number of distinct k-mers
and combines the taxonomic IDs into a group until the total number of random reads with non-zero proportion exceeds 1000.

It is important to consider the impact of nucleotide composition bias found in di�erent genomes on the random model. A
novel genome in the metagenomic query set with high GC content could share more k-mers with taxonomic IDs associated
with high GC genomes. While generating 80 megabases of random reads (e.g. 1,000,000 reads of length 80) appeared to
produce good results, there is a potential to under sample from high or low GC content random reads. To avoid the potential
for under sampling the software supports drawing explicitly from a range of GC content values.

2 Impact of k on accuracy

Supplementary Figure 1 shows performance results for k considering a range from 17 to 20. Our initial hypothesis was that
di�erent values of k would perform di�erently for di�erent test conditions. Results from �ve sample types are shown, the
known bacteria composition case (PhymmBL data), novel viruses, novel prokaryotes, and novel protist and fungi (see main
text for a description of the test data) Contrary to our initial expectation k=20 showed consistently better performance in
terms of per read accuracy and false negative rate and motivated the choice of k=20 as the default. The lower false negative
rate is explained by the ability to assign taxonomic labels with more signi�cant (higher scoring) matches and more speci�c
taxonomic labels, which outweighed the drawback of using higher values for k and higher numbers of reads which fail to
match to the database due to the higher search seed size.
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Supplementary Figure 1: Impact of k on accuracy. CC is the percentage of reads assigned a label that are correct. FN
measures the percentage of reads that fail to be assigned a taxonomic label. Four test sets are shown, PhymmBL's published
data set (Known Bacteria), the novel viral data set (Virus), eukaryotes with fungi and protist (Fungus/Protist) and the novel
bacteria data set (Bacteria). Results using the same reference database (kFull) using three values of k (17,18 and 20) are
shown.

Database Species Genus Family Order Wrong No Label No Hits
Sample Type: Virus

kFull 35.1 (99.7) 0.7 (97.9) 0.1 (100) - 1.0 63.7 14.7
kML 22.7 (95.0) - - - 5.8 75.9 54.6

Sample Type: Exclusive Novel Virus
kFull 21.0 (98.0) 1.2 (97.7) - - 7.3 93.0 21.0

Sample Type: Eukaryotes
kFull 35.6 (70.8) 9.6 (99.2) 0.5 (99.3) 4.3 (100) 20.5 13.0 3
kML 11.5 (52.8) 1.0 (96.4) 0.1 (95.0) 0.3 (98.8) 38.8 73 39.3

Sample Type: Prokaryotes
kFull 43.0 (96.0) 8.0 (98.7) 1.7 (99.4) 0.3 (95.5) 3.2 38.0 1.3
kML 10.3 (85.2) 1.2 (99.6) 0.2 (99.1) 0.1 (94.2) 9.4 79.8 26.6

Sample Type: Exclusive Novel Prokaryotes
kFull 30.6 (94.5) 4.1 (98.7) 2.8 (99.7) 0.3 (96.3) 4.3 54.2 2.2

Supplementary Table 1: Read accuracy for samples, which include novel species. Per rank accuracy shows two values -
percentage of all reads correctly labeled by rank (Species, Genus, Family or Order) or incorrectly labeled (Wrong) or failed
to be assigned a labeled (No Label and No Hits). In parentheses shows percentage of reads assigned a label at the speci�ed
rank that were correct. No Label = reads with no taxonomically informative label assigned, No Hits = reads with no k-mer
matches to the database. - = entry not applicable. "Exclusive Novel" shows the subset of reads from non-exact match
genomes shown in Supplementary Figure 2.
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Supplementary Figure 2: Histogram of percent identity match between test organisms and their nearest match in the reference
genome database. The �fty non-exact match genomes are shown.

3 Read taxonomy label accuracy for data sets with novel genomes

Supplementary Table 1 shows the individual read accuracy values, for the cases that include novel species. As expected, a
higher percentage of reads were not assigned labels, however, for the cases where labels were assigned, accuracy rates were
high. The one outlier was for the eukaryote case where 13% of reads (for the full library) belonging to T. evansi were assigned
to T. brucei. The majority of the remaining wrongly labeled species with > 100 labeled reads were distributed across other
related eukayrotes: Coccidioides posadasii, Trichophyton rubrum, Neosartorya �scheri, Entamoeba dispar, and Aspergillus

�avus. Supplementary Figure shows the Taxonomic distribution of the synthetic viral and bacterial datasets as Krona plots
[Ondov et al. (2011)] and Supplementary Figure shows the histogram of the percent identity of to the nearest genome match
in the LMAT reference database.

The query test genomes from the "Novel Bacteria" and "Novel Virus" were searched against the LMAT reference database
using default blastn and the percent identity of the top hit was recorded. Fifty of the 100 test bacteria showed a 100% identity
match. Eleven of the 25 virus genomes showed a 100% identity match with a genome in the reference database and 3 did
not return a signi�cant match. The percent identity of the non-exact match genomes relative to the closest match in the
reference genome are shown as a histogram in Supplementary Figure 2. The genomes range in similarity from between 74%
and 99% with genomes in the reference database. Supplementary Figure 3 and Supplementary Figure 4 show the taxonomic
distribution of the di�erent test genomes as a percentage of the number of reads taken from each genome. MetaSim was used
to simulate equal concentrations of each test genome so microbes with larger genomes are represented with more reads than
microbes with smaller genomes.

LMAT software was run on four environmental samples to consider how many reads would be assigned a taxonomic label
in a non-human related metagenomic sample where the reference database may have poor genome representation for the
relatively novel microbial environments. Datasets were downloaded from http://metagenomics.anl.gov/ [Meyer et al. (2008)]
and are speci�ed by identi�ers: 68388 (rock), 37500 (soil-dessert), 37471 (soil-tropical) and 27017 (wastewater). Read lengths
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Supplementary Figure 3: Krona plot showing the taxonomic distribution of simulated reads in the "Novel Virus" test set.

Supplementary Figure 4: Krona plot showing the taxonomic distribution of simulated reads in the "Novel Bacteria" test set.
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Supplementary Figure 5: Fraction of labeled reads that scored below the minimum threshold of -1,-0.5, 0 and 1. The y-axis
shows the fraction of labeled reads for the four environmental datasets are examined. A higher fraction means more labeled
reads were scored below the minimum threshold and are more divergent from the reference database.

were between 80 and 100 bases and number of reads per sample ranged from 55,500 to 6,535,257. Supplementary Figure
5 shows that the rock metagenomic sample, 60% of the reads were assigned a taxonomic label with a relatively high score
of 1 or higher. For other environmental samples, lowering of the minimum score threshold is required in order to assign a
taxonomic label to a majority of the reads in the sample. A future improvement to LMAT to recover more reads from novel
genomes would be to automatically use information from the higher scoring taxonomic calls to determine which of the lower
scoring reads are still good candidates for a taxonomic assignment. For example, the Iceman results illustrated how a read
with a single 20-mer match to human was assigned a score of 0. It is di�cult to completely rule out the possibility of a
true match to another near neighbor genome not in the database (e.g. such as another primate genome). However, with the
knowledge from other reads (and additional data) for the presence of human DNA, these relatively lower scoring reads can
still in practice be assigned a taxonomic label.

4 Database Sizes

Database kVB 18-mer kVB 20-mer kFull 17-mer kFull 18-mer

Size 408 407 695 635
k-mer count 4.72 6.04 4.45 6.97

Database kFull 20-mer kML 17-mer kML 18-mer kML 20-mer

Size 619 93 39 4.5
k-mer count 9.21 1.26 0.633 0.078

Supplementary Table 2: Storage used (sizes in GB) and k-mer counts (billions) for various indexed database con�gurations.
kVB databases contain virus and bacteria genomes only. kFull databases contain virus, bacteria, fungi and protist. kML are
reduced size marker libraries derived from kFull.

Supplementary Table 2 shows the numbers of k-mers present and the total storage required for several of the databases
we have created. The "Marker" databases have k-mers that have been speci�cally selected, while the other, larger databases
contain every possible k-mer extracted from the original sequenced genomes in the reference database. The addition of
eukaryotes (kFull vs kVB) increases the k-mer count and total size considerably. We also observe a slight reduction in size
with the increase of k because despite an increase in k-mers, the average count of taxonomic information per k-mer decreases
signi�cantly. We are working on reducing the size of our indexed databases. The storage of taxonomic identi�ers uses 6 bytes
per taxon. We estimate this storage to use, for example 306 GB for the kFull 20-mer database. We have determined since
the creation of these databases that the bytes per identi�er can be reduced to 2. Thus, we approximate that the size of this
database should be reduced to 413 GB.

Supplementary Table 3 shows the estimated increases in database size for the addition of several listed eukaryotic genomes.
We present the number of k-mers and the estimated size for each genome. Note that size may appear smaller as we account
for a percentage of k-mers shared with other genomes, which would not contribute to an increase in the hash table size, but
does account for a small increase through several taxonomy identi�ers stored per k-mer.
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Genome Total k-mers (millions) est. additional size (GB) cumulative size
Human 2,200 56 675
Chimpanzee 2,173 46 721
Turkey 892 23 744
Lizard 1,159 30 774
Fugu 313 8 782
Mosquito 216 6 788
Nematode 141 4 792
Rice 267 7 799

Supplementary Table 3: Estimated database size increase(s) from addition of multicellular Eukaryote genomes. Cumulative
sizes add on to the kFull 20-mer database in Supplementary Table 2.
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Supplementary Figure 6: Raw run time performance reported. Tests run on three real metagenomic data sets SRX, DRR
and ERR. Run time is shown for three metagenomic classi�ers (LMAT-kFull, LMAT-kML, MetaPhlAn using Bowtie2 and
its database) and simple sequence searches for Bowtie and blastn (BLAST). Note log scale on y-axis; values given within
each bar.

5 Run time Performance

Supplementary Figure 6 shows the raw performance of LMAT compared with the three search tools. Supplementary Table 4
shows the percentage of reads labeled (our method and MetaPhlAn) plus the percentage of raw matches from Bowtie searched
against the same reference database as our full database classi�er. Raw Bowtie searches against ERR011121 showed a much
lower number of matched reads, which explain its faster over all performance in the test. Supplementary Table 5 shows the
rank speci�city of the labeled reads for ERR, which shows that 65.3% of the reads are assigned a species label.

6 Tyrolean Iceman Metagenome Analysis

All reads were downloaded from the NCBI Short Read Archive using accession identi�ers ERR069107, ERR069108, ERR069109,
ERR107307, ERR107308 and ERR107309. LMAT was initially run on all 2.3 billion reads, however, due to an observed large
number of lower quality sequencer derived quality scores (Q < 20), results are reported on a �ltered data set of 1.7 billion
reads. The 2.3 billion reads were quality trimmed with FASTX Toolkit to remove reads with more than 60 percent of the
bases having quality scores less than 20. The software program seqtk was then used to mask (replace base call with 'N')
all base calls with quality value less than 20. Results running LMAT with a minimum read label score threshold of 0 and
other default parameter settings (comparable score cuto� of one standard deviation and maximum of 50 candidate taxon-
omy identi�ers per k-mer) are shown in Supplementary Figures 7, 8, and 9. Results are reported graphically using Krona
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Input metagenome: SRX022172 DRR00184 ERR011121
Read length: 100 75 50

Sample size (reads): 4,216,970 7,631,281 31,564,747
Application Database % labeled % labeled % labeled

LMAT kFull 99.1% 99.4% 85.6%
LMAT kML 47.6% 19.2% 58.0%
bowtie2 kFull 93.1% 98.6% 34.3%
bowtie2 MetaPhlAn 1.4% 1.23% 0.89%
blastn kFull 79.6% 93.9% 20.8%

Supplementary Table 4: Percentages of reads matched (bowtie, blastn) or labeled (LMAT) measured for several databases
and inputs.

Database Species Genus Family Order No Label
kFull 65.3 8.5 1.2 3.2 14.4

Supplementary Table 5: Rank speci�city for the ERR011121 dataset (listed in Supplementary Table 4). Shows the percentage
of all reads labeled by rank (Species, Genus, Family or Order) or failed to be assigned a labeled (No Label).

[Ondov et al. (2011)]. Non NCBI taxonomy classi�cation labels reported in the �gures are �No Match�, which indicate that
a read's constituent k-mers were not found in the database, �Low Score� where the best matched score remains below a
user de�ned signi�cance threshold (defaults to 1) and �Root�, which means the read is matched with signi�cant hits across
multiple kingdoms. Note the relatively high number of NoMatch reads (45%) in Supplementary Figure 7 are not due to the
lack of representation in reference genome database but rather are indicative of the high numbers of short reads interspersed
with N's to mask low quality base calls, which can remove all valid candidate k-mers from a read. The read label score is
calculated by selecting null-models determined by the number of valid k-mers in the read so that long reads with relatively
few valid k-mers do not receive an arti�cially contrived low score.

Supplementary Figure 10 shows the distance based neighbor joining tree for the Borrelia reads and all available Borrelia
genomes. The phylogenetic tree corresponds well with LMAT's classi�cation in Supplementary Figure 9, showing that the
majority of the reads do not appear to be uniquely associated with B. burgdorferi. The SNP tree identi�es homologous genomic
regions with a minimum of 8 bases on either side of the SNP using previously published methods [Gardner and Slezak (2010)].
Note that B. crocidurae is identi�ed in the SNP tree but not in the LMAT classi�cation since this genome was made available
after the creation of the LMAT reference database. The second more current reference database was used as a post validation
step to ensure that the Borrelia classi�ed reads would not be uniquely matched to a newly sequenced genome. Reads were
mapped to all available Borrelia genomes using BLAST (and -task blastn-short default parameter settings). Coverage of the
respective reference genomes from the BLAST matched reads did not indicate a preference for one species over another.

7 Impact of sequencing error on taxonomy classi�cation

While a single sequencing error alters up to 20 k-mers (when k=20), since the k-mers are bit-encoded in a 64 bit word, a single
error generates 20 very di�erent encodings, which are unlikely to be associated with a single speci�c taxonomic identi�er.
The Iceman data set, which is an extreme case of short reads with high error rates shows that error prone reads are classi�ed
but a higher percentage of reads go unclassi�ed due to the cases where a short read has very few valid k-mers. It is possible
for a sequencing error to lead to the misclassi�cation of an individual read and this could explain some errors reported in the
read-level accuracy rates.
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Supplementary Figure 7: Label distribution for all 1.729040669 billion reads using a minimum read label score of 0. The large
number of "NoMatch" labeled reads indicate short reads with masked bases leading to reads with few or no valid 20-mers
available to search against the database. A large portion (26%) of the reads were assigned a low read label score also due
to the relatively low number of valid 20-mers present in many short reads. Results show 0.5% of the reads are uniquely
associated with Bacteria. Toxoplasma gondii reads were determined to be attributed to human contamination in reference
draft genomes. Thus, no non-human eukaryote calls were made.

Supplementary Figure 8: Label distribution for 7,496,855 reads labeled as Bacteria with a read label score greater than 0.

8



Supplementary Figure 9: Label distribution for the 16,180 Borrelia genus speci�c reads labeled with read label score greater
than 0.

Supplementary Figure 10: SNP tree comparing Borrelia genus speci�c reads with comparable regions from all other sequenced
Borrelia genomes.
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8 Additional information on methods testing

The previously unpublished data sets used for testing against novel species (Virus, Bacteria, and Eukaryotes) are made
publicly available along with a list of all of the GenBank identi�ers found in our reference genome database. For convenience,
we also make an 18-mer version of the marker library in memory mapped form available for immediate use. The data can be
retrieved from ftp://gdo-bioinformatics.ucllnl.org/lmat

Third party software versions used in testing:

• PhymmBL - 3.2

• MetaPhlAn - 1.6.0

• Genometa - 0.51

• Bowtie2 - 2.0.0-beta6

• NCBI BLAST - 2.2.27+ (unless otherwise speci�ed default settings were used)
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