Recognition of *O*⁶-Benzyl-2'-deoxyguanosine by a Perimidinone-Derived Synthetic Nucleoside: A DNA Interstrand Stacking Interaction

Supplementary Data

Ewa A. Kowal,¹ Rahul R. Lad,² Pradeep S. Pallan,³ Elizabeth Dhummakupt,¹ Zdzislaw Wawrzak,⁴ Martin Egli,³ Shana Sturla² and Michael P. Stone^{1,3*}

¹Department of Chemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Center in Structural Biology, Vanderbilt University, Nashville, TN 37235 ²ETH Zürich, Institute of Food, Nutrition and Health, CH-8092 Zürich, Switzerland

³Department of Biochemistry, Vanderbilt University, Nashville, TN 37232

⁴Northwestern University, Synchrotron Research Center, 9700 S Cass Ave, Argonne, IL 60439

*To whom correspondence should be addressed

Telephone 615-322-2589

FAX 615-322-7591

e-mail <u>michael.p.stone@vanderbilt.edu</u>

Table of Contents

Complete listings of references (30), (31), (45), (59)	4
Table S1, CIF File for Diffraction Data of the Second Crystal of the DDD-XY Duplex	6
Table S2, Crystal and Data Collection Statistics for the First Crystal Used to Obtain Phases	
for the DDD-XY Duplex	48
Table S3, Crystal Data, Data Collection, and Refinement Statistics for the Second Crystal	
Used to Obtain the Final Structure of the DDD-XY Duplex	49
Table S4, NMR Restraints Used for the DDD-GY Structure Calculations and Refinement	
Statistics	50
Table S5, Structural Statistics for the DDD-GY Duplex	51
Figure S1, Structure of the DDD-XY duplex with water molecules and Sr ²⁺ ion	
and spermine molecule	52
Figure S2, Interbase pair parameters, helical rise, roll, and twist for the DDD-XY, DDD	
(PDB entry 355D) duplexes	53
Figure S3, Comparison of backbone torsion angles α and β in the crystal structures	
of the DDD-XY, DDD (PDB entry 355D) duplexes	54
Figure S4, Comparison of γ , δ , and ϵ angles in the crystal structures of the DDD-XY,	
DDD (PDB entry 355D) duplexes	55
Figure S5, Comparison of χ and ζ angles in the crystal structures of the DDD-XY,	
DDD (PDB entry 355D) duplexes	56
Figure S6, NOESY spectrum of the DDD-XY duplex showing sequential NOEs	
between the aromatic and anomeric protons from C^1 to G^{12}	57
Figure S7, Interstrand NOE cross peaks between complementary bases for the DDD-XY	

duplex and NOE connectivity of DDD-XY duplex, for the imino protons	58
Figure S8, NMR spectra, showing the imino proton resonances for the DDD-XY duplex	
as a function of temperature	59
Figure S9, The average structure obtained from a series of rMD calculations for the	
DDD-GY duplex	60
Figure S10, The superimposed nine structures obtained from a series of rMD calculations	
for the DDD-GY duplex	61
Figure S11, Interbase pair parameters helical rise, roll, and twist for the DDD-GY,	
DDD (PDB entry 355D) duplexes	62
Figure S12, Comparison of backbone torsion angles α and β in the structures of the	
DDD-GY, DDD (PDB entry 355D) duplexes	63
Figure S13, Comparison of γ , δ , and ϵ angles in the structures of the DDD-GY,	
DDD (PDB entry 355D) duplexes	64
Figure S14, Comparison of χ and ζ angles in the crystal structures of the DDD-GY,	
DDD (PDB entry 355D) duplexes.	65

Complete Listing of Reference (30).

30. Adams, P. D.; Afonine, P. V.; Bunkoczi, G.; Chen, V. B.; Davis, I. W.; Echols, N.; Headd, J. J.;
Hung, L. W.; Kapral, G. J.; Grosse-Kunstleve, R. W.; McCoy, A. J.; Moriarty, N. W.; Oeffner, R.;
Read, R. J.; Richardson, D. C.; Richardson, J. S.; Terwilliger, T. C.; Zwart, P. H. Acta Crystallogr.
D 2010, 66, 213-221.

Complete Listing of Reference (31).

Brunger, A. T.; et al. Adams, P. D.; Clore, G. M.; DeLano, W. L.; Gros, P.; Grosse-46, R. W.; Jiang, J. S.; Kuszewski, J.; Nilges, M.; Pannu, N. S.; Read, R. J.; Rice, L. M.; Simonson, T.; Warren, G. L. *Acta Crystallogr. D* 1998, 54, 905-921.

Complete Listing of Reference (45).

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Pomelli, J.; Ochterski, W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewska, V. G.; Daniels, A. D.; Farkas, O.; Rabuck, A. D.; Raghavachari, K.; Ortiz, J. V. *Gaussian, Inc., Wallingford, CT* 2004. Complete Listing of Reference (59).

59. Matsuda, S.; Fillo, J. D.; Henry, A. A.; Rai, P.; Wilkens, S. J.; Dwyer, T. J.; Geierstanger, B. H.;
Wemmer, D. E.; Schultz, P. G.; Spraggon, G.; Romesberg, F. E. *J. Am. Chem. Soc.* 2007, *129*, 10466-10473.

Table S1. CIF File for Diffraction Data of the Second Crystal of the DDD-XY duplex.

```
data 4HQI
#
                                mmcif_pdbx.dic
audit conform.dict name
audit conform.dict version
                                1.0695
_audit_conform.dict_location
                                http://mmcif.pdb.org/dictionaries/ascii/mmcif pdbx.dic
#
loop
_audit_author.name
_audit_author.pdbx_ordinal
'Kowal, E.A.' 1
'Lad, R.'
               2
'Pallan, P.S.' 3
'Muffly, E.'
               4
'Wawrzak, Z.'
               5
'Egli, M.'
               6
'Sturla, S.J.' 7
'Stone, M.P.' 8
#
_pdbx_database_status.status code
                                        AUTH
_pdbx_database_status.entry id
                                        4HQI
_pdbx_database_status.deposit site
                                        RCSB
_pdbx_database_status.process_site
                                        RCSB
_pdbx_database_status.status code sf
                                        HPUB
_pdbx_database_status.status_code_mr
                                        ?
_pdbx_database_status.SG_entry
                                        ?
_pdbx_database_status.status_code_cs
                                        ?
database PDB rev.num
                                   ?
database PDB rev.date
                                   ?
database PDB rev.date original
                                   2012-10-25
database PDB rev.status
                                   ?
database PDB rev.replaces
                                   ?
 database_PDB_rev.mod_type
                                   ?
#
struct ref.id
                                        1
```

```
struct ref.db name
                                       PDB
struct ref.db code
                                       4HQI
struct ref.pdbx db accession
                                       4HOI
struct ref.entity id
                                       1
_struct_ref.biol id
                                       •
_struct_ref.pdbx align begin
                                       ?
struct_ref.pdbx_seq_one_letter_code
                                       ?
loop
struct ref seq.align id
_struct_ref_seq.ref id
struct ref seq.pdbx PDB id code
struct_ref_seq.pdbx_strand_id
struct ref seq.seq align beg
struct ref seq.pdbx seq align beg ins code
struct ref seq.seq align end
struct ref seq.pdbx seq align end ins code
_struct_ref_seq.pdbx_db_accession
struct ref seq.db align beg
struct ref seq.db align end
struct ref seq.pdbx auth seq align beg
struct ref seq.pdbx auth seq align end
1 1 4HQI A 1 ? 12 ? 4HQI 1 12 1 12
2 1 4HOI B 1 ? 12 ? 4HOI 13 24 13 24
#
_struct_keywords.entry id
                                 4HQI
struct keywords.pdbx keywords
                                 DNA
struct keywords.text
;B-form DNA, 06-Benzyl-2'-deoxyguanosine, dPer, Perimidinone-Derived Nucleoside, Dickerson-Drew
Dodecamer, DNA
;
#
_pdbx_struct_assembly.id
                                           1
_pdbx_struct_assembly.details
                                           author and software defined assembly
_pdbx_struct_assembly.method details
                                           PISA
pdbx struct assembly.oligomeric details
                                           dimeric
pdbx struct assembly.oligomeric count
                                           2
```

```
#
pdbx struct assembly gen.assembly id
                                            1
pdbx struct assembly gen.oper expression
                                            1
pdbx struct assembly gen.asym id list
                                            A,C,D,E,B,F
#
loop
_pdbx_struct_assembly_prop.biol id
pdbx struct assembly prop.type
_pdbx_struct_assembly_prop.value
pdbx struct assembly prop.details
1 'ABSA (A^2)' 1890 ?
1 'SSA (A^2)' 4860 ?
1 MORE
               -24 ?
#
pdbx struct oper list.id
                                            1
_pdbx_struct_oper_list.type
                                            'identity operation'
_pdbx_struct_oper_list.name
                                            1 555
_pdbx_struct_oper_list.symmetry operation
                                            x,y,z
_pdbx_struct_oper_list.matrix[1][1]
                                            1.000000000
pdbx struct oper list.matrix[1][2]
                                            0.000000000
_pdbx_struct_oper_list.matrix[1][3]
                                            0.000000000
pdbx_struct_oper_list.vector[1]
                                            0.000000000
pdbx struct oper list.matrix[2][1]
                                            0.000000000
_pdbx_struct_oper_list.matrix[2][2]
                                            1.0000000000
pdbx_struct_oper_list.matrix[2][3]
                                            0.000000000
_pdbx_struct_oper_list.vector[2]
                                            0.000000000
_pdbx_struct_oper_list.matrix[3][1]
                                            0.000000000
_pdbx_struct_oper_list.matrix[3][2]
                                            0.000000000
pdbx_struct_oper_list.matrix[3][3]
                                            1.0000000000
pdbx struct oper list.vector[3]
                                            0.000000000
#
_struct_biol.id
                       1
_struct_biol.details
                       ?
loop
exptl crystal grow.crystal id
exptl crystal grow.method
```

```
exptl crystal grow.temp
exptl crystal grow.temp details
exptl crystal grow.pH
exptl crystal grow.pdbx details
exptl crystal grow.pdbx pH range
1 'VAPOR DIFFUSION, HANGING DROP' 291 ? 7.0
;20 mM sodium cacodylate (pH 7.0), 6 mM spermine tetra-HCl, 20 mM LiCl, 40 mM SrCl2 and 5% v/v 2-
Methyl-2,4-pentanediol (MPD), VAPOR DIFFUSION, HANGING DROP, temperature 291K
;
?
2 'VAPOR DIFFUSION, HANGING DROP' 291 ? 7.0
;20 mM sodium cacodylate (pH 7.0), 6 mM spermine tetra-HCl, 40 mM KCl, 10 mM BaCl2 and 5% v/v 2-
Methyl-2,4-pentanediol (MPD), VAPOR DIFFUSION, HANGING DROP, temperature 291K
;
?
#
loop
_exptl_crystal.id
_exptl_crystal.density meas
_exptl_crystal.density_Matthews
exptl crystal.density percent sol
_exptl_crystal.description
exptl crystal.F 000
exptl crystal.preparation
1 ? 2.46 50.02 ? ? ?
2 ? ?
        ?
              ???
#
cell.entry id
                         4HQI
_cell.length a
                         26.384
_cell.length b
                         36.774
_cell.length c
                         77.653
_cell.angle alpha
                         90.00
_cell.angle beta
                         90.00
cell.angle gamma
                         90.00
cell.Z PDB
                         8
cell.pdbx unique axis
                         ?
cell.length_a esd
                         ?
```

```
cell.length b esd
                         ?
cell.length c esd
                         ?
cell.angle alpha esd
                         ?
cell.angle beta esd
                         ?
cell.angle gamma esd
                         ?
#
_symmetry.entry id
                                           4HOI
_symmetry.space_group_name_H-M
                                           'P 21 21 21'
_symmetry.pdbx_full_space_group name H-M
                                           ?
_symmetry.cell_setting
                                           ?
_symmetry.Int_Tables_number
                                           ?
symmetry.space group name Hall
                                           ?
#
loop
diffrn source.diffrn id
diffrn source.source
diffrn source.type
_diffrn_source.pdbx_synchrotron site
diffrn source.pdbx synchrotron beamline
_diffrn_source.pdbx_wavelength
diffrn source.pdbx wavelength list
1 SYNCHROTRON 'APS BEAMLINE 21-ID-D' APS 21-ID-D ? 1.60499
2 SYNCHROTRON 'APS BEAMLINE 21-ID-G' APS 21-ID-G ? 0.97857
#
loop
_diffrn_detector.diffrn id
diffrn detector.detector
diffrn detector.type
diffrn detector.pdbx collection date
diffrn detector.details
1 CCD 'MARMOSAIC 300 mm CCD' 2009-07-17 Si(111)
2 CCD 'MARMOSAIC 300 mm CCD' 2008-07-18 C(111)
#
loop
diffrn.id
diffrn.ambient temp
_diffrn.ambient_temp_details
```

```
diffrn.crystal_id
1 100 ? 1
2 100 ? 2
#
loop
_diffrn_radiation.diffrn id
_diffrn_radiation.wavelength_id
diffrn radiation.pdbx monochromatic or laue m l
_diffrn_radiation.monochromator
diffrn radiation.pdbx diffrn protocol
1 1 M Si(111) 'SINGLE WAVELENGTH'
2 1 M C(111) 'SINGLE WAVELENGTH'
#
reflns.entry id
                                      4HOI
reflns.observed criterion sigma I
                                      5
reflns.observed criterion sigma F
                                      ?
reflns.d resolution low
                                      30.0
_reflns.d_resolution_high
                                      1.70
_reflns.number obs
                                      8236
reflns.number all
                                      8811
_reflns.percent_possible_obs
                                      93.4
_reflns.pdbx_Rmerge_I_obs
                                      0.044
reflns.pdbx Rsym value
                                      ?
_reflns.pdbx_netI_over sigmaI
                                      52.33
_reflns.B_iso_Wilson_estimate
                                      ?
_reflns.pdbx_redundancy
                                      6.4
_reflns.R_free details
                                      ?
_reflns.limit_h_max
                                      ?
_reflns.limit_h_min
                                      ?
_reflns.limit_k_max
                                      ?
_reflns.limit_k_min
                                      ?
_reflns.limit_l_max
                                      ?
reflns.limit_l min
                                      ?
reflns.observed criterion F max
                                      ?
reflns.observed_criterion F min
                                      ?
reflns.pdbx chi squared
                                      ?
reflns.pdbx scaling rejects
                                      ?
```

#

11-		
_reflns_shell.d_res_high	1.70	
_reflns_shell.d_res_low	1.76	
_reflns_shell.percent_possible_all	?	
_reflns_shell.Rmerge_I_obs	0.228	
_reflns_shell.pdbx_Rsym_value	?	
_reflns_shell.meanI_over_sigI_obs	5.65	
_reflns_shell.pdbx_redundancy	4	
_reflns_shell.percent_possible_obs	?	
_reflns_shell.number_unique_all	524	
reflns shell.number measured all	?	
reflns shell.number measured obs	?	
	?	
reflns shell.pdbx chi squared	?	
#		
_refine.entry_id		4HQI
_refine.ls_number_reflns_obs		7486
_refine.ls_number_reflns_all		?
_refine.pdbx_ls_sigma_I		?
_refine.pdbx_ls_sigma_F		?
_refine.pdbx_data_cutoff_high_absF		?
refine.pdbx_data_cutoff_low_absF		?
refine.pdbx_data_cutoff_high_rms_ab	sF	?
refine.ls_d_res_low		20.67
_refine.ls_d_res_high		1.70
refine.ls percent reflns obs		93.39
refine.ls_R_factor_obs		0.26227
_refine.ls_R_factor_all		?
refine.ls_R_factor_R_work		0.25885
refine.ls_R_factor_R_free		0.29823
refine.ls R factor R free error		?
refine.ls R factor R free error det	ails	?
refine.ls percent reflns R free		8.9
		734
		?
refine.ls_number_restraints		?
		?

_refine.occupancy_max	?
_refine.correlation_coeff_Fo_to_Fc	0.954
_refine.correlation_coeff_Fo_to_Fc_free	0.940
_refine.B_iso_mean	44.140
_refine.aniso_B[1][1]	3.33
refine.aniso_B[2][2]	1.38
_refine.aniso_B[3][3]	-4.71
_refine.aniso_B[1][2]	-0.00
_refine.aniso_B[1][3]	-0.00
_refine.aniso_B[2][3]	0.00
refine.solvent_model_details	MASK
refine.solvent_model_param_ksol	?
refine.solvent_model_param_bsol	?
_refine.pdbx_solvent_vdw_probe_radii	1.20
_refine.pdbx_solvent_ion_probe_radii	0.80
_refine.pdbx_solvent_shrinkage_radii	0.80
_refine.pdbx_ls_cross_valid_method	THROUGHOUT
_refine.details	?
_refine.pdbx_starting_model	?
_refine.pdbx_method_to_determine_struct	SAD
_refine.pdbx_isotropic_thermal_model	?
_refine.pdbx_stereochemistry_target_values	'MAXIMUM LIKELIHOOD'
_refine.pdbx_stereochem_target_val_spec_case	?
_refine.pdbx_R_Free_selection_details	RANDOM
_refine.pdbx_overall_ESU_R	0.149
_refine.pdbx_overall_ESU_R_Free	0.144
_refine.overall_SU_ML	0.130
_refine.pdbx_overall_phase_error	?
_refine.overall_SU_B	4.224
_refine.overall_SU_R_Cruickshank_DPI	?
_refine.ls_redundancy_reflns_obs	?
_refine.B_iso_min	?
_refine.B_iso_max	?
_refine.overall_SU_R_free	?
_refine.ls_wR_factor_R_free	?
_refine.ls_wR_factor_R_work	?
_refine.overall_FOM_free_R_set	?

```
refine.overall FOM work R set
                                               ?
refine.pdbx refine id
                                               'X-RAY DIFFRACTION'
loop
_refine_ls_restr.type
_refine_ls restr.dev ideal
_refine_ls_restr.dev_ideal target
refine ls restr.weight
refine ls restr.number
refine ls restr.pdbx restraint function
_refine_ls_restr.pdbx_refine_id
r bond refined d
                     0.011 0.013 ? 554 ? 'X-RAY DIFFRACTION'
r angle refined deg 1.652 1.578 ? 833 ? 'X-RAY DIFFRACTION'
r chiral restr
                     0.125 0.200 ? 66 ? 'X-RAY DIFFRACTION'
r gen planes refined 0.023 0.020 ? 260 ? 'X-RAY DIFFRACTION'
_refine_ls_shell.pdbx_total_number of bins used
                                                  20
refine_ls_shell.d_res_high
                                                  1.70
refine ls shell.d res low
                                                  1.745
refine ls shell.number reflns R work
                                                   338
refine ls shell.R factor R work
                                                  0.336
refine_ls_shell.percent_reflns_obs
                                                  57.01
refine ls shell.R factor R free
                                                  0.336
refine ls_shell.R factor R free error
                                                  ?
_refine_ls_shell.percent_reflns R free
                                                   ?
_refine_ls_shell.number_reflns R free
                                                  36
refine ls shell.number reflns all
                                                   ?
refine ls shell.R factor all
                                                   ?
refine ls_shell.number_reflns obs
                                                  ?
refine ls shell.redundancy refins obs
                                                   ?
refine_ls_shell.pdbx_refine_id
                                                   'X-RAY DIFFRACTION'
 database_PDB_matrix.entry_id
                                       4HOI
database PDB matrix.origx[1][1]
                                       1.000000
_database_PDB_matrix.origx[1][2]
                                       0.00000
database PDB matrix.origx[1][3]
                                       0.000000
database PDB matrix.origx[2][1]
                                       0.000000
```

```
database PDB matrix.origx[2][2]
                                       1.000000
database PDB matrix.origx[2][3]
                                       0.000000
database PDB matrix.origx[3][1]
                                       0.000000
database PDB matrix.origx[3][2]
                                       0.000000
_database_PDB_matrix.origx[3][3]
                                       1.000000
_database_PDB_matrix.origx_vector[1]
                                       0.00000
database PDB matrix.origx vector[2]
                                       0.00000
database PDB matrix.origx vector[3]
                                       0.00000
#
exptl.entry id
                         4HQI
exptl.method
                         'X-RAY DIFFRACTION'
exptl.crystals number
                         2
#
loop
ndb struct conf na.entry id
ndb struct conf na.feature
4HQI 'b-form double helix'
4HQI 'mismatched base pair'
#
loop
ndb struct na base pair.model number
ndb_struct_na_base_pair.i_label asym id
ndb struct na base pair.i label comp id
_ndb_struct_na_base_pair.i_label_seq_id
ndb_struct_na_base_pair.i_symmetry
_ndb_struct_na_base pair.j label asym id
ndb struct na base pair.j label comp id
_ndb_struct_na_base_pair.j label_seq_id
ndb_struct_na_base_pair.j_symmetry
_ndb_struct_na_base pair.shear
_ndb_struct_na_base pair.stretch
_ndb_struct_na_base_pair.stagger
_ndb_struct_na_base_pair.buckle
ndb struct na base pair.opening
_ndb_struct_na_base_pair.pair number
ndb struct na base pair.pair name
ndb struct na base pair.i auth asym id
```

```
ndb struct na base pair.i auth seg id
ndb struct na base pair.i PDB ins code
ndb struct na base pair.j auth asym id
ndb struct na base pair.j auth seq id
ndb_struct_na_base_pair.j_PDB ins code
_ndb_struct_na_base pair.hbond_type_28
ndb struct na base pair.hbond type 12
1 A DG 2 1 555 B DC 11 1 555 -0.125 -0.253 -0.220 -11.324 -1.868 1 A DG2:DC23 B A 2 ? B 23 ? 19 1
1 A DC 3 1 555 B DG 10 1 555 0.199 -0.225 -0.317 2.151
                                                          -1.099 2 A DC3:DG22 B A 3 ? B 22 ? 19 1
1 A DA 5 1 555 B DT 8 1 555 -0.236 -0.008 -0.460 -12.406 1.251 3 A DA5:DT20 B A 5 ? B 20 ? 20 1
                                                                4 A_DA6:DT19_B A 6 ? B 19 ? 20 1
1 A DA 6 1_555 B DT 7 1_555 -0.009 -0.142 -0.125 -5.111
                                                         0.172
1 A DT 7 1 555 B DA 6 1 555 0.132 -0.121 -0.126 2.516
                                                          1.351
                                                                 5 A DT7:DA18 B A 7 ? B 18 ? 20 1
                                                                 6 A DT8:DA17 B A 8 ? B 17 ? 20 1
1 A DT 8 1 555 B DA 5 1 555 0.024 -0.181 -0.510 8.065
                                                          4.832
1 A DG 10 1 555 B DC 3 1 555 -0.259 -0.158 -0.143 -0.234
                                                          0.472 7 A DG10:DC15 B A 10 ? B 15 ? 19 1
1 A DC 11 1 555 B DG 2 1 555 0.194 -0.224 -0.063 10.713
                                                          -1.590 8 A DC11:DG14 B A 11 ? B 14 ? 19 1
#
loop
_ndb_struct_na_base pair step.model number
_ndb_struct_na_base_pair_step.i label asym id 1
ndb struct na base pair step.i label comp id 1
ndb struct na base pair step.i label seq id 1
ndb struct na base pair step.i symmetry 1
ndb struct na base pair step.j label asym id 1
ndb_struct_na_base pair step.j label_comp_id_1
_ndb_struct_na_base_pair_step.j_label_seq_id_1
_ndb_struct_na_base pair step.j symmetry 1
ndb struct na base pair step.i label asym id 2
ndb struct na base pair step.i label comp id 2
ndb struct na base pair step.i label seq id 2
ndb struct na base pair step.i symmetry 2
_ndb_struct_na_base pair step.j label asym id 2
_ndb_struct_na_base_pair_step.j label comp id 2
_ndb_struct_na_base_pair_step.j_label seq id 2
ndb struct na base pair step.j symmetry 2
_ndb_struct_na_base_pair_step.shift
ndb struct na base pair step.slide
ndb struct na base pair step.rise
```

```
ndb struct na base pair step.tilt
ndb struct na base pair step.roll
ndb struct na base pair step.twist
ndb struct na base pair step.x displacement
_ndb_struct_na_base_pair_step.y_displacement
_ndb_struct_na_base pair step.helical rise
_ndb_struct_na_base_pair_step.inclination
ndb struct na base pair step.tip
ndb struct na base pair step.helical twist
ndb struct na base pair step.step number
ndb_struct_na_base_pair_step.step_name
ndb struct na base pair step.i auth asym id 1
ndb_struct_na_base_pair_step.i auth_seq_id_1
ndb struct na base pair step.i PDB ins code 1
ndb struct na base pair step.j auth asym id 1
ndb struct na base pair step.j auth seq id 1
ndb struct na base pair step.j PDB ins code 1
_ndb_struct_na_base_pair_step.i auth_asym_id_2
_ndb_struct_na_base_pair_step.i auth_seg_id_2
ndb struct na base pair step.i PDB ins code 2
ndb struct na base pair step.j auth asym id 2
ndb struct na base pair step.j auth seq id 2
ndb struct na base pair step.j PDB ins code 2
1 A DG 2 1 555 B DC 11 1 555 A DC 3 1 555 B DG 10 1 555 0.825 -0.036 3.016 -1.267 -2.600 30.408
0.405 -1.796 2.973 -4.943 2.408 30.542 1
AA DG2DC3:DG22DC23 BB A 2 ? B 23 ? A 3 ? B 22 ?
1 A DA 5 1 555 B DT 8 1 555 A DA 6 1 555 B DT 7 1 555 -0.057 -0.095 3.259 -2.570 8.650 26.842 -
2.189 -0.476 3.072 18.000 5.348
                                 28.292 2
AA DA5DA6:DT19DT20 BB A 5 ? B 20 ? A 6 ? B 19 ?
1 A DA 6 1 555 B DT 7 1 555 A DT 7 1 555 B DA 6 1 555 -0.148 -0.601 3.135 0.082 6.206 27.711 -
2.567 0.320 2.933 12.755 -0.169 28.384 3
AA DA6DT7:DA18DT19 BB A 6 ? B 19 ? A 7 ? B 18 ?
1 A DT 7 1 555 B DA 6 1 555 A DT 8 1 555 B DA 5 1 555 1.209 0.289 3.235 6.047 7.993 32.969 -
0.800 -1.070 3.374 13.696 -10.360 34.418 4
AA DT7DT8:DA17DA18 BB A 7 ? B 18 ? A 8 ? B 17 ?
1 A DG 10 1 555 B DC 3 1 555 A DC 11 1 555 B DG 2 1 555 -0.894 0.014 3.141 0.568 -2.918 30.844
0.565 1.778 3.110 -5.470 -1.064 30.984 5
```

```
AA DG10DC11:DG14DC15 BB A 10 ? B 15 ? A 11 ? B 14 ?
#
loop
software.name
_software.classification
_software.version
_software.citation_id
software.pdbx ordinal
MD-2
     'data collection'
                         'diffractometer software from EMBL (with LS-CAT developed extensions)' ? 1
PHENIX 'model building'
                                                                                                 ? 2
                                                                                                 ? 3
REFMAC refinement
                         5.7.0029
#
entry.id
            4HQI
#
pdbx unobs or zero occ residues.id
                                                  1
_pdbx_unobs_or_zero_occ_residues.polymer flag
                                                  Y
_pdbx_unobs_or_zero_occ_residues.occupancy flag
                                                  1
pdbx_unobs_or_zero_occ_residues.PDB_model_num
                                                  1
_pdbx_unobs_or_zero_occ_residues.auth asym id
                                                  Α
pdbx unobs or zero occ residues.auth comp id
                                                  DC
_pdbx_unobs_or_zero_occ_residues.auth seq id
                                                  1
pdbx unobs or zero occ residues.PDB ins code
                                                  ?
#
loop
_pdbx_unobs_or_zero_occ_atoms.id
_pdbx_unobs_or_zero_occ_atoms.polymer flag
_pdbx_unobs_or_zero_occ_atoms.occupancy flag
_pdbx_unobs_or_zero_occ_atoms.PDB_model_num
pdbx_unobs_or_zero_occ_atoms.auth_asym_id
_pdbx_unobs_or_zero_occ_atoms.auth_comp_id
_pdbx_unobs_or_zero_occ_atoms.auth_seq_id
_pdbx_unobs_or_zero_occ_atoms.PDB_ins_code
_pdbx_unobs_or_zero_occ_atoms.auth_atom_id
_pdbx_unobs_or_zero_occ_atoms.label_alt_id
1 Y 1 1 B DC 13 ? '05'' ?
2 Y 1 1 B DC 13 ? 'C5'' ?
3 Y 1 1 B DC 13 ? 'C4'' ?
```

4 Y 1 1 B DC 13 ? 'O4'' ? 5 Y 1 1 B DC 13 ? 'C3'' ? 6 Y 1 1 B DC 13 ? 'C2'' ? 7 Y 1 1 B DC 13 ? 'C1'' ? 8 Y 1 1 B DC 13 ? N1 ? ? 9 Y 1 1 B DC 13 ? C2 ? 10 Y 1 1 B DC 13 ? O2 ? 11 Y 1 1 B DC 13 ? N3 12 Y 1 1 B DC 13 ? C4 ? ? 13 Y 1 1 B DC 13 ? N4 ? 14 Y 1 1 B DC 13 ? C5 15 Y 1 1 B DC 13 ? C6 ? # loop struct site.id struct site.details struct site.pdbx evidence code AC1 'BINDING SITE FOR RESIDUE SPM A 101' SOFTWARE AC2 'BINDING SITE FOR RESIDUE SR A 102' SOFTWARE # atom sites.entry id 4HQI _atom_sites.Cartn_transform axes ? _atom_sites.fract_transf_matrix[1][1] 0.037902 _atom_sites.fract_transf_matrix[1][2] 0.000000 _atom_sites.fract_transf_matrix[1][3] 0.000000 _atom_sites.fract_transf_matrix[2][1] -0.000000 atom sites.fract transf matrix[2][2] 0.027193 _atom_sites.fract_transf_matrix[2][3] 0.00000 _atom_sites.fract_transf_matrix[3][1] 0.000000 _atom_sites.fract_transf_matrix[3][2] -0.000000 _atom_sites.fract_transf_matrix[3][3] 0.012878 _atom_sites.fract_transf_vector[1] 0.00000 _atom_sites.fract_transf_vector[2] 0.00000 _atom_sites.fract_transf_vector[3] 0.00000 # citation.id primary _citation.title

;Recognition of O6-Benzyl-2'-deoxyguanosine by a Perimidinone-Derived Synthetic Nucleoside: A Unique Interstrand Stacking Interaction

```
;
citation.journal abbrev
                                   'To be Published'
_citation.journal_volume
                                   ?
citation.page first
                                   ?
?
citation.year
                                   ?
citation.journal_id ASTM
                                   ?
citation.country
                                   ?
?
_citation.journal id CSD
                                  0353
_citation.book publisher
                                  ?
citation.pdbx database id PubMed
                                  ?
citation.pdbx database id DOI
                                   ?
#
loop
_citation_author.citation id
_citation_author.name
citation author.ordinal
primary 'Kowal, E.A.' 1
primary 'Lad, R.'
                      2
primary 'Pallan, P.S.' 3
primary 'Muffly, E.'
                      4
primary 'Wawrzak, Z.'
                      5
primary 'Egli, M.'
                      6
primary 'Sturla, S.J.' 7
primary 'Stone, M.P.'
                      8
#
computing.entry id
                                            4HQI
_computing.pdbx_data reduction ii
                                            HKL2000
_computing.pdbx_data_reduction_ds
                                            HKL2000
computing.data collection
                                            'MD-2 diffractometer software from EMBL (with LS-CAT
developed extensions)'
computing.structure solution
                                            PHENIX
computing.structure refinement
                                            'REFMAC 5.7.0029'
_computing.pdbx_structure_refinement method
                                            ?
```

```
#
database.entry id
                    4HQI
database.code CSD
                    ?
#
loop
_database_2.database_id
_database_2.database_code
PDB 4HQI
NDB NA2104
RCSB RCSB075793
#
loop
_entity.id
entity.type
entity.src method
_entity.pdbx_description
_entity.formula_weight
_entity.pdbx_number_of_molecules
_entity.details
1 polymer
             syn 'Short modified nucleic acids' 3826.640 2 ?
2 non-polymer syn SPERMINE
                                               202.342 1 ?
3 non-polymer syn 'STRONTIUM ION'
                                               87.620
                                                        1 ?
                                               18.015
4 water
             nat water
                                                        49 ?
#
loop
_entity_poly_seq.entity id
_entity_poly_seq.num
_entity_poly_seq.mon_id
entity poly seq.hetero
11 DC n
12 DG n
1 3 DC n
14 BZG n
15 DA n
16 DA n
17 DT n
18 DT n
```

Kowal, E.A., et al.

```
22
```

```
19 D3N n
1 10 DG n
1 11 DC n
1 12 DG n
#
_entity_poly.entity_id
_entity_poly.type
entity poly.nstd linkage
entity poly.nstd monomer
entity poly.pdbx seq one letter code
entity_poly.pdbx_seq_one_letter_code_can
#
loop
pdbx poly seq scheme.asym id
pdbx poly seq scheme.entity id
_pdbx_poly_seq_scheme.seg id
_pdbx_poly_seq_scheme.mon_id
pdbx_poly_seq_scheme.ndb_seq_num
_pdbx_poly_seq_scheme.pdb_seq_num
pdbx poly_seq_scheme.auth seq num
_pdbx_poly_seq_scheme.pdb mon id
pdbx_poly_seq_scheme.auth_mon_id
pdbx poly seq scheme.pdb strand id
pdbx poly seq scheme.pdb ins code
pdbx_poly_seq_scheme.hetero
A 1 1 DC 1 1 ? ?
                      ?
                          A . n
A 1 2
      DG 2 2
               2
                  DG DG A.n
A 1 3
      DC 3
             3
                3
                  DC DC A.n
                  BZG BZG A . n
A 1 4
      BZG 4
             4
               4
A 1 5
      DA 5
             5
                5
                  DA DA A.n
A 1 6
      DA 6
             6
               6
                  DA DA A.n
         777
A 1 7
      DT
                  DT
                      DT A.n
               8
                      DT A.n
A 1 8
      DT
             8
                  DT
          8
A 1 9 D 3 N 9 9 9
                  D3N D3N A . n
A 1 10 DG 10 10 10 DG
                      DG
                          A . n
A 1 11 DC 11 11 11 DC
                      DC A.n
A 1 12 DG 12 12 12 DG DG A.n
```

```
1
polydeoxyribonucleotide
no
yes
(DC)(DG)(DC)(BZG)(DA)(DA)(DT)(DT)(D3N)(DG)(DC)(DG)
CGCNAATTXGCG
```

B 1 1 DC 1 13 13 DC DC B . n B 1 2 DG 2 14 14 DG DG в. п B 1 3 DC 3 15 15 DC DC B . n в 14 BZG 4 16 16 BZG BZG B . n B 1 5 DA 5 17 17 DA DA B. n B 1 6 DA 18 18 DA 6 DA B . n B 1 7 DT7 19 19 DT DTв. п 20 20 DT B 1 8 DT8 DT B.n B 1 9 D3N 9 21 21 D3N D3N B . n B 1 10 DG 10 22 22 DG DG в. п 11 23 23 DC B 1 11 DC DC B . n B 1 12 DG 12 24 24 DG DG B . n # loop pdbx nonpoly scheme.asym id _pdbx_nonpoly_scheme.entity id _pdbx_nonpoly_scheme.mon_id pdbx_nonpoly_scheme.ndb_seq_num _pdbx_nonpoly_scheme.pdb seq num pdbx nonpoly scheme.auth seq num _pdbx_nonpoly_scheme.pdb mon id pdbx_nonpoly_scheme.auth mon id pdbx nonpoly scheme.pdb strand id pdbx_nonpoly_scheme.pdb_ins_code C 2 SPM 1 101 330 SPM SPM A . D 3 SR 1 102 1 SR SR A. E 4 HOH 1 201 4 нон нон а . E 4 HOH 2 202 7 нон нон а . E 4 HOH 3 203 11 нон нон а . E 4 HOH 4 204 12 нон нон а . E 4 HOH 5 205 13 нон нон а . E 4 HOH 6 206 19 нон нон а . E 4 HOH 7 207 20 нон нон а . E 4 HOH 8 208 21 нон нон а . E 4 HOH 9 209 22 нон нон а . E 4 HOH 10 210 23 нон нон а . E 4 HOH 11 211 24 нон нон а .

E 4 HOH 12 212 25 нон нон а . E 4 HOH 13 213 26 нон нон а . E 4 HOH 14 214 28 нон нон а . E 4 HOH 15 215 30 нон нон а . E 4 HOH 16 216 31 нон нон а . E 4 HOH 17 217 32 нон нон а . E 4 HOH 18 218 33 нон нон а . E 4 HOH 19 219 34 нон нон а . E 4 HOH 20 220 35 нон нон а . E 4 HOH 21 221 37 нон нон а . E 4 HOH 22 222 38 нон нон а . E 4 HOH 23 223 39 нон нон а . E 4 HOH 24 224 41 нон нон а . E 4 HOH 25 225 44 нон нон а . E 4 HOH 26 226 48 нон нон а . E 4 HOH 27 227 49 нон нон а . E 4 HOH 28 228 50 нон нон а . F 4 HOH 1 101 2 нон нон в . F 4 HOH 2 102 3 нон нон в . F 4 HOH 3 103 5 нон нон в . F 4 HOH 4 104 6 нон нон в . F 4 HOH 5 105 8 нон нон в . F 4 HOH 6 106 9 нон нон в . F 4 HOH 7 107 10 нон нон в . F 4 HOH 8 108 14 нон нон в . F 4 HOH 9 109 15 нон нон в . F 4 HOH 10 110 16 нон нон в . F 4 HOH 11 111 17 нон нон в . F 4 HOH 12 112 18 нон нон в . F 4 HOH 13 113 27 нон нон в . F 4 HOH 14 114 29 нон нон в . F 4 HOH 15 115 36 нон нон в . F 4 HOH 16 116 40 нон нон в . F 4 HOH 17 117 42 нон нон в . F 4 HOH 18 118 43 нон нон в . F 4 HOH 19 119 45 нон нон в . F 4 HOH 20 120 46 нон нон в .

```
F 4 HOH 21 121 47 HOH HOH B .
#
pdbx entity src syn.entity id
                                           1
pdbx entity src syn.organism scientific
                                           'SYNTHETIC CONSTRUCT'
_pdbx_entity_src_syn.organism_common_name
                                           ?
_pdbx_entity_src_syn.ncbi_taxonomy id
                                           32630
'Chemically synthesized modified oligonucleotides'
refine hist.pdbx refine id
                                             'X-RAY DIFFRACTION'
refine hist.cycle id
                                             LAST
_refine_hist.pdbx_number_atoms_protein
                                             0
_refine_hist.pdbx_number_atoms nucleic acid
                                             481
_refine_hist.pdbx_number_atoms_ligand
                                             15
refine hist.number atoms solvent
                                             49
refine hist.number atoms total
                                             545
refine hist.d res high
                                             1.70
refine hist.d res low
                                             20.67
struct.entry id
                                 4HQI
struct.title
;Structure of O6-Benzyl-2'-deoxyquanosine opposite perimidinone-derived synthetic nucleoside in DNA
duplex
;
_struct.pdbx_descriptor
                                 '5'-D(*CP*GP*CP*(BZG)P*AP*AP*TP*TP*(D3N)P*GP*CP*G)-3''
_struct.pdbx_model_details
                                 ?
_struct.pdbx_CASP flag
                                 ?
struct.pdbx model type details
                                 ?
#
loop_
_struct_asym.id
_struct_asym.pdbx_blank_PDB_chainid flag
_struct_asym.pdbx modified
_struct_asym.entity id
struct asym.details
ANN1?
BNN1?
CNN2?
```

D N N 3 ?E N N 4 ?FNN4? # loop _struct_conn.id _struct_conn.conn_type id _struct_conn.pdbx PDB id struct conn.ptnr1 label asym id struct conn.ptnr1 label comp id struct_conn.ptnr1_label_seq_id struct conn.ptnr1 label atom id _struct_conn.pdbx_ptnr1_label_alt id struct conn.pdbx ptnr1 PDB ins code struct conn.pdbx ptnr1 standard comp id struct conn.ptnr1 symmetry struct conn.ptnr2 label asym id struct_conn.ptnr2_label_comp_id _struct_conn.ptnr2_label_seq_id struct_conn.ptnr2_label_atom id struct conn.pdbx ptnr2 label alt id struct_conn.pdbx_ptnr2_PDB ins code struct conn.ptnr1 auth asym id struct_conn.ptnr1_auth_comp_id _struct_conn.ptnr1_auth_seq_id _struct_conn.ptnr2_auth_asym_id _struct_conn.ptnr2_auth_comp_id struct conn.ptnr2 auth seq id struct_conn.ptnr2_symmetry _struct_conn.pdbx_ptnr3_label_atom_id _struct_conn.pdbx_ptnr3_label_seq_id _struct_conn.pdbx_ptnr3_label_comp_id _struct_conn.pdbx_ptnr3_label_asym_id struct conn.pdbx ptnr3 label alt id struct_conn.pdbx_ptnr3_PDB ins code struct conn.details _struct_conn.pdbx_dist value

struct conn.pdbx value order metalc1 metalc ? A DG 12 06 ? ? ? 1 555 D SR . SR ? ? A DG 12 A SR 102 1 555 ? ? ? ? ? ? ? ? ? 2.690 ? covale1 covale ? A DT 8 '03'' ? ? ? 1 555 A D3N 9 P ? ? A DT 8 A D3N 9 1 555 ? ? ? ? ? ? ? ? ? ? 1.578 ? covale2 covale ? B DT 8 '03'' ? ? ? 1_555 B D3N 9 P ? ? B DT 20 B D3N 21 1_555 ? ? ? ? ? ? ? ? ? 1.591 ? covale3 covale ? A DC 3 '03'' ? ? ? 1 555 A BZG 4 P ? ? A DC 3 A BZG 4 1 555 ? ? ? ? ? ? ? ? ? ? 1.586 ? covale4 covale ? B DC 3 '03'' ? ? ? 1 555 B BZG 4 P ? ? B DC 15 B BZG 16 1 555 ? ? ? ? ? ? ? ? ? 1.595 ? hydrog1 hydrog ? A DG 2 N1 ? ? ? 1 555 B DC 11 N3 ? ? A DG 2 B DC 23 1 555 ? ? ? ? ? ? ? WATSON-CRICK ? ? hydrog2 hydrog ? A DG 2 N2 ? ? ? 1 555 B DC 11 02 ? ? A DG 2 B DC 23 1 555 ? ? ? ? ? ? ? WATSON-CRICK ? ? hydrog3 hydrog ? A DG 2 06 ? ? ? 1 555 B DC 11 N4 ? ? A DG 2 B DC 23 1 555 ? ? ? ? ? ? ? WATSON-CRICK ? ? ? ? ? 1 555 B DG 10 N1 ? ? A DC 3 B DG 22 1 555 ? ? ? ? ? ? ? hydrog4 hydrog ? A DC 3 N3 WATSON-CRICK ? ? hydrog5 hydrog ? A DC 3 N4 ? ? ? 1 555 B DG 10 06 ? ? A DC 3 B DG 22 1 555 ? ? ? ? ? ? ? WATSON-CRICK ? ? hydrog6 hydrog ? A DC 3 02 ? ? ? 1 555 B DG 10 N2 ? ? A DC 3 B DG 22 1 555 ? ? ? ? ? ? ? WATSON-CRICK ? ? hydrog7 hydrog ? A DA 5 N1 ? ? ? 1 555 B DT 8 N3 ? ? A DA 5 B DT 20 1 555 ? ? ? ? ? ? ? WATSON-CRICK ? ? hydrog8 hydrog ? A DA 5 N6 ? ? ? 1 555 B DT 8 04 ? ? A DA 5 B DT 20 1 555 ? ? ? ? ? ? ? WATSON-CRICK ? ? hydrog9 hydrog ? A DA 6 N1 ? ? ? 1 555 B DT 7 N3 ? ? A DA 6 B DT 19 1 555 ? ? ? ? ? ? ? WATSON-CRICK ? hydroq10 hydroq ? A DA 6 N6 ? ? ? 1 555 B DT 7 04 ? ? A DA 6 B DT 19 1 555 ? ? ? ? ? ? ? WATSON-CRICK ? ? hydrog11 hydrog ? A DT 7 N3 ? ? ? 1 555 B DA 6 N1 ? ? A DT 7 B DA 18 1 555 ? ? ? ? ? ? ? ? WATSON-CRICK ? ? hydrog12 hydrog ? A DT 7 04 WATSON-CRICK ? ? hydrog13 hydrog ? A DT 8 N3 ? ? ? 1 555 B DA 5 N1 ? ? A DT 8 B DA 17 1 555 ? ? ? ? ? ? ? WATSON-CRICK ? ?

```
? ? ? 1 555 B DA 5 N6 ? ? A DT 8 B DA 17 1 555 ? ? ? ? ? ? ?
hydrog14 hydrog ? A DT 8 04
WATSON-CRICK ?
                   ?
hydrog15 hydrog ? A DG 10 N1
                               ? ? ? 1 555 B DC 3 N3 ? ? A DG 10 B DC 15 1 555 ? ? ? ? ? ? ?
WATSON-CRICK ?
                   ?
hydrog16 hydrog ? A DG 10 N2
                               ? ? ? 1 555 B DC 3 02 ? ? A DG 10 B DC 15 1 555 ? ? ? ? ? ? ?
WATSON-CRICK ?
                  ?
hydrog17 hydrog ? A DG 10 06
                               ? ? ? 1 555 B DC 3 N4 ? ? A DG 10 B DC 15 1 555 ? ? ? ? ? ? ?
WATSON-CRICK ?
                   ?
hydrog18 hydrog ? A DC 11 N3
                               ? ? ? 1 555 B DG 2 N1 ? ? A DC 11 B DG 14 1 555 ? ? ? ? ? ? ?
WATSON-CRICK ?
                   ?
                               ? ? ? 1 555 B DG 2 06 ? ? A DC 11 B DG 14 1 555 ? ? ? ? ? ?
hydrog19 hydrog ? A DC 11 N4
WATSON-CRICK ?
                   ?
hydrog20 hydrog ? A DC 11 02
                               ? ? ? 1 555 B DG 2 N2 ? ? A DC 11 B DG 14 1 555 ? ? ? ? ? ? ?
WATSON-CRICK ?
                  ?
#
loop
struct conn type.id
_struct_conn type.criteria
struct conn type.reference
covale ?
?
metalc ?
?
hydrog 'For hydrogen bonding between nucleic acid bases, donor to acceptor distance of 2.2 -3.5
Angstroms was used.' ?
#
loop
struct site gen.id
_struct_site_gen.site id
_struct_site_gen.pdbx num res
struct_site gen.label comp id
struct site gen.label asym id
struct_site_gen.label_seq_id
struct site gen.pdbx auth ins code
struct_site_gen.auth_comp_id
struct site gen.auth asym id
struct site gen.auth seq id
```

28

```
struct site gen.label atom id
struct site gen.label alt id
struct site gen.symmetry
struct site gen.details
1 AC1 6 DG A 2 ? DG A 2 . . 1_555 ?
2 AC1 6 D3N A 9 ? D3N A 9 . . 2 555 ?
3 AC1 6 D3N A 9 ? D3N A 9 . . 3 645 ?
4 AC1 6 DG A 10 ? DG A 10 . . 2 555 ?
5 AC1 6 DG B 2 ? DG B 14 . . 2 555 ?
6 AC1 6 DG B 10 ? DG B 22 . . 1 555 ?
7 AC2 1 DG A 12 ? DG A 12 . . 1 555 ?
#
loop
diffrn radiation wavelength.id
diffrn radiation wavelength.wt
1 1.60499 1.0
2 0.97857 1.0
#
loop
atom type.symbol
Ρ
0
С
Ν
SR
#
loop
_chem_comp.id
_chem_comp.type
_chem_comp.mon_nstd_flag
_chem_comp.name
chem comp.pdbx_synonyms
_chem_comp.formula
chem comp.formula weight
DG 'DNA linking' y '2'-DEOXYGUANOSINE-5'-MONOPHOSPHATE'
?
```

```
'C10 H14 N5 O7 P' 347.224
DC 'DNA linking' y '2'-DEOXYCYTIDINE-5'-MONOPHOSPHATE'
?
'C9 H14 N3 O7 P' 307.199
BZG 'DNA linking' . 6-(BENZYLOXY)-9-(2-DEOXY-5-O-PHOSPHONO-BETA-D-ERYTHRO-PENTOFURANOSYL)-9H-PURIN-2-
AMINE 'O6-BENZYL-2'-DEOXYGUANOSINE-5'-MONOPHOSPHATE'
'C17 H20 N5 O7 P' 437.348
DA 'DNA linking' y '2'-DEOXYADENOSINE-5'-MONOPHOSPHATE'
?
'C10 H14 N5 O6 P' 331.224
   'DNA linking' y 'THYMIDINE-5'-MONOPHOSPHATE'
DT
?
'C10 H15 N2 O8 P' 322.211
D3N 'DNA linking' . 1-(2-DEOXY-5-O-PHOSPHONO-BETA-D-ERYTHRO-PENTOFURANOSYL)-1H-PERIMIDIN-2(3H)-ONE
?
'C16 H17 N2 O7 P' 380.293
SPM NON-POLYMER . SPERMINE
?
'C10 H26 N4' 202.342
SR NON-POLYMER . 'STRONTIUM ION'
?
'SR 2'
                 87.620
HOH NON-POLYMER . WATER
?
'H2 O'
           18.015
#
loop
pdbx validate close contact.id
_pdbx_validate_close_contact.PDB model num
_pdbx_validate_close_contact.auth atom id 1
_pdbx_validate_close_contact.auth_asym_id_1
_pdbx_validate_close_contact.auth_comp_id_1
pdbx_validate_close_contact.auth_seq_id_1
_pdbx_validate_close_contact.PDB ins code 1
_pdbx_validate_close_contact.label alt id 1
pdbx validate close contact.auth atom id 2
pdbx validate close contact.auth asym id 2
```

```
pdbx validate close contact.auth comp id 2
pdbx validate close contact.auth seq id 2
pdbx validate close contact.PDB ins code 2
pdbx validate close contact.label alt id 2
_pdbx_validate_close_contact.dist
1 1 0 A HOH 225 ? ? O A HOH 226 ? ? 2.09
2 1 O B HOH 103 ? ? O B HOH 104 ? ? 2.19
_pdbx_validate_rmsd_angle.id
                                            1
_pdbx_validate_rmsd_angle.PDB model num
                                            1
_pdbx_validate_rmsd_angle.auth_atom_id_1
                                            'C1''
_pdbx_validate_rmsd_angle.auth_asym_id_1
                                            Α
pdbx_validate_rmsd_angle.auth_comp_id_1
                                            DC
pdbx validate rmsd angle.auth seq id 1
                                            3
pdbx validate rmsd angle.PDB ins code 1
                                            ?
_pdbx_validate_rmsd_angle.label alt id 1
                                            ?
_pdbx_validate_rmsd_angle.auth atom id 2
                                             '04''
_pdbx_validate_rmsd_angle.auth_asym_id_2
                                            Α
_pdbx_validate_rmsd_angle.auth_comp_id_2
                                            DC
pdbx validate rmsd angle.auth seq id 2
                                            3
_pdbx_validate_rmsd_angle.PDB ins code 2
                                            ?
pdbx_validate_rmsd_angle.label alt id 2
                                            ?
pdbx validate rmsd angle.auth atom id 3
                                             'C4''
pdbx validate rmsd angle.auth asym id 3
                                            Α
pdbx_validate_rmsd_angle.auth_comp_id_3
                                            DC
pdbx validate rmsd angle.auth seq id 3
                                            3
pdbx validate rmsd angle.PDB ins code 3
                                            ?
pdbx validate rmsd angle.label alt id 3
                                            ?
pdbx_validate_rmsd_angle.angle_deviation
                                            -6.2
loop
_pdbx_entity_nonpoly.entity_id
_pdbx_entity_nonpoly.name
_pdbx_entity_nonpoly.comp id
2 SPERMINE
                  SPM
3 'STRONTIUM ION' SR
4 water
                  HOH
```

#

loop atom site.group PDB atom site.id _atom_site.type_symbol _atom_site.label atom id _atom_site.label_alt id atom site.label comp id atom site.label asym id atom site.label entity id _atom_site.label_seq id atom site.pdbx PDB ins code _atom_site.Cartn x atom site.Cartn y atom site.Cartn z atom site.occupancy atom site.B iso or equiv atom_site.Cartn_x esd _atom_site.Cartn y esd atom site.Cartn z esd atom site.occupancy esd _atom_site.B_iso_or_equiv esd atom site.pdbx formal charge _atom_site.auth_seq id _atom_site.auth_comp id _atom_site.auth_asym id atom site.auth atom id atom site.pdbx PDB model num Ρ ATOM 1 Ρ . DG -10.993 30.734 0.60 64.21 ΑP 1 A 1 2 ? 9.239 ??????2 DG -10.756 32.190 2 A OP1 1 ATOM 0 OP1 . DG A 1 2 ? 9.072 0.60 60.29 ???? ? ? 2 DG ATOM 3 0 OP2 . DG A 1 2 ? 9.385 -12.395 30.228 0.60 53.30 ? ? ? ? ? ? 2 DG A OP2 1 4 0 '05'' A 1 2 ? 8.014 -10.291 29.981 1.00 66.68 ??????2 A '05'' 1 ATOM . DG DG 'C5'' A 1 2 5 С . DG ? 6.825 -9.899 30.702 ??????2 A 'C5'' 1 ATOM 1.00 55.81 DG A 'C4'' 1 'C4'' . DG A 1 2 ? 5.949 -8.961 29.894 ? ? ? ? ? ? 2 ATOM 6 С 1.00 52.59 DG ATOM 7 0 '04'' . DG A 1 2 ? 6.194 -7.574 30.229 1.00 47.03 ???? ? ? 2 DG A '04'' 1 ATOM 8 С 'C3'' . DG A 1 2 ? 6.021 -9.044 28.371 1.00 47.01 ???? ??2 DG A 'C3'' 1 ATOM 9 0 '03''. DG A 1 2 ? 4.664 -8.805 27.971 1.00 43.95 ??????2 DG A '03'' 1

ATOM	10	С	'C2''	•	DG	А	1	2	?	6.953	-7.905	28.004	1.00	43.36	?	?	?	?	?	?	2	DG	А	'C2''	1
ATOM	11	С	'C1''	•	DG	А	1	2	?	6.723	-6.873	29.101	1.00	38.71	?	?	?	?	?	?	2	DG	А	'C1''	1
ATOM	12	Ν	N9	•	DG	А	1	2	?	7.941	-6.215	29.539	1.00	38.13	?	?	?	?	?	?	2	DG	А	N9	1
ATOM	13	С	C8	•	DG	А	1	2	?	9.159	-6.806	29.783	1.00	40.71	?	?	?	?	?	?	2	DG	А	C8	1
ATOM	14	Ν	N7	•	DG	А	1	2	?	10.037	-5.980	30.285	1.00	37.92	?	?	?	?	?	?	2	DG	А	N7	1
ATOM	15	С	C5	•	DG	А	1	2	?	9.326	-4.799	30.471	1.00	34.44	?	?	?	?	?	?	2	DG	А	C5	1
ATOM	16	С	C6	•	DG	А	1	2	?	9.751	-3.550	30.963	1.00	33.16	?	?	?	?	?	?	2	DG	А	C6	1
ATOM	17	0	06	•	DG	А	1	2	?	10.873	-3.233	31.386	1.00	39.27	?	?	?	?	?	?	2	DG	А	06	1
ATOM	18	Ν	N1	•	DG	А	1	2	?	8.717	-2.611	30.947	1.00	31.66	?	?	?	?	?	?	2	DG	А	N1	1
ATOM	19	С	C2	•	DG	А	1	2	?	7.432	-2.858	30.522	1.00	26.82	?	?	?	?	?	?	2	DG	А	C2	1
ATOM	20	Ν	N2	•	DG	А	1	2	?	6.580	-1.803	30.529	1.00	29.37	?	?	?	?	?	?	2	DG	А	N2	1
ATOM	21	Ν	N3	•	DG	А	1	2	?	7.035	-4.016	30.020	1.00	32.27	?	?	?	?	?	?	2	DG	А	N3	1
ATOM	22	С	C4	•	DG	А	1	2	?	8.029	-4.933	30.021	1.00	32.15	?	?	?	?	?	?	2	DG	А	C4	1
ATOM	23	Р	Р	•	DC	А	1	3	?	4.239	-8.657	26.447	1.00	46.97	?	?	?	?	?	?	3	DC	А	Р	1
ATOM	24	0	OP1	•	DC	А	1	3	?	2.751	-8.762	26.393	1.00	49.89	?	?	?	?	?	?	3	DC	А	OP1	1
ATOM	25	0	OP2	•	DC	А	1	3	?	5.133	-9.515	25.605	1.00	53.26	?	?	?	?	?	?	3	DC	А	OP2	1
ATOM	26	0	'05''	•	DC	А	1	3	?	4.520	-7.119	26.124	1.00	43.44	?	?	?	?	?	?	3	DC	А	'05''	1
ATOM	27	С	'C5''	•	DC	А	1	3	?	3.632	-6.106	26.576	1.00	38.31	?	?	?	?	?	?	3	DC	А	'C5''	1
ATOM	28	С	'C4''	•	DC	А	1	3	?	4.287	-4.774	26.306	1.00	36.86	?	?	?	?	?	?	3	DC	А	'C4''	1
ATOM	29	0	'04''	•	DC	А	1	3	?	5.592	-4.779	26.930	1.00	42.11	?	?	?	?	?	?	3	DC	А	'04''	1
ATOM	30	С	'C3''	•	DC	А	1	3	?	4.561	-4.493	24.826	1.00	34.95	?	?	?	?	?	?	3	DC	А	'C3''	1
ATOM	31	0	'03''	•	DC	А	1	3	?	3.753	-3.403	24.382	1.00	46.76	?	?	?	?	?	?	3	DC	А	'03''	1
ATOM	32	С	'C2''	•	DC	А	1	3	?	6.019	-4.016	24.799	1.00	40.64	?	?	?	?	?	?	3	DC	А	'C2''	1
ATOM	33	С	'C1''	•	DC	А	1	3	?	6.290	-3.756	26.261	1.00	38.02	?	?	?	?	?	?	3	DC	А	'C1''	1
ATOM	34	Ν	N1	•	DC	А	1	3	?	7.686	-3.832	26.664	1.00	41.53	?	?	?	?	?	?	3	DC	А	N1	1
ATOM	35	С	C2	•	DC	А	1	3	?	8.245	-2.738	27.324	1.00	33.63	?	?	?	?	?	?	3	DC	А	C2	1
ATOM	36	0	02	•	DC	А	1	3	?	7.552	-1.720	27.493	1.00	33.20	?	?	?	?	?	?	3	DC	А	02	1
ATOM	37	Ν	N 3	•	DC	А	1	3	?	9.537	-2.790	27.708	1.00	34.36	?	?	?	?	?	?	3	DC	А	N3	1
ATOM	38	С	C4	•	DC	А	1	3	?	10.247	-3.901	27.511	1.00	35.83	?	?	?	?	?	?	3	DC	А	C4	1
ATOM	39	Ν	N4	•	DC	А	1	3	?	11.529	-3.895	27.888	1.00	38.69	?	?	?	?	?	?	3	DC	А	N4	1
ATOM	40	С	C5	•	DC	А	1	3	?	9.691	-5.046	26.867	1.00	36.91	?	?	?	?	?	?	3	DC	А	C5	1
ATOM	41	С	C6	•	DC	А	1	3	?	8.397	-4.990	26.524	1.00	35.23	?	?	?	?	?	?	3	DC	А	C6	1
ATOM	42	Р	Р	•	BZG	А	1	4	?	2.649	-3.637	23.267	1.00	46.63	?	?	?	?	?	?	4	BZG	А	Р	1
ATOM	43	0	01P	•	BZG	А	1	4	?	3.306	-3.955	21.993	1.00	44.93	?	?	?	?	?	?	4	BZG	А	01P	1
ATOM	44	0	02P	•	BZG	А	1	4	?	1.836	-4.638	23.969	1.00	55.23	?	?	?	?	?	?	4	BZG	А	02P	1
ATOM	45	0	'05''	•	BZG	А	1	4	?	1.933	-2.246	23.191	1.00	39.01	?	?	?	?	?	?	4	BZG	А	'05''	1
ATOM	46	С	CZ1	•	BZG	А	1	4	?	11.175	0.290	21.777	1.00	37.59	?	?	?	?	?	?	4	BZG	А	CZ1	1

ATOM	47	С	CT1	•	BZG	А	1	4	?	12.294	-0.517	21.686	1.00	39.06	?	?	?	?	?	?	4	BZG	А	CT1	1
ATOM	48	С	CI	•	BZG	А	1	4	?	13.507	0.035	22.067	1.00	33.85	?	?	?	?	?	?	4	BZG	А	CI	1
ATOM	49	С	CT2	•	BZG	А	1	4	?	13.624	1.374	22.446	1.00	36.75	?	?	?	?	?	?	4	BZG	А	CT2	1
ATOM	50	С	CZ2	•	BZG	А	1	4	?	12.497	2.161	22.581	1.00	36.31	?	?	?	?	?	?	4	BZG	А	CZ2	1
ATOM	51	С	CE	•	BZG	А	1	4	?	11.293	1.609	22.203	1.00	36.33	?	?	?	?	?	?	4	BZG	А	CE	1
ATOM	52	С	CW	•	BZG	А	1	4	?	10.069	2.471	22.307	1.00	34.89	?	?	?	?	?	?	4	BZG	А	CW	1
ATOM	53	0	OL	•	BZG	А	1	4	?	8.937	1.590	22.071	1.00	37.78	?	?	?	?	?	?	4	BZG	А	OL	1
ATOM	54	С	СК	•	BZG	А	1	4	?	7.707	2.091	22.327	1.00	35.01	?	?	?	?	?	?	4	BZG	А	СК	1
ATOM	55	Ν	NJ	•	BZG	А	1	4	?	7.570	3.379	22.668	1.00	36.53	?	?	?	?	?	?	4	BZG	А	NJ	1
ATOM	56	С	СН	•	BZG	А	1	4	?	6.358	3.899	22.966	1.00	39.60	?	?	?	?	?	?	4	BZG	А	СН	1
ATOM	57	Ν	NI	•	BZG	А	1	4	?	6.258	5.215	23.214	1.00	42.29	?	?	?	?	?	?	4	BZG	А	NI	1
ATOM	58	Ν	NG	•	BZG	А	1	4	?	5.249	3.116	22.978	1.00	37.80	?	?	?	?	?	?	4	BZG	А	NG	1
ATOM	59	С	CF	•	BZG	А	1	4	?	5.361	1.799	22.674	1.00	35.38	?	?	?	?	?	?	4	BZG	А	CF	1
ATOM	60	С	CM	•	BZG	А	1	4	?	6.607	1.239	22.361	1.00	37.85	?	?	?	?	?	?	4	BZG	А	CM	1
ATOM	61	Ν	NN	•	BZG	А	1	4	?	6.455	-0.083	22.118	1.00	39.19	?	?	?	?	?	?	4	BZG	А	NN	1
ATOM	62	С	CO	•	BZG	А	1	4	?	5.137	-0.349	22.296	1.00	39.06	?	?	?	?	?	?	4	BZG	А	CO	1
ATOM	63	Ν	NE	•	BZG	А	1	4	?	4.484	0.814	22.580	1.00	38.14	?	?	?	?	?	?	4	BZG	А	NE	1
ATOM	64	С	'CT''	•	BZG	А	1	4	?	3.049	1.004	22.890	1.00	40.97	?	?	?	?	?	?	4	BZG	А	'CT''	1
ATOM	65	0	'OS''	•	BZG	А	1	4	?	2.752	0.367	24.126	1.00	41.96	?	?	?	?	?	?	4	BZG	А	'OS''	1
ATOM	66	С	'CP''	•	BZG	А	1	4	?	2.139	0.420	21.818	1.00	42.75	?	?	?	?	?	?	4	BZG	А	'CP''	1
ATOM	67	С	'C5''	•	BZG	А	1	4	?	1.432	-1.656	24.357	1.00	40.60	?	?	?	?	?	?	4	BZG	А	'C5''	1
ATOM	68	С	'C4''	•	BZG	А	1	4	?	1.409	-0.173	24.040	1.00	46.89	?	?	?	?	?	?	4	BZG	А	'C4''	1
ATOM	69	С	'C3''	•	BZG	А	1	4	?	0.883	0.134	22.623	1.00	46.88	?	?	?	?	?	?	4	BZG	А	'C3''	1
ATOM	70	0	'03''	•	BZG	А	1	4	?	0.164	1.363	22.838	1.00	55.09	?	?	?	?	?	?	4	BZG	А	'03''	1
ATOM	71	Ρ	Р	•	DA	А	1	5	?	-0.648	2.070	21.637	1.00	58.27	?	?	?	?	?	?	5	DA	А	Р	1
ATOM	72	0	OP1	•	DA	А	1	5	?	-1.834	2.738	22.239	1.00	59.14	?	?	?	?	?	?	5	DA	А	OP1	1
ATOM	73	0	OP2	•	DA	А	1	5	?	-0.808	1.074	20.536	1.00	59.17	?	?	?	?	?	?	5	DA	А	OP2	1
ATOM	74	0	'05''	•	DA	А	1	5	?	0.307	3.265	21.217	1.00	49.03	?	?	?	?	?	?	5	DA	А	'05''	1
ATOM	75	С	'C5''	•	DA	А	1	5	?	0.681	4.240	22.198	1.00	48.58	?	?	?	?	?	?	5	DA	А	'C5''	1
ATOM	76	С	'C4''	•	DA	А	1	5	?	1.593	5.267	21.581	1.00	56.65	?	?	?	?	?	?	5	DA	А	'C4''	1
ATOM	77	0	'04''	•	DA	А	1	5	?	2.908	4.711	21.358	1.00	53.36	?	?	?	?	?	?	5	DA	А	'04''	1
ATOM	78	С	'C3''	•	DA	А	1	5	?	1.123	5.797	20.227	1.00	59.46	?	?	?	?	?	?	5	DA	А	'C3''	1
ATOM	79	0	'03''	•	DA	А	1	5	?	1.300	7.208	20.242	1.00	60.34	?	?	?	?	?	?	5	DA	А	'03''	1
ATOM	80	С	'C2''	•	DA	А	1	5	?	2.038	5.114	19.223	1.00	55.75	?	?	?	?	?	?	5	DA	А	'C2''	1
ATOM	81	С	'C1''	•	DA	А	1	5	?	3.316	4.936	20.017	1.00	51.87	?	?	?	?	?	?	5	DA	А	'C1''	1
ATOM	82	Ν	N9	•	DA	А	1	5	?	4.126	3.793	19.610	1.00	46.83	?	?	?	?	?	?	5	DA	А	N9	1
ATOM	83	С	C8	•	DA	А	1	5	?	3.701	2.511	19.368	1.00	43.90	?	?	?	?	?	?	5	DA	А	C8	1

ATOM	84	Ν	N7	•	DA	А	1	5	?	4.669	1.681	19.062	1.00	44.68	?	?	?	?	?	?	5	DA	А	N7	1
ATOM	85 (С	C5	•	DA	А	1	5	?	5.813	2.463	19.135	1.00	42.49	?	?	?	?	?	?	5	DA	А	C5	1
ATOM	86	С	C6	•	DA	А	1	5	?	7.172	2.158	18.979	1.00	36.19	?	?	?	?	?	?	5	DA	А	C6	1
ATOM	87 1	N	NG	•	DA	А	1	5	?	7.619	0.949	18.637	1.00	36.49	?	?	?	?	?	?	5	DA	А	N6	1
ATOM	88 1	N	N1	•	DA	А	1	5	?	8.060	3.168	19.099	1.00	36.14	?	?	?	?	?	?	5	DA	А	N1	1
ATOM	89 (С	C2	•	DA	А	1	5	?	7.610	4.377	19.460	1.00	36.19	?	?	?	?	?	?	5	DA	А	C2	1
ATOM	90	N	N3	•	DA	А	1	5	?	6.358	4.781	19.670	1.00	42.40	?	?	?	?	?	?	5	DA	А	N3	1
ATOM	91 (С	C4	•	DA	А	1	5	?	5.498	3.760	19.499	1.00	35.08	?	?	?	?	?	?	5	DA	А	C4	1
ATOM	92	Ρ	Р	•	DA	А	1	6	?	0.679	8.066	19.071	1.00	66.25	?	?	?	?	?	?	6	DA	А	Р	1
ATOM	93 (0	OP1	•	DA	А	1	6	?	-0.038	9.214	19.677	1.00	73.87	?	?	?	?	?	?	6	DA	А	OP1	1
ATOM	94 (0	OP2	•	DA	А	1	6	?	-0.026	7.124	18.154	1.00	62.28	?	?	?	?	?	?	6	DA	А	OP2	1
ATOM	95 (0	'05''	•	DA	А	1	6	?	1.965	8.619	18.327	1.00	55.29	?	?	?	?	?	?	6	DA	А	'05''	1
ATOM	96	С	'C5''	•	DA	А	1	6	?	3.074	9.156	19.054	1.00	56.56	?	?	?	?	?	?	6	DA	А	'C5''	1
ATOM	97 (С	'C4''	•	DA	А	1	6	?	4.288	9.061	18.166	1.00	53.18	?	?	?	?	?	?	6	DA	А	'C4''	1
ATOM	98	0	'04''	•	DA	А	1	6	?	4.605	7.667	17.970	1.00	48.57	?	?	?	?	?	?	6	DA	А	'04''	1
ATOM	99 (С	'C3''	•	DA	А	1	6	?	4.033	9.623	16.761	1.00	59.75	?	?	?	?	?	?	6	DA	А	'C3''	1
ATOM	100 (0	'03''	•	DA	А	1	6	?	4.671	10.904	16.635	1.00	59.83	?	?	?	?	?	?	6	DA	А	'03''	1
ATOM	101 0	С	'C2''	•	DA	А	1	6	?	4.466	8.501	15.815	1.00	57.57	?	?	?	?	?	?	6	DA	А	'C2''	1
ATOM	102 (С	'C1''	•	DA	А	1	6	?	5.241	7.571	16.732	1.00	43.65	?	?	?	?	?	?	6	DA	А	'C1''	1
ATOM	103	N	N9	•	DA	А	1	6	?	5.326	6.159	16.375	1.00	38.41	?	?	?	?	?	?	6	DA	А	N9	1
ATOM	104 0	С	C8	•	DA	А	1	6	?	4.358	5.195	16.240	1.00	32.72	?	?	?	?	?	?	6	DA	А	C8	1
ATOM	105	N	N7	•	DA	А	1	6	?	4.833	4.013	15.917	1.00	34.57	?	?	?	?	?	?	6	DA	А	N7	1
ATOM	106 0	С	C5	•	DA	А	1	6	?	6.209	4.200	15.909	1.00	39.39	?	?	?	?	?	?	6	DA	А	C5	1
ATOM	107 (С	C6	•	DA	А	1	6	?	7.281	3.323	15.681	1.00	36.78	?	?	?	?	?	?	6	DA	А	C6	1
ATOM	108	Ν	NG	•	DA	А	1	6	?	7.130	2.029	15.402	1.00	36.24	?	?	?	?	?	?	6	DA	А	NG	1
ATOM	109	N	N1	•	DA	А	1	6	?	8.529	3.843	15.685	1.00	40.20	?	?	?	?	?	?	6	DA	А	N1	1
ATOM	110 (С	C2	•	DA	А	1	6	?	8.683	5.138	15.979	1.00	42.40	?	?	?	?	?	?	6	DA	А	C2	1
ATOM	111 1	N	N3	•	DA	А	1	6	?	7.757	6.057	16.242	1.00	44.66	?	?	?	?	?	?	6	DA	А	N3	1
ATOM	112 (С	C4	•	DA	А	1	6	?	6.526	5.514	16.198	1.00	39.31	?	?	?	?	?	?	6	DA	А	C4	1
ATOM	113	Ρ	Р	•	DT	А	1	7	?	4.489	11.764	15.293	1.00	63.69	?	?	?	?	?	?	7	DT	А	Р	1
ATOM	114 (0	OP1	•	DT	А	1	7	?	4.824	13.180	15.604	1.00	69.37	?	?	?	?	?	?	7	DT	А	OP1	1
ATOM	115 (0	OP2	•	DT	А	1	7	?	3.191	11.401	14.662	1.00	58.46	?	?	?	?	?	?	7	DT	А	OP2	1
ATOM	116 (0	'05''	•	DT	А	1	7	?	5.636	11.175	14.367	1.00	46.43	?	?	?	?	?	?	7	DT	А	'05''	1
ATOM	117 (С	'C5''	•	DT	А	1	7	?	7.007	11.417	14.718	1.00	51.47	?	?	?	?	?	?	7	DT	А	'C5''	1
ATOM	118 (С	'C4''	•	DT	А	1	7	?	7.866	10.655	13.748	1.00	46.90	?	?	?	?	?	?	7	DT	А	'C4''	1
ATOM	119 (0	'04''	•	DT	А	1	7	?	7.578	9.255	13.892	1.00	48.09	?	?	?	?	?	?	7	DT	А	'04''	1
ATOM	120 (С	'C3''	•	DT	А	1	7	?	7.495	10.983	12.306	1.00	43.45	?	?	?	?	?	?	7	DT	А	'C3''	1

ATOM	121 O	'03''	•	DT	А	1	7	?	8.490	11.822	11.752	1.00	52.70	?	?	?	?	?	?	7	DT	А	'03''	1
ATOM	122 C	'C2''	•	DT	А	1	7	?	7.380	9.628	11.617	1.00	50.70	?	?	?	?	?	?	7	DT	А	'C2''	1
ATOM	123 C	'C1''	•	DT	А	1	7	?	7.913	8.677	12.663	1.00	47.48	?	?	?	?	?	?	7	DT	А	'C1''	1
ATOM	124 N	N1	•	DT	А	1	7	?	7.376	7.317	12.639	1.00	41.31	?	?	?	?	?	?	7	DT	А	N1	1
ATOM	125 C	C2	•	DT	А	1	7	?	8.289	6.297	12.506	1.00	41.88	?	?	?	?	?	?	7	DT	А	C2	1
ATOM	126 O	02	•	DT	А	1	7	?	9.493	6.487	12.429	1.00	42.96	?	?	?	?	?	?	7	DT	А	02	1
ATOM	127 N	N3	•	DT	А	1	7	?	7.745	5.043	12.494	1.00	38.18	?	?	?	?	?	?	7	DT	А	N3	1
ATOM	128 C	C4	•	DT	А	1	7	?	6.413	4.714	12.593	1.00	39.17	?	?	?	?	?	?	7	DT	А	C4	1
ATOM	129 0	04	•	DT	А	1	7	?	6.074	3.542	12.534	1.00	42.62	?	?	?	?	?	?	7	DT	А	04	1
ATOM	130 C	C5	•	DT	А	1	7	?	5.502	5.840	12.688	1.00	39.25	?	?	?	?	?	?	7	DT	А	C5	1
ATOM	131 C	C7	•	DT	А	1	7	?	4.033	5.582	12.805	1.00	37.23	?	?	?	?	?	?	7	DT	А	C7	1
ATOM	132 C	C6	•	DT	А	1	7	?	6.024	7.068	12.690	1.00	36.63	?	?	?	?	?	?	7	DT	А	C6	1
ATOM	133 P	Р	•	DT	А	1	8	?	8.228	12.450	10.338	1.00	52.32	?	?	?	?	?	?	8	DT	А	Р	1
ATOM	134 O	OP1	•	DT	А	1	8	?	8.908	13.746	10.289	1.00	52.05	?	?	?	?	?	?	8	DT	А	OP1	1
ATOM	135 0	OP2	•	DT	А	1	8	?	6.757	12.374	10.063	1.00	55.19	?	?	?	?	?	?	8	DT	А	OP2	1
ATOM	136 O	'05''	•	DT	А	1	8	?	8.910	11.384	9.375	1.00	46.41	?	?	?	?	?	?	8	DT	А	'05''	1
ATOM	137 C	'C5''	•	DT	А	1	8	?	10.246	10.929	9.583	1.00	44.52	?	?	?	?	?	?	8	DT	А	'C5''	1
ATOM	138 C	'C4''	•	DT	А	1	8	?	10.482	9.804	8.610	1.00	43.89	?	?	?	?	?	?	8	DT	А	'C4''	1
ATOM	139 O	'04''	•	DT	А	1	8	?	9.790	8.651	9.114	1.00	42.41	?	?	?	?	?	?	8	DT	А	'04''	1
ATOM	140 C	'C3''	•	DT	А	1	8	?	9.850	10.104	7.249	1.00	48.97	?	?	?	?	?	?	8	DT	А	'C3''	1
ATOM	141 O	'03''	•	DT	А	1	8	?	10.867	10.316	6.277	1.00	53.05	?	?	?	?	?	?	8	DT	А	'03''	1
ATOM	142 C	'C2''	•	DT	А	1	8	?	8.964	8.904	6.950	1.00	40.46	?	?	?	?	?	?	8	DT	А	'C2''	1
ATOM	143 C	'C1''	•	DT	А	1	8	?	9.334	7.892	8.018	1.00	41.47	?	?	?	?	?	?	8	DT	А	'C1''	1
ATOM	144 N	N1	•	DT	А	1	8	?	8.211	7.065	8.474	1.00	38.36	?	?	?	?	?	?	8	DT	А	N1	1
ATOM	145 C	C2	•	DT	А	1	8	?	8.433	5.721	8.676	1.00	39.71	?	?	?	?	?	?	8	DT	А	C2	1
ATOM	146 O	02	•	DT	А	1	8	?	9.530	5.206	8.573	1.00	42.69	?	?	?	?	?	?	8	DT	А	02	1
ATOM	147 N	N 3	•	DT	А	1	8	?	7.323	5.008	9.045	1.00	37.19	?	?	?	?	?	?	8	DT	А	N3	1
ATOM	148 C	C4	•	DT	А	1	8	?	6.055	5.502	9.280	1.00	42.23	?	?	?	?	?	?	8	DT	А	C4	1
ATOM	149 O	04	•	DT	А	1	8	?	5.156	4.739	9.627	1.00	44.03	?	?	?	?	?	?	8	DT	А	04	1
ATOM	150 C	C5	•	DT	А	1	8	?	5.887	6.917	9.020	1.00	38.33	?	?	?	?	?	?	8	DT	А	C5	1
ATOM	151 C	C7	•	DT	А	1	8	?	4.544	7.541	9.235	1.00	43.91	?	?	?	?	?	?	8	DT	А	C7	1
ATOM	152 C	C6	•	DT	А	1	8	?	6.956	7.612	8.618	1.00	36.11	?	?	?	?	?	?	8	DT	А	C6	1
ATOM	153 0	01P	•	D3N	А	1	9	?	9.151	11.502	5.034	1.00	57.06	?	?	?	?	?	?	9	D3N	А	01P	1
ATOM	154 P	Р	•	D3N	А	1	9	?	10.467	10.803	4.830	1.00	59.57	?	?	?	?	?	?	9	D3N	А	Р	1
ATOM	155 O	02P	•	D3N	А	1	9	?	11.529	11.563	4.178	1.00	57.35	?	?	?	?	?	?	9	D3N	А	02P	1
ATOM	156 O	'05''	•	D3N	А	1	9	?	10.132	9.407	4.099	1.00	45.73	?	?	?	?	?	?	9	D3N	А	'05''	1
ATOM	157 C	'C5''	•	D3N	А	1	9	?	9.339	9.445	2.962	1.00	56.53	?	?	?	?	?	?	9	D3N	А	'C5''	1

ATOM	158 C	'C4''	•	D3N	А	1	9	?	9.661	8.312	2.011	1.00	49.95	?	?	?	?	?	?	9	D3N	А	'C4''	1
ATOM	159 O	'04''	•	D3N	А	1	9	?	8.863	7.224	2.387	1.00	46.67	?	?	?	?	?	?	9	D3N	А	'04''	1
ATOM	160 C	'C3''	•	D3N	А	1	9	?	9.320	8.677	0.601	1.00	47.42	?	?	?	?	?	?	9	D3N	А	'C3''	1
ATOM	161 O	'03''	•	D3N	А	1	9	?	10.640	8.976	-0.003	1.00	54.09	?	?	?	?	?	?	9	D3N	А	'03''	1
ATOM	162 C	'C2''	•	D3N	А	1	9	?	8.658	7.422	0.042	1.00	44.59	?	?	?	?	?	?	9	D3N	А	'C2''	1
ATOM	163 C	'C1''	•	D3N	А	1	9	?	8.417	6.534	1.230	1.00	46.91	?	?	?	?	?	?	9	D3N	А	'C1''	1
ATOM	164 N	N1	•	D3N	А	1	9	?	7.078	6.124	1.580	1.00	36.46	?	?	?	?	?	?	9	D3N	А	N1	1
ATOM	165 C	C2	•	D3N	А	1	9	?	6.110	7.057	1.685	1.00	38.72	?	?	?	?	?	?	9	D3N	А	C2	1
ATOM	166 O	02	•	D3N	А	1	9	?	6.297	8.251	1.417	1.00	48.10	?	?	?	?	?	?	9	D3N	А	02	1
ATOM	167 N	N 3	•	D3N	А	1	9	?	4.887	6.635	2.099	1.00	41.54	?	?	?	?	?	?	9	D3N	А	N3	1
ATOM	168 C	C4	•	D3N	А	1	9	?	4.594	5.301	2.451	1.00	36.92	?	?	?	?	?	?	9	D3N	А	C4	1
ATOM	169 C	C5	•	D3N	А	1	9	?	5.607	4.371	2.331	1.00	36.17	?	?	?	?	?	?	9	D3N	А	C5	1
ATOM	170 C	C6	•	D3N	А	1	9	?	6.891	4.763	1.888	1.00	36.76	?	?	?	?	?	?	9	D3N	А	C6	1
ATOM	171 C	C7	•	D3N	А	1	9	?	7.850	3.823	1.781	1.00	37.28	?	?	?	?	?	?	9	D3N	А	C7	1
ATOM	172 C	C8	•	D3N	А	1	9	?	7.548	2.482	2.091	1.00	38.67	?	?	?	?	?	?	9	D3N	А	C8	1
ATOM	173 C	C9	•	D3N	А	1	9	?	6.313	2.075	2.503	1.00	34.82	?	?	?	?	?	?	9	D3N	А	C9	1
ATOM	174 C	C10	•	D3N	А	1	9	?	5.329	3.022	2.649	1.00	36.15	?	?	?	?	?	?	9	D3N	А	C10	1
ATOM	175 C	C11	•	D3N	А	1	9	?	4.040	2.682	3.115	1.00	39.57	?	?	?	?	?	?	9	D3N	А	C11	1
ATOM	176 C	C12	•	D3N	А	1	9	?	3.039	3.617	3.226	1.00	43.64	?	?	?	?	?	?	9	D3N	А	C12	1
ATOM	177 C	C13	•	D3N	А	1	9	?	3.306	4.953	2.885	1.00	37.78	?	?	?	?	?	?	9	D3N	А	C13	1
ATOM	178 P	Р	•	DG	А	1	10	?	10.766	9.455	-1.541	1.00	52.40	?	?	?	?	?	?	10	DG	А	Р	1
ATOM	179 O	OP1	•	DG	А	1	10	?	11.926	10.387	-1.619	1.00	52.96	?	?	?	?	?	?	10	DG	А	OP1	1
ATOM	180 O	OP2	•	DG	А	1	10	?	9.429	9.942	-2.020	1.00	49.83	?	?	?	?	?	?	10	DG	А	OP2	1
ATOM	181 O	'05''	•	DG	А	1	10	?	11.122	8.085	-2.299	1.00	46.54	?	?	?	?	?	?	10	DG	А	'05''	1
ATOM	182 C	'C5''	•	DG	А	1	10	?	12.098	7.130	-1.833	1.00	40.41	?	?	?	?	?	?	10	DG	А	'C5''	1
ATOM	183 C	'C4''	•	DG	А	1	10	?	11.817	5.781	-2.467	1.00	46.19	?	?	?	?	?	?	10	DG	А	'C4''	1
ATOM	184 O	'04''	•	DG	А	1	10	?	10.495	5.337	-2.050	1.00	41.89	?	?	?	?	?	?	10	DG	А	'04''	1
ATOM	185 C	'C3''	•	DG	А	1	10	?	11.772	5.751	-3.999	1.00	42.11	?	?	?	?	?	?	10	DG	А	'C3''	1
ATOM	186 O	'03''	•	DG	А	1	10	?	11.986	4.386	-4.405	1.00	43.10	?	?	?	?	?	?	10	DG	А	'03''	1
ATOM	187 C	'C2''	•	DG	А	1	10	?	10.312	6.041	-4.278	1.00	37.56	?	?	?	?	?	?	10	DG	А	'C2''	1
ATOM	188 C	'C1''	•	DG	А	1	10	?	9.649	5.223	-3.182	1.00	39.74	?	?	?	?	?	?	10	DG	А	'C1''	1
ATOM	189 N	N9	•	DG	А	1	10	?	8.318	5.670	-2.791	1.00	36.64	?	?	?	?	?	?	10	DG	А	N9	1
ATOM	190 C	C8	•	DG	А	1	10	?	7.813	6.946	-2.904	1.00	38.12	?	?	?	?	?	?	10	DG	А	C8	1
ATOM	191 N	N7	•	DG	А	1	10	?	6.596	7.058	-2.443	1.00	33.59	?	?	?	?	?	?	10	DG	А	N7	1
ATOM	192 C	C5	•	DG	А	1	10	?	6.277	5.778	-1.999	1.00	32.82	?	?	?	?	?	?	10	DG	А	C5	1
ATOM	193 C	C6	•	DG	А	1	10	?	5.098	5.289	-1.387	1.00	33.36	?	?	?	?	?	?	10	DG	А	C6	1
ATOM	194 O	06	•	DG	А	1	10	?	4.056	5.900	-1.124	1.00	33.85	?	?	?	?	?	?	10	DG	А	06	1

ATOM	195 N	N1	•	DG	А	1	10	?	5.178	3.921	-1.139	1.00	32.10	?	?	?	?	?	?	10	DG	А	N1	1
ATOM	196 C	C2	•	DG	А	1	10	?	6.298	3.154	-1.316	1.00	32.80	?	?	?	?	?	?	10	DG	А	C2	1
ATOM	197 N	N2	•	DG	А	1	10	?	6.170	1.847	-1.011	1.00	30.07	?	?	?	?	?	?	10	DG	А	N2	1
ATOM	198 N	N3	•	DG	А	1	10	?	7.410	3.596	-1.892	1.00	30.93	?	?	?	?	?	?	10	DG	А	N3	1
ATOM	199 C	C4	•	DG	А	1	10	?	7.337	4.916	-2.184	1.00	36.17	?	?	?	?	?	?	10	DG	А	C4	1
ATOM	200 P	Р	•	DC	А	1	11	?	12.576	3.993	-5.867	1.00	45.72	?	?	?	?	?	?	11	DC	А	Ρ	1
ATOM	201 0	OP1	•	DC	А	1	11	?	14.013	3.708	-5.707	1.00	55.46	?	?	?	?	?	?	11	DC	А	OP1	1
ATOM	202 O	OP2	•	DC	А	1	11	?	12.140	4.979	-6.893	1.00	40.18	?	?	?	?	?	?	11	DC	А	OP2	1
ATOM	203 O	'05''	•	DC	А	1	11	?	11.897	2.569	-6.086	1.00	42.94	?	?	?	?	?	?	11	DC	А	'05''	1
ATOM	204 C	'C5''	•	DC	А	1	11	?	12.323	1.462	-5.304	1.00	35.76	?	?	?	?	?	?	11	DC	А	'C5''	1
ATOM	205 C	'C4''	•	DC	А	1	11	?	11.244	0.407	-5.260	1.00	38.62	?	?	?	?	?	?	11	DC	А	'C4''	1
ATOM	206 O	'04''		DC	А	1	11	?	10.071	0.969	-4.638	1.00	38.55	?	?	?	?	?	?	11	DC	А	'04''	1
ATOM	207 C	'C3''	•	DC	А	1	11	?	10.785	-0.117	-6.624	1.00	41.61	?	?	?	?	?	?	11	DC	А	'C3''	1
ATOM	208 O	'03''	•	DC	А	1	11	?	10.597	-1.537	-6.580	1.00	36.55	?	?	?	?	?	?	11	DC	А	'03''	1
ATOM	209 C	'C2''	•	DC	А	1	11	?	9.399	0.483	-6.801	1.00	35.59	?	?	?	?	?	?	11	DC	А	'C2''	1
ATOM	210 C	'C1''	•	DC	А	1	11	?	8.928	0.621	-5.361	1.00	32.15	?	?	?	?	?	?	11	DC	А	'C1''	1
ATOM	211 N	N1	•	DC	А	1	11	?	7.930	1.697	-5.184	1.00	32.78	?	?	?	?	?	?	11	DC	А	N1	1
ATOM	212 C	C2	•	DC	А	1	11	?	6.724	1.419	-4.517	1.00	33.71	?	?	?	?	?	?	11	DC	А	C2	1
ATOM	213 0	02	•	DC	А	1	11	?	6.588	0.324	-3.936	1.00	35.86	?	?	?	?	?	?	11	DC	А	02	1
ATOM	214 N	N3	•	DC	А	1	11	?	5.767	2.369	-4.474	1.00	30.73	?	?	?	?	?	?	11	DC	А	N3	1
ATOM	215 C	C4	•	DC	А	1	11	?	5.992	3.574	-5.013	1.00	31.53	?	?	?	?	?	?	11	DC	А	C4	1
ATOM	216 N	N4	•	DC	А	1	11	?	5.017	4.482	-4.943	1.00	29.21	?	?	?	?	?	?	11	DC	А	N4	1
ATOM	217 C	C5	•	DC	А	1	11	?	7.212	3.886	-5.677	1.00	29.13	?	?	?	?	?	?	11	DC	А	C5	1
ATOM	218 C	C6	•	DC	А	1	11	?	8.141	2.926	-5.747	1.00	34.19	?	?	?	?	?	?	11	DC	А	C6	1
ATOM	219 P	Р	•	DG	А	1	12	?	11.039	-2.438	-7.862	1.00	43.78	?	?	?	?	?	?	12	DG	А	Р	1
ATOM	220 O	OP1	•	DG	А	1	12	?	10.876	-3.861	-7.477	1.00	44.28	?	?	?	?	?	?	12	DG	А	OP1	1
ATOM	221 0	OP2	•	DG	А	1	12	?	12.357	-1.933	-8.370	1.00	40.00	?	?	?	?	?	?	12	DG	А	OP2	1
ATOM	222 0	'05''	•	DG	А	1	12	?	9.983	-2.054	-8.975	1.00	40.27	?	?	?	?	?	?	12	DG	А	'05''	1
ATOM	223 C	'C5''	•	DG	А	1	12	?	8.619	-2.501	-8.874	1.00	43.08	?	?	?	?	?	?	12	DG	А	'C5''	1
ATOM	224 C	'C4''	•	DG	А	1	12	?	7.882	-2.053	-10.106	1.00	39.93	?	?	?	?	?	?	12	DG	А	'C4''	1
ATOM	225 0	'04''	•	DG	А	1	12	?	7.921	-0.607	-10.134	1.00	36.76	?	?	?	?	?	?	12	DG	А	'04''	1
ATOM	226 C	'C3''	•	DG	А	1	12	?	8.562	-2.505	-11.397	1.00	40.02	?	?	?	?	?	?	12	DG	А	'C3''	1
ATOM	227 0	'03''	•	DG	А	1	12	?	7.910	-3.662	-11.897	1.00	39.85	?	?	?	?	?	?	12	DG	А	'03''	1
ATOM	228 C	'C2''	•	DG	А	1	12	?	8.360	-1.335	-12.320	1.00	38.74	?	?	?	?	?	?	12	DG	А	'C2''	1
ATOM	229 C	'C1''	•	DG	А	1	12	?	8.439	-0.157	-11.368	1.00	39.35	?	?	?	?	?	?	12	DG	А	'C1''	1
ATOM	230 N	N9	•	DG	А	1	12	?	9.781	0.359	-11.119	1.00	37.62	?	?	?	?	?	?	12	DG	А	N9	1
ATOM	231 C	C8	•	DG	А	1	12	?	10.976	-0.269	-11.381	1.00	44.00	?	?	?	?	?	?	12	DG	А	C8	1

ATOM	232 N	N7	•	DG	А	1	12	?	12.012	0.429	-11.001	1.00	42.04	?	?	?	?	?	?	12	DG	Α	N7	1
ATOM	233 C	C5	•	DG	А	1	12	?	11.465	1.537	-10.366	1.00	41.36	?	?	?	?	?	?	12	DG	А	C5	1
ATOM	234 C	C6	•	DG	А	1	12	?	12.096	2.635	-9.733	1.00	46.68	?	?	?	?	?	?	12	DG	А	C6	1
ATOM	235 0	06	•	DG	А	1	12	?	13.304	2.848	-9.585	1.00	44.90	?	?	?	?	?	?	12	DG	А	06	1
ATOM	236 N	N1	•	DG	А	1	12	?	11.166	3.555	-9.257	1.00	37.19	?	?	?	?	?	?	12	DG	А	N1	1
ATOM	237 C	C2	•	DG	А	1	12	?	9.805	3.432	-9.369	1.00	37.43	?	?	?	?	?	?	12	DG	А	C2	1
ATOM	238 N	N2	•	DG	А	1	12	?	9.081	4.437	-8.858	1.00	34.27	?	?	?	?	?	?	12	DG	А	N2	1
ATOM	239 N	N3	•	DG	А	1	12	?	9.202	2.383	-9.905	1.00	34.44	?	?	?	?	?	?	12	DG	А	N3	1
ATOM	240 C	C4	•	DG	А	1	12	?	10.088	1.495	-10.408	1.00	38.94	?	?	?	?	?	?	12	DG	А	C4	1
ATOM	241 O	'03''	•	DC	В	1	1	?	-6.095	1.968	-3.008	1.00	104.56	?	?	?	?	?	?	13	DC	В	'03''	1
ATOM	242 P	Р	•	DG	В	1	2	?	-4.822	1.409	-3.812	1.00	105.65	?	?	?	?	?	?	14	DG	В	Р	1
ATOM	243 O	OP1	•	DG	В	1	2	?	-3.885	2.550	-4.035	1.00	96.18	?	?	?	?	?	?	14	DG	В	OP1	1
ATOM	244 O	OP2	•	DG	В	1	2	?	-5.315	0.603	-4.976	1.00	78.96	?	?	?	?	?	?	14	DG	В	OP2	1
ATOM	245 O	'05''	•	DG	В	1	2	?	-4.185	0.364	-2.794	1.00	74.48	?	?	?	?	?	?	14	DG	В	'05''	1
ATOM	246 C	'C5''	•	DG	В	1	2	?	-3.928	-0.984	-3.220	1.00	57.72	?	?	?	?	?	?	14	DG	В	'C5''	1
ATOM	247 C	'C4''	•	DG	В	1	2	?	-2.876	-1.621	-2.345	1.00	54.83	?	?	?	?	?	?	14	DG	В	'C4''	1
ATOM	248 O	'04''	•	DG	В	1	2	?	-1.555	-1.129	-2.675	1.00	52.37	?	?	?	?	?	?	14	DG	В	'04''	1
ATOM	249 C	'C3''	•	DG	В	1	2	?	-3.040	-1.398	-0.847	1.00	47.69	?	?	?	?	?	?	14	DG	В	'C3''	1
ATOM	250 O	'03''	•	DG	В	1	2	?	-2.610	-2.634	-0.294	1.00	47.75	?	?	?	?	?	?	14	DG	В	'03''	1
ATOM	251 C	'C2''	•	DG	В	1	2	?	-2.064	-0.272	-0.550	1.00	44.50	?	?	?	?	?	?	14	DG	В	'C2''	1
ATOM	252 C	'C1''	•	DG	В	1	2	?	-0.942	-0.523	-1.550	1.00	46.21	?	?	?	?	?	?	14	DG	В	'C1''	1
ATOM	253 N	N9	•	DG	В	1	2	?	-0.301	0.694	-2.022	1.00	32.96	?	?	?	?	?	?	14	DG	В	N9	1
ATOM	254 C	C8	•	DG	В	1	2	?	-0.949	1.860	-2.348	1.00	38.11	?	?	?	?	?	?	14	DG	В	C8	1
ATOM	255 N	N7	•	DG	В	1	2	?	-0.162	2.749	-2.890	1.00	34.89	?	?	?	?	?	?	14	DG	В	N7	1
ATOM	256 C	C5	•	DG	В	1	2	?	1.083	2.136	-2.918	1.00	35.32	?	?	?	?	?	?	14	DG	В	C5	1
ATOM	257 C	C6	•	DG	В	1	2	?	2.324	2.613	-3.403	1.00	32.74	?	?	?	?	?	?	14	DG	В	C6	1
ATOM	258 O	06	•	DG	В	1	2	?	2.594	3.731	-3.859	1.00	38.67	?	?	?	?	?	?	14	DG	В	06	1
ATOM	259 N	N1	•	DG	В	1	2	?	3.340	1.683	-3.204	1.00	33.06	?	?	?	?	?	?	14	DG	В	N1	1
ATOM	260 C	C2	•	DG	В	1	2	?	3.155	0.400	-2.738	1.00	30.22	?	?	?	?	?	?	14	DG	В	C2	1
ATOM	261 N	N2	•	DG	В	1	2	?	4.259	-0.379	-2.677	1.00	32.78	?	?	?	?	?	?	14	DG	В	N2	1
ATOM	262 N	N3	•	DG	В	1	2	?	1.989	-0.073	-2.324	1.00	33.84	?	?	?	?	?	?	14	DG	В	N3	1
ATOM	263 C	C4	•	DG	В	1	2	?	1.002	0.844	-2.441	1.00	34.05	?	?	?	?	?	?	14	DG	В	C4	1
ATOM	264 P	Р	•	DC	В	1	3	?	-2.707	-2.910	1.247	1.00	52.14	?	?	?	?	?	?	15	DC	В	Р	1
ATOM	265 0	OP1	•	DC	В	1	3	?	-2.794	-4.367	1.421	1.00	52.06	?	?	?	?	?	?	15	DC	В	OP1	1
ATOM	266 0	OP2	•	DC	В	1	3	?	-3.707	-1.995	1.828	1.00	47.13	?	?	?	?	?	?	15	DC	В	OP2	1
ATOM	267 O	'05''	•	DC	В	1	3	?	-1.258	-2.522	1.759	1.00	45.23	?	?	?	?	?	?	15	DC	В	'05''	1
ATOM	268 C	'C5''	•	DC	В	1	3	?	-0.153	-3.310	1.307	1.00	46.29	?	?	?	?	?	?	15	DC	В	'C5''	1

ATOM	269 C	'C4''	•	DC	в	1	3	?	1.130	-2.589	1.622	1.00	42.32	?	?	?	?	?	?	15	DC	В	'C4''	1
ATOM	270 O	'04''	•	DC	В	1	3	?	1.192	-1.371	0.856	1.00	45.55	?	?	?	?	?	?	15	DC	В	'04''	1
ATOM	271 C	'C3''	•	DC	В	1	3	?	1.296	-2.166	3.088	1.00	47.96	?	?	?	?	?	?	15	DC	В	'C3''	1
ATOM	272 O	'03''	•	DC	В	1	3	?	2.440	-2.809	3.642	1.00	56.55	?	?	?	?	?	?	15	DC	В	'03''	1
ATOM	273 C	'C2''	•	DC	В	1	3	?	1.637	-0.684	3.018	1.00	42.57	?	?	?	?	?	?	15	DC	В	'C2''	1
ATOM	274 C	'C1''		DC	В	1	3	?	2.050	-0.520	1.577	1.00	36.84	?	?	?	?	?	?	15	DC	В	'C1''	1
ATOM	275 N	N1	•	DC	В	1	3	?	1.874	0.836	1.061	1.00	37.49	?	?	?	?	?	?	15	DC	В	N1	1
ATOM	276 C	C2	•	DC	В	1	3	?	2.964	1.476	0.473	1.00	35.12	?	?	?	?	?	?	15	DC	В	C2	1
ATOM	277 O	02		DC	В	1	3	?	4.049	0.859	0.377	1.00	30.92	?	?	?	?	?	?	15	DC	В	02	1
ATOM	278 N	N3		DC	В	1	3	?	2.818	2.739	0.015	1.00	30.96	?	?	?	?	?	?	15	DC	В	N3	1
ATOM	279 C	C4		DC	В	1	3	?	1.651	3.370	0.160	1.00	35.63	?	?	?	?	?	?	15	DC	В	C4	1
ATOM	280 N	N4		DC	В	1	3	?	1.553	4.608	-0.306	1.00	31.76	?	?	?	?	?	?	15	DC	В	N4	1
ATOM	281 C	C5		DC	В	1	3	?	0.510	2.724	0.715	1.00	31.16	?	?	?	?	?	?	15	DC	В	C5	1
ATOM	282 C	C6		DC	В	1	3	?	0.664	1.466	1.147	1.00	30.61	?	?	?	?	?	?	15	DC	В	C6	1
ATOM	283 P	Ρ	•	BZG	В	1	4	?	2.251	-3.983	4.705	1.00	59.25	?	?	?	?	?	?	16	BZG	В	Ρ	1
ATOM	284 O	01P		BZG	В	1	4	?	1.758	-3.334	5.965	1.00	59.84	?	?	?	?	?	?	16	BZG	В	01P	1
ATOM	285 O	02P	•	BZG	В	1	4	?	1.431	-4.994	3.984	1.00	58.44	?	?	?	?	?	?	16	BZG	В	02P	1
ATOM	286 O	'05''	•	BZG	В	1	4	?	3.716	-4.525	4.868	1.00	53.19	?	?	?	?	?	?	16	BZG	В	'05''	1
ATOM	287 C	CZ1	•	BZG	В	1	4	?	6.738	6.622	5.264	1.00	37.15	?	?	?	?	?	?	16	BZG	В	CZ1	1
ATOM	288 C	CT1	•	BZG	В	1	4	?	5.819	7.656	5.321	1.00	40.05	?	?	?	?	?	?	16	BZG	В	CT1	1
ATOM	289 C	CI	•	BZG	В	1	4	?	4.485	7.425	5.686	1.00	46.13	?	?	?	?	?	?	16	BZG	В	CI	1
ATOM	290 C	CT2	•	BZG	В	1	4	?	4.042	6.151	6.055	1.00	42.60	?	?	?	?	?	?	16	BZG	В	CT2	1
ATOM	291 C	CZ2	•	BZG	В	1	4	?	4.968	5.094	6.004	1.00	41.87	?	?	?	?	?	?	16	BZG	В	CZ2	1
ATOM	292 C	CE	•	BZG	В	1	4	?	6.295	5.331	5.627	1.00	36.41	?	?	?	?	?	?	16	BZG	В	CE	1
ATOM	293 C	CW	•	BZG	В	1	4	?	7.263	4.189	5.618	1.00	39.93	?	?	?	?	?	?	16	BZG	В	CW	1
ATOM	294 O	OL	•	BZG	В	1	4	?	6.564	2.941	5.856	1.00	43.12	?	?	?	?	?	?	16	BZG	В	OL	1
ATOM	295 C	СК	•	BZG	В	1	4	?	7.211	1.733	5.634	1.00	40.04	?	?	?	?	?	?	16	BZG	В	СК	1
ATOM	296 N	NJ	•	BZG	В	1	4	?	8.525	1.744	5.314	1.00	43.22	?	?	?	?	?	?	16	BZG	В	NJ	1
ATOM	297 C	CH	•	BZG	В	1	4	?	9.182	0.577	5.068	1.00	43.83	?	?	?	?	?	?	16	BZG	В	CH	1
ATOM	298 N	NI	•	BZG	В	1	4	?	10.491	0.578	4.779	1.00	45.60	?	?	?	?	?	?	16	BZG	В	NI	1
ATOM	299 N	NG	•	BZG	В	1	4	?	8.549	-0.623	5.114	1.00	42.53	?	?	?	?	?	?	16	BZG	В	NG	1
ATOM	300 C	CF	•	BZG	В	1	4	?	7.252	-0.663	5.426	1.00	39.41	?	?	?	?	?	?	16	BZG	В	CF	1
ATOM	301 C	CM	•	BZG	В	1	4	?	6.539	0.509	5.663	1.00	37.34	?	?	?	?	?	?	16	BZG	В	CM	1
ATOM	302 N	NN	•	BZG	В	1	4	?	5.264	0.119	5.947	1.00	45.16	?	?	?	?	?	?	16	BZG	в	NN	1
ATOM	303 C	CO	•	BZG	В	1	4	?	5.213	-1.240	5.844	1.00	37.18	?	?	?	?	?	?	16	BZG	в	CO	1
ATOM	304 N	NE	•	BZG	В	1	4	?	6.447	-1.687	5.551	1.00	41.81	?	?	?	?	?	?	16	BZG	В	NE	1
ATOM	305 C	'CT''	•	BZG	В	1	4	?	6.866	-3.092	5.296	1.00	48.18	?	?	?	?	?	?	16	BZG	В	'CT''	1

ATOM	306 O	'0S''	. B	BZG	в 1	4	?	6.296	-3.544	4.063	1.00	50.49	?	?	?	?	?	?	16	BZG	В	'0S''	1
ATOM	307 C	'CP''	. В	BZG	В 1	4	?	6.358	-4.070	6.336	1.00	51.14	?	?	?	?	?	?	16	BZG	В	'CP''	1
ATOM	308 C	'C5''	. В	BZG	в 1	4	?	4.448	-5.049	3.759	1.00	55.03	?	?	?	?	?	?	16	BZG	В	'C5''	1
ATOM	309 C	'C4''	. В	BZG	в 1	4	?	5.918	-4.932	4.128	1.00	54.38	?	?	?	?	?	?	16	BZG	В	'C4''	1
ATOM	310 C	'C3''	. В	BZG	в 1	4	?	6.225	-5.365	5.557	1.00	49.35	?	?	?	?	?	?	16	BZG	В	'C3''	1
ATOM	311 0	'03''	. в	BZG	в 1	4	?	7.520	-5.968	5.495	1.00	53.57	?	?	?	?	?	?	16	BZG	В	'03''	1
ATOM	312 P	Р	. D	A	в 1	5	?	8.189	-6.628	6.814	1.00	57.46	?	?	?	?	?	?	17	DA	В	Р	1
ATOM	313 0	OP1	. D	A	в 1	5	?	9.109	-7.704	6.368	1.00	58.86	?	?	?	?	?	?	17	DA	В	OP1	1
ATOM	314 O	OP2	. D	A	в 1	5	?	7.101	-6.947	7.780	1.00	55.69	?	?	?	?	?	?	17	DA	В	OP2	1
ATOM	315 0	'05''	. D	A	в 1	5	?	9.148	-5.476	7.354	1.00	51.31	?	?	?	?	?	?	17	DA	В	'05''	1
ATOM	316 C	'C5''	. D	A	в 1	5	?	10.239	-4.994	6.552	1.00	51.08	?	?	?	?	?	?	17	DA	В	'C5''	1
ATOM	317 C	'C4''	. D	A	в 1	5	?	10.920	-3.871	7.294	1.00	53.59	?	?	?	?	?	?	17	DA	В	'C4''	1
ATOM	318 0	'04''	. D	A	в 1	5	?	10.038	-2.714	7.363	1.00	48.85	?	?	?	?	?	?	17	DA	В	'04''	1
ATOM	319 C	'C3''	. D	A	в 1	5	?	11.227	-4.235	8.747	1.00	51.37	?	?	?	?	?	?	17	DA	В	'C3''	1
ATOM	320 O	'03''	. D	A	в 1	5	?	12.439	-3.577	9.077	1.00	65.84	?	?	?	?	?	?	17	DA	В	'03''	1
ATOM	321 C	'C2''	. D	A	в 1	5	?	10.084	-3.589	9.514	1.00	43.01	?	?	?	?	?	?	17	DA	В	'C2''	1
ATOM	322 C	'C1''	. D	A	в 1	5	?	9.935	-2.310	8.712	1.00	45.18	?	?	?	?	?	?	17	DA	В	'C1''	1
ATOM	323 N	N9	. D	A	в 1	5	?	8.669	-1.606	8.891	1.00	38.03	?	?	?	?	?	?	17	DA	В	N9	1
ATOM	324 C	C8	. D	A	в 1	5	?	7.432	-2.107	9.213	1.00	42.14	?	?	?	?	?	?	17	DA	В	C8	1
ATOM	325 N	N7	. D	A	в 1	5	?	6.518	-1.183	9.394	1.00	44.19	?	?	?	?	?	?	17	DA	В	N7	1
ATOM	326 C	C5	. D	A	в 1	5	?	7.198	0.006	9.158	1.00	37.91	?	?	?	?	?	?	17	DA	В	C5	1
ATOM	327 C	C6	. D	A	в 1	5	?	6.787	1.346	9.175	1.00	34.62	?	?	?	?	?	?	17	DA	В	C6	1
ATOM	328 N	NG	. D	A	в 1	5	?	5.538	1.734	9.450	1.00	40.59	?	?	?	?	?	?	17	DA	В	NG	1
ATOM	329 N	N1	. D	A	В 1	5	?	7.719	2.290	8.930	1.00	38.79	?	?	?	?	?	?	17	DA	В	N1	1
ATOM	330 C	C2	. D	A	в 1	5	?	8.969	1.901	8.648	1.00	40.00	?	?	?	?	?	?	17	DA	В	C2	1
ATOM	331 N	N 3	. D	A	в 1	5	?	9.474	0.671	8.592	1.00	45.23	?	?	?	?	?	?	17	DA	В	N3	1
ATOM	332 C	C4	. D	A	В 1	5	?	8.526	-0.240	8.865	1.00	35.76	?	?	?	?	?	?	17	DA	В	C4	1
ATOM	333 P	Р	. D	A	в 1	6	?	13.626	-4.397	9.688	1.00	60.35	?	?	?	?	?	?	18	DA	В	Р	1
ATOM	334 O	OP1	. D	A	В 1	6	?	14.221	-5.214	8.602	1.00	63.82	?	?	?	?	?	?	18	DA	В	OP1	1
ATOM	335 0	OP2	. D	A	в 1	6	?	13.144	-5.035	10.931	1.00	49.85	?	?	?	?	?	?	18	DA	В	OP2	1
ATOM	336 0	'05''	. D	A	в 1	6	?	14.622	-3.248	10.144	1.00	59.82	?	?	?	?	?	?	18	DA	В	'05''	1
ATOM	337 C	'C5''	. D	A	в 1	6	?	15.222	-2.375	9.182	1.00	53.72	?	?	?	?	?	?	18	DA	В	'C5''	1
ATOM	338 C	'C4''	. D	A	в 1	6	?	15.373	-1.007	9.798	1.00	52.59	?	?	?	?	?	?	18	DA	В	'C4''	1
ATOM	339 0	'04''	. D	A	в 1	6	?	14.075	-0.384	9.913	1.00	55.38	?	?	?	?	?	?	18	DA	В	'04''	1
ATOM	340 C	'C3''	. D	A	в 1	6	?	15.965	-1.026	11.205	1.00	44.97	?	?	?	?	?	?	18	DA	В	'C3''	1
ATOM	341 0	'03''	. D	A	в 1	6	?	17.114	-0.188	11.173	1.00	59.93	?	?	?	?	?	?	18	DA	В	'03''	1
ATOM	342 C	'C2''	. D	A	в 1	6	?	14.828	-0.567	12.111	1.00	50.88	?	?	?	?	?	?	18	DA	В	'C2''	1

ATOM	343 C	'C1''	. DA	B 1 6	?	13.928 0.218	11.180	1.00 45.59	?	?	?	? ?	??	18	DA	В	'C1''	1
ATOM	344 N	N9	. DA	B 1 6	?	12.502 0.193	11.505	1.00 41.89	?	?	?	? ?	??	18	DA	В	N9	1
ATOM	345 C	C8	. DA	B 1 6	?	11.681 -0.902	2 11.603	1.00 35.00	?	?	?	? ?	??	18	DA	В	C8	1
ATOM	346 N	N7	. DA	B 1 6	?	10.436 -0.60	1 11.890	1.00 40.93	?	?	?	? ?	??	18	DA	В	N7	1
ATOM	347 C	C5	. DA	B 1 6	?	10.425 0.789	11.911	1.00 39.79	?	?	?	? ?	??	18	DA	В	C5	1
ATOM	348 C	C6	. DA	B 1 6	?	9.393 1.726	12.103	1.00 41.31	?	?	?	? ?	??	18	DA	В	C6	1
ATOM	349 N	NG	. DA	B 1 6	?	8.115 1.390	12.303	1.00 35.05	?	?	?	? ?	??	18	DA	В	NG	1
ATOM	350 N	N1	. DA	B 1 6	?	9.715 3.037	12.035	1.00 37.78	?	?	?	? ?	??	18	DA	В	N1	1
ATOM	351 C	C2	. DA	B 1 6	?	10.985 3.371	11.805	1.00 39.76	?	?	?	? ?	??	18	DA	В	C2	1
ATOM	352 N	N3	. DA	B 1 6	?	12.041 2.585	11.605	1.00 44.05	?	?	?	? ?	??	18	DA	В	N3	1
ATOM	353 C	C4	. DA	B 1 6	?	11.682 1.290	11.641	1.00 39.60	?	?	?	? ?	??	18	DA	В	C4	1
ATOM	354 P	Р	. DT	B 1 7	?	18.150 -0.22	5 12.366	1.00 66.24	?	?	?	? ?	??	19	DT	В	Р	1
ATOM	355 O	OP1	. DT	B 1 7	?	19.404 0.414	11.889	1.00 73.70	?	?	?	? ?	??	19	DT	В	OP1	1
ATOM	356 O	OP2	. DT	B 1 7	?	18.168 -1.60	4 12.915	1.00 73.00	?	?	?	? ?	??	19	DT	В	OP2	1
ATOM	357 0	'05''	. DT	B 1 7	?	17.480 0.772	13.403	1.00 63.34	?	?	?	? ?	??	19	DT	В	'05''	1
ATOM	358 C	'C5''	. DT	B 1 7	?	17.286 2.131	12.994	1.00 59.35	?	?	?	? ?	??	19	DT	В	'C5''	1
ATOM	359 C	'C4''	. DT	B 1 7	?	16.414 2.851	13.989	1.00 52.77	?	?	?	? ?	??	19	DT	В	'C4''	1
ATOM	360 O	'04''	. DT	B 1 7	?	15.043 2.464	13.823	1.00 43.01	?	?	?	? ?	??	19	DT	В	'04''	1
ATOM	361 C	'C3''	. DT	B 1 7	?	16.741 2.544	15.448	1.00 50.15	?	?	?	? ?	??	19	DT	В	'C3''	1
ATOM	362 0	'03''	. DT	B 1 7	?	17.589 3.588	15.904	1.00 57.13	?	?	?	? ?	??	19	DT	В	'03''	1
ATOM	363 C	'C2''	. DT	B 1 7	?	15.385 2.585	16.142	1.00 47.40	?	?	?	? ?	??	19	DT	В	'C2''	1
ATOM	364 C	'C1''	. DT	B 1 7	?	14.405 2.874	15.005	1.00 44.86	?	?	?	? ?	??	19	DT	В	'C1''	1
ATOM	365 N	N1	. DT	B 1 7	?	13.128 2.183	15.087	1.00 41.99	?	?	?	? ?	??	19	DT	В	N1	1
ATOM	366 C	C2	. DT	B 1 7	?	11.999 2.961	15.192	1.00 40.74	?	?	?	? ?	??	19	DT	В	C2	1
ATOM	367 0	02	. DT	B 1 7	?	12.029 4.180	15.200	1.00 45.09	?	?	?	? ?	??	19	DT	В	02	1
ATOM	368 N	N3	. DT	B 1 7	?	10.821 2.257	15.242	1.00 38.44	?	?	?	? ?	??	19	DT	В	N3	1
ATOM	369 C	C4	. DT	B 1 7	?	10.670 0.889	15.267	1.00 39.65	?	?	?	? ?	??	19	DT	В	C4	1
ATOM	370 O	04	. DT	B 1 7	?	9.546 0.403	15.355	1.00 40.87	?	?	?	? ?	??	19	DT	В	04	1
ATOM	371 C	C5	. DT	B 1 7	?	11.901 0.129	15.196	1.00 37.60	?	?	?	? ?	??	19	DT	В	C5	1
ATOM	372 C	C7	. DT	B 1 7	?	11.834 -1.36	5 15.237	1.00 38.18	?	?	?	? ?	??	19	DT	В	C7	1
ATOM	373 C	C6	. DT	B 1 7	?	13.055 0.806	15.109	1.00 40.86	?	?	?	? ?	??	19	DT	В	C6	1
ATOM	374 P	Р	. DT	B 1 8	?	18.294 3.480	17.302	1.00 61.96	?	?	?	? ?	??	20	DT	В	Р	1
ATOM	375 0	OP1	. DT	B 1 8	?	19.496 4.353	17.267	1.00 72.95	?	?	?	? ?	??	20	DT	В	OP1	1
ATOM	376 O	OP2	. DT	B 1 8	?	18.438 2.030	17.625	1.00 58.29	?	?	?	??	??	20	DT	В	OP2	1
ATOM	377 0	'05''	. DT	B 1 8	?	17.227 4.175	18.257	1.00 52.32	?	?	?	? ?	??	20	DT	В	'05''	1
ATOM	378 C	'C5''	. DT	B 1 8	?	16.699 5.464	17.926	1.00 47.16	?	?	?	? ?	??	20	DT	В	'C5''	1
ATOM	379 C	'C4''	. DT	B 1 8	?	15.636 5.844	18.927	1.00 54.14	?	?	?	? ?	??	20	DT	В	'C4''	1

ATOM	380 O	'04''	•	DT	B 1	L 8	?	14.406	5.175	18.571	1.00	51.72	?	?	?	?	?	?	20	DT	В	'04''	1
ATOM	381 C	'C3''	•	DT	в 1	L 8	?	15.945	5.420	20.366	1.00	55.66	?	?	?	?	?	?	20	DT	В	'C3''	1
ATOM	382 O	'03''	•	DT	В 1	L 8	?	15.647	6.479	21.276	1.00	62.72	?	?	?	?	?	?	20	DT	В	'03''	1
ATOM	383 C	'C2''	•	DT	в 1	L 8	?	15.020	4.243	20.607	1.00	48.82	?	?	?	?	?	?	20	DT	В	'C2''	1
ATOM	384 C	'C1''	•	DT	В 1	L 8	?	13.848	4.604	19.724	1.00	48.53	?	?	?	?	?	?	20	DT	В	'C1''	1
ATOM	385 N	N1	•	DT	В 1	L 8	?	13.035	3.471	19.303	1.00	41.47	?	?	?	?	?	?	20	DT	В	N1	1
ATOM	386 C	C2	•	DT	В 1	L 8	?	11.693	3.702	19.147	1.00	42.38	?	?	?	?	?	?	20	DT	В	C2	1
ATOM	387 O	02	•	DT	В 1	L 8	?	11.182	4.786	19.358	1.00	40.94	?	?	?	?	?	?	20	DT	В	02	1
ATOM	388 N	N3	•	DT	В 1	L 8	?	10.961	2.597	18.790	1.00	39.48	?	?	?	?	?	?	20	DT	В	N3	1
ATOM	389 C	C4	•	DT	В 1	L 8	?	11.440	1.329	18.529	1.00	43.13	?	?	?	?	?	?	20	DT	В	C4	1
ATOM	390 O	04	•	DT	В 1	L 8	?	10.665	0.442	18.187	1.00	43.85	?	?	?	?	?	?	20	DT	В	04	1
ATOM	391 C	C5	•	DT	В 1	L 8	?	12.874	1.170	18.676	1.00	36.61	?	?	?	?	?	?	20	DT	В	C5	1
ATOM	392 C	C7	•	DT	В 1	L 8	?	13.491	-0.170	18.421	1.00	41.24	?	?	?	?	?	?	20	DT	В	C7	1
ATOM	393 C	C6	•	DT	В 1	L 8	?	13.588	2.240	19.037	1.00	31.95	?	?	?	?	?	?	20	DT	В	C6	1
ATOM	394 O	01P	•	D3N	В 1	L 9	?	17.527	5.577	22.677	1.00	57.63	?	?	?	?	?	?	21	D3N	В	01P	1
ATOM	395 P	Р	•	D3N	В 1	L 9	?	16.324	6.477	22.716	1.00	73.10	?	?	?	?	?	?	21	D3N	В	Р	1
ATOM	396 O	02P	•	D3N	В 1	L 9	?	16.449	7.907	23.055	1.00	71.06	?	?	?	?	?	?	21	D3N	В	02P	1
ATOM	397 O	'05''	•	D3N	В 1	L 9	?	15.191	5.843	23.617	1.00	65.54	?	?	?	?	?	?	21	D3N	В	'05''	1
ATOM	398 C	'C5''	•	D3N	B 1	L 9	?	15.589	5.167	24.785	1.00	68.44	?	?	?	?	?	?	21	D3N	В	'C5''	1
ATOM	399 C	'C4''	•	D3N	В 1	L 9	?	14.459	5.106	25.773	1.00	63.43	?	?	?	?	?	?	21	D3N	В	'C4''	1
ATOM	400 O	'04''	•	D3N	В 1	L 9	?	13.681	4.031	25.359	1.00	56.75	?	?	?	?	?	?	21	D3N	В	'04''	1
ATOM	401 C	'C3''	•	D3N	В 1	L 9	?	14.935	4.721	27.123	1.00	63.88	?	?	?	?	?	?	21	D3N	В	'C3''	1
ATOM	402 O	'03''	•	D3N	В 1	L 9	?	15.133	5.944	27.827	1.00	67.07	?	?	?	?	?	?	21	D3N	В	'03''	1
ATOM	403 C	'C2''	•	D3N	В 1	L 9	?	13.814	3.859	27.696	1.00	56.92	?	?	?	?	?	?	21	D3N	В	'C2''	1
ATOM	404 C	'C1''	•	D3N	B 1	L 9	?	12.920	3.605	26.492	1.00	52.83	?	?	?	?	?	?	21	D3N	В	'C1''	1
ATOM	405 N	N1	•	D3N	B 1	L 9	?	12.484	2.276	26.132	1.00	47.27	?	?	?	?	?	?	21	D3N	В	N1	1
ATOM	406 C	C2	•	D3N	B 1	L 9	?	13.435	1.323	25.912	1.00	47.67	?	?	?	?	?	?	21	D3N	В	C2	1
ATOM	407 O	02	•	D3N	B 1	L 9	?	14.627	1.553	26.095	1.00	53.65	?	?	?	?	?	?	21	D3N	В	02	1
ATOM	408 N	N3	•	D3N	B 1	L 9	?	13.009	0.096	25.555	1.00	43.83	?	?	?	?	?	?	21	D3N	В	N3	1
ATOM	409 C	C4	•	D3N	B 1	L 9	?	11.663	-0.223	25.295	1.00	39.23	?	?	?	?	?	?	21	D3N	В	C4	1
ATOM	410 C	C5	•	D3N	B 1	L 9	?	10.696	0.762	25.488	1.00	44.29	?	?	?	?	?	?	21	D3N	В	C5	1
ATOM	411 C	C6	•	D3N	B 1	L 9	?	11.081	2.040	25.924	1.00	42.62	?	?	?	?	?	?	21	D3N	В	C6	1
ATOM	412 C	C7	•	D3N	B 1	L 9	?	10.111	2.990	26.145	1.00	52.13	?	?	?	?	?	?	21	D3N	В	C7	1
ATOM	413 C	C8	•	D3N	B 1	L 9	?	8.771	2.646	25.913	1.00	39.74	?	?	?	?	?	?	21	D3N	В	C8	1
ATOM	414 C	C9	•	D3N	B 1	L 9	?	8.378	1.426	25.500	1.00	47.35	?	?	?	?	?	?	21	D3N	В	C9	1
ATOM	415 C	C10	•	D3N	B 1	L 9	?	9.330	0.451	25.258	1.00	41.01	?	?	?	?	?	?	21	D3N	В	C10	1
ATOM	416 C	C11	•	D3N	в 1	L 9	?	8.992	-0.837	24.848	1.00	43.98	?	?	?	?	?	?	21	D3N	В	C11	1

ATOM	417 C	C12	•	D3N	В	1	9	?	9.952	-1.768	24.635	1.00	45.05	?	?	?	?	?	?	21	D3N	В	C12	1
ATOM	418 C	C13	•	D3N	в	1	9	?	11.312	-1.482	24.872	1.00	47.17	?	?	?	?	?	?	21	D3N	В	C13	1
ATOM	419 P	Р	•	DG	В	1	10	?	15.736	5.916	29.307	1.00	60.70	?	?	?	?	?	?	22	DG	В	Р	1
ATOM	420 O	OP1	•	DG	В	1	10	?	16.433	7.208	29.532	1.00	63.59	?	?	?	?	?	?	22	DG	В	OP1	1
ATOM	421 O	OP2	•	DG	В	1	10	?	16.495	4.640	29.465	1.00	51.49	?	?	?	?	?	?	22	DG	В	OP2	1
ATOM	422 O	'05''		DG	В	1	10	?	14.420	5.963	30.208	1.00	56.71	?	?	?	?	?	?	22	DG	В	'05''	1
ATOM	423 C	'C5''		DG	в	1	10	?	13.283	6.789	29.854	1.00	44.99	?	?	?	?	?	?	22	DG	В	'C5''	1
ATOM	424 C	'C4''		DG	в	1	10	?	12.025	6.262	30.509	1.00	50.00	?	?	?	?	?	?	22	DG	В	'C4''	1
ATOM	425 O	'04''		DG	В	1	10	?	11.708	4.952	29.984	1.00	42.89	?	?	?	?	?	?	22	DG	В	'04''	1
ATOM	426 C	'C3''		DG	В	1	10	?	12.105	6.068	32.024	1.00	48.07	?	?	?	?	?	?	22	DG	В	'C3''	1
ATOM	427 O	'03''	•	DG	В	1	10	?	10.760	6.110	32.488	1.00	50.84	?	?	?	?	?	?	22	DG	В	'03''	1
ATOM	428 C	'C2''	•	DG	в	1	10	?	12.570	4.634	32.149	1.00	41.22	?	?	?	?	?	?	22	DG	В	'C2''	1
ATOM	429 C	'C1''	•	DG	в	1	10	?	11.752	3.990	31.034	1.00	41.10	?	?	?	?	?	?	22	DG	В	'C1''	1
ATOM	430 N	N9	•	DG	в	1	10	?	12.282	2.747	30.485	1.00	35.88	?	?	?	?	?	?	22	DG	В	N9	1
ATOM	431 C	C8		DG	В	1	10	?	13.594	2.339	30.459	1.00	41.27	?	?	?	?	?	?	22	DG	В	C8	1
ATOM	432 N	N7	•	DG	в	1	10	?	13.753	1.160	29.926	1.00	35.66	?	?	?	?	?	?	22	DG	В	N7	1
ATOM	433 C	C5		DG	В	1	10	?	12.468	0.765	29.576	1.00	38.68	?	?	?	?	?	?	22	DG	В	C5	1
ATOM	434 C	C6		DG	В	1	10	?	12.009	-0.426	28.970	1.00	36.57	?	?	?	?	?	?	22	DG	В	C6	1
ATOM	435 O	06		DG	В	1	10	?	12.660	-1.408	28.615	1.00	38.62	?	?	?	?	?	?	22	DG	В	06	1
ATOM	436 N	N1		DG	В	1	10	?	10.636	-0.396	28.759	1.00	32.06	?	?	?	?	?	?	22	DG	В	N1	1
ATOM	437 C	C2		DG	В	1	10	?	9.801	0.614	29.146	1.00	37.35	?	?	?	?	?	?	22	DG	В	C2	1
ATOM	438 N	N2		DG	В	1	10	?	8.497	0.408	28.941	1.00	33.23	?	?	?	?	?	?	22	DG	В	N2	1
ATOM	439 N	N3		DG	В	1	10	?	10.210	1.716	29.751	1.00	37.31	?	?	?	?	?	?	22	DG	В	N3	1
ATOM	440 C	C4		DG	В	1	10	?	11.553	1.741	29.897	1.00	35.81	?	?	?	?	?	?	22	DG	В	C4	1
ATOM	441 P	Р	•	DC	в	1	11	?	10.442	6.622	33.947	1.00	54.63	?	?	?	?	?	?	23	DC	В	Р	1
ATOM	442 O	OP1		DC	В	1	11	?	10.081	8.062	33.835	1.00	72.54	?	?	?	?	?	?	23	DC	В	OP1	1
ATOM	443 O	OP2		DC	в	1	11	?	11.572	6.234	34.816	1.00	46.04	?	?	?	?	?	?	23	DC	В	OP2	1
ATOM	444 O	'05''	•	DC	в	1	11	?	9.071	5.874	34.286	1.00	50.89	?	?	?	?	?	?	23	DC	В	'05''	1
ATOM	445 C	'C5''	•	DC	в	1	11	?	7.872	6.214	33.569	1.00	44.12	?	?	?	?	?	?	23	DC	В	'C5''	1
ATOM	446 C	'C4''	•	DC	в	1	11	?	6.937	5.029	33.482	1.00	43.81	?	?	?	?	?	?	23	DC	В	'C4''	1
ATOM	447 O	'04''	•	DC	в	1	11	?	7.576	3.958	32.740	1.00	42.06	?	?	?	?	?	?	23	DC	В	'04''	1
ATOM	448 C	'C3''	•	DC	в	1	11	?	6.528	4.432	34.832	1.00	38.81	?	?	?	?	?	?	23	DC	В	'C3''	1
ATOM	449 O	'03''	•	DC	в	1	11	?	5.132	4.149	34.847	1.00	45.37	?	?	?	?	?	?	23	DC	В	'03''	1
ATOM	450 C	'C2''	•	DC	в	1	11	?	7.300	3.124	34.901	1.00	40.79	?	?	?	?	?	?	23	DC	В	'C2''	1
ATOM	451 C	'C1''	•	DC	в	1	11	?	7.379	2.736	33.434	1.00	33.88	?	?	?	?	?	?	23	DC	В	'C1''	1
ATOM	452 N	N1	•	DC	в	1	11	?	8.504	1.846	33.120	1.00	36.40	?	?	?	?	?	?	23	DC	В	N1	1
ATOM	453 C	C2		DC	В	1	11	?	8.272	0.685	32.369	1.00	32.79	?	?	?	?	?	?	23	DC	В	C2	1

ATOM	454	0	02	•	DC	В	1	11	?	7.131	0.479	31.908	1.00	36.07	?	?	?	?	?	?	23	DC	В	02	1
ATOM	455	Ν	N3	•	DC	В	1	11	?	9.293	-0.184	32.167	1.00	30.32	?	?	?	?	?	?	23	DC	В	N3	1
ATOM	456	С	C4	•	DC	В	1	11	?	10.503	0.081	32.671	1.00	32.96	?	?	?	?	?	?	23	DC	В	C4	1
ATOM	457	Ν	N4	•	DC	В	1	11	?	11.472	-0.815	32.470	1.00	32.29	?	?	?	?	?	?	23	DC	В	N4	1
ATOM	458	С	C5	•	DC	В	1	11	?	10.777	1.286	33.385	1.00	32.52	?	?	?	?	?	?	23	DC	В	C5	1
АТОМ	459	С	C6	•	DC	В	1	11	?	9.753	2.117	33.606	1.00	37.44	?	?	?	?	?	?	23	DC	В	C6	1
ATOM	460	Ρ	Р	•	DG	В	1	12	?	4.277	4.492	36.173	1.00	52.39	?	?	?	?	?	?	24	DG	В	Р	1
ATOM	461	0	OP1	•	DG	В	1	12	?	2.829	4.210	35.898	1.00	51.58	?	?	?	?	?	?	24	DG	В	OP1	1
ATOM	462	0	OP2	•	DG	В	1	12	?	4.739	5.811	36.678	1.00	48.36	?	?	?	?	?	?	24	DG	В	OP2	1
ATOM	463	0	'05''	•	DG	В	1	12	?	4.756	3.384	37.209	1.00	46.27	?	?	?	?	?	?	24	DG	В	'05''	1
ATOM	464	С	'C5''	•	DG	В	1	12	?	4.451	2.002	36.974	1.00	44.58	?	?	?	?	?	?	24	DG	В	'C5''	1
ATOM	465	С	'C4''	•	DG	В	1	12	?	5.053	1.193	38.090	1.00	39.93	?	?	?	?	?	?	24	DG	В	'C4''	1
ATOM	466	0	'04''	•	DG	В	1	12	?	6.494	1.319	38.004	1.00	36.23	?	?	?	?	?	?	24	DG	В	'04''	1
ATOM	467	С	'C3''	•	DG	В	1	12	?	4.673	1.705	39.476	1.00	41.18	?	?	?	?	?	?	24	DG	В	'C3''	1
ATOM	468	0	'03''	•	DG	В	1	12	?	3.540	0.965	39.948	1.00	45.43	?	?	?	?	?	?	24	DG	В	'03''	1
ATOM	469	С	'C2''	•	DG	В	1	12	?	5.937	1.493	40.281	1.00	44.61	?	?	?	?	?	?	24	DG	В	'C2''	1
ATOM	470	С	'C1''	•	DG	В	1	12	?	7.030	1.711	39.250	1.00	39.64	?	?	?	?	?	?	24	DG	В	'C1''	1
ATOM	471	Ν	N9	•	DG	В	1	12	?	7.442	3.094	39.113	1.00	44.84	?	?	?	?	?	?	24	DG	В	N9	1
ATOM	472	С	C8	•	DG	В	1	12	?	6.712	4.200	39.471	1.00	50.34	?	?	?	?	?	?	24	DG	В	C8	1
ATOM	473	Ν	N7	•	DG	В	1	12	?	7.292	5.323	39.143	1.00	46.30	?	?	?	?	?	?	24	DG	В	N7	1
ATOM	474	С	C5	•	DG	В	1	12	?	8.422	4.933	38.443	1.00	46.08	?	?	?	?	?	?	24	DG	В	C5	1
ATOM	475	С	C6	•	DG	В	1	12	?	9.446	5.712	37.846	1.00	53.78	?	?	?	?	?	?	24	DG	В	C6	1
ATOM	476	0	06	•	DG	В	1	12	?	9.530	6.948	37.769	1.00	50.57	?	?	?	?	?	?	24	DG	В	06	1
ATOM	477	Ν	N1	•	DG	В	1	12	?	10.419	4.908	37.254	1.00	42.62	?	?	?	?	?	?	24	DG	В	N1	1
ATOM	478	С	C2	•	DG	В	1	12	?	10.434	3.531	37.278	1.00	42.89	?	?	?	?	?	?	24	DG	В	C2	1
ATOM	479	Ν	N2	•	DG	В	1	12	?	11.496	2.933	36.700	1.00	37.64	?	?	?	?	?	?	24	DG	В	N2	1
ATOM	480	Ν	N3	•	DG	В	1	12	?	9.495	2.796	37.851	1.00	42.44	?	?	?	?	?	?	24	DG	В	N3	1
ATOM	481	С	C4	•	DG	В	1	12	?	8.524	3.556	38.405	1.00	45.36	?	?	?	?	?	?	24	DG	В	C4	1
HETATM	482	Ν	N1	•	SPM	С	2	•	?	15.307	-2.224	30.707	0.50	45.16	?	?	?	?	?	?	101	SPM	А	N1	1
HETATM	483	С	C2	•	SPM	С	2	•	?	14.648	-3.505	30.906	1.00	50.52	?	?	?	?	?	?	101	SPM	А	C2	1
HETATM	484	С	C3	•	SPM	С	2	•	?	14.177	-3.681	32.355	1.00	49.96	?	?	?	?	?	?	101	SPM	А	C3	1
HETATM	485	С	C4	•	SPM	С	2	•	?	13.198	-4.830	32.413	1.00	46.18	?	?	?	?	?	?	101	SPM	А	C4	1
HETATM	486	Ν	N5	•	SPM	С	2	•	?	12.876	-5.334	33.745	1.00	49.66	?	?	?	?	?	?	101	SPM	А	N5	1
HETATM	487	С	C6	•	SPM	С	2	•	?	11.836	-6.363	33.800	1.00	40.82	?	?	?	?	?	?	101	SPM	А	C6	1
HETATM	488	С	C7	•	SPM	С	2	•	?	11.700	-6.958	35.173	1.00	44.69	?	?	?	?	?	?	101	SPM	А	C7	1
HETATM	489	С	C8	•	SPM	С	2	•	?	10.292	-7.489	35.304	1.00	45.41	?	?	?	?	?	?	101	SPM	А	C8	1
HETATM	490	С	C9	•	SPM	С	2	•	?	10.370	-8.593	36.328	1.00	39.65	?	?	?	?	?	?	101	SPM	А	C9	1

HETATM	491	Ν	N10	•	\mathtt{SPM}	С	2	•	?	9.328	-8.480	37.308	1.00	48.73	?	?	?	?	?	?	101	SPM	А	N10	1
HETATM	492	С	C11	•	\mathtt{SPM}	С	2	•	?	8.275	-9.514	37.339	1.00	42.36	?	?	?	?	?	?	101	SPM	А	C11	1
HETATM	493	С	C12	•	\mathtt{SPM}	С	2	•	?	8.417	-10.350	38.617	1.00	40.48	?	?	?	?	?	?	101	\mathtt{SPM}	А	C12	1
HETATM	494	С	C13	•	\mathtt{SPM}	С	2	•	?	7.395	-11.529	38.711	1.00	36.10	?	?	?	?	?	?	101	SPM	А	C13	1
HETATM	495	Ν	N14	•	\mathtt{SPM}	С	2	•	?	7.319	-12.113	37.413	1.00	26.41	?	?	?	?	?	?	101	SPM	А	N14	1
HETATM	496	\mathbf{SR}	SR	•	SR	D	3	•	?	15.511	4.253	-10.211	1.00	80.43	?	?	?	?	?	?	102	SR	А	SR	1
HETATM	497	0	0	•	HOH	Е	4	•	?	5.745	10.707	7.973	1.00	50.57	?	?	?	?	?	?	201	HOH	А	0	1
HETATM	498	0	0	•	HOH	Е	4	•	?	3.981	2.092	12.526	1.00	55.74	?	?	?	?	?	?	202	HOH	Α	0	1
HETATM	499	0	0	•	HOH	Е	4	•	?	5.535	7.189	-5.997	1.00	37.30	?	?	?	?	?	?	203	HOH	А	0	1
HETATM	500	0	0	•	HOH	Е	4	•	?	5.857	10.607	2.957	1.00	39.96	?	?	?	?	?	?	204	HOH	А	0	1
HETATM	501	0	0	•	HOH	Е	4	•	?	16.122	-0.073	-7.306	1.00	76.18	?	?	?	?	?	?	205	HOH	А	0	1
HETATM	502	0	0	•	HOH	Е	4	•	?	12.456	-9.842	29.587	0.50	39.91	?	?	?	?	?	?	206	HOH	А	0	1
HETATM	503	0	0	•	HOH	Е	4	•	?	15.126	0.991	-11.310	1.00	64.27	?	?	?	?	?	?	207	HOH	А	0	1
HETATM	504	0	0	•	HOH	Е	4	•	?	11.936	-2.931	-12.948	1.00	43.14	?	?	?	?	?	?	208	HOH	А	0	1
HETATM	505	0	0	•	HOH	Е	4	•	?	16.727	-3.172	-8.920	1.00	68.21	?	?	?	?	?	?	209	HOH	А	0	1
HETATM	506	0	0	•	HOH	Е	4	•	?	13.771	10.608	-3.551	0.50	32.95	?	?	?	?	?	?	210	HOH	А	0	1
HETATM	507	0	0	•	HOH	Е	4	•	?	9.441	1.770	-2.007	1.00	36.92	?	?	?	?	?	?	211	HOH	А	0	1
HETATM	508	0	0	•	HOH	Е	4	•	?	9.916	-4.279	-14.180	1.00	39.00	?	?	?	?	?	?	212	HOH	А	0	1
HETATM	509	0	0	•	HOH	Е	4	•	?	5.425	-5.959	-10.092	1.00	56.75	?	?	?	?	?	?	213	HOH	А	0	1
HETATM	510	0	0	•	HOH	Е	4	•	?	6.736	11.394	5.248	0.50	34.77	?	?	?	?	?	?	214	HOH	А	0	1
HETATM	511	0	0	•	HOH	Е	4	•	?	11.867	-15.768	30.801	1.00	47.55	?	?	?	?	?	?	215	HOH	А	0	1
HETATM	512	0	0	•	HOH	Е	4	•	?	14.392	-5.303	36.717	0.50	36.19	?	?	?	?	?	?	216	HOH	А	0	1
HETATM	513	0	0	•	HOH	Е	4	•	?	3.012	-10.254	22.862	1.00	67.16	?	?	?	?	?	?	217	HOH	А	0	1
HETATM	514	0	0	•	HOH	Е	4	•	?	13.213	9.047	-5.011	0.50	43.01	?	?	?	?	?	?	218	HOH	А	0	1
HETATM	515	0	0	•	HOH	Е	4	•	?	-2.568	-2.294	17.282	0.50	44.49	?	?	?	?	?	?	219	HOH	А	0	1
HETATM	516	0	0	•	HOH	Е	4	•	?	10.725	-14.748	28.779	0.50	39.46	?	?	?	?	?	?	220	HOH	А	0	1
HETATM	517	0	0	•	HOH	Е	4	•	?	15.703	9.836	-2.496	0.50	31.11	?	?	?	?	?	?	221	HOH	А	0	1
HETATM	518	0	0	•	HOH	Е	4	•	?	9.346	8.423	16.634	1.00	52.47	?	?	?	?	?	?	222	HOH	Α	0	1
HETATM	519	0	0	•	HOH	Е	4	•	?	11.510	1.193	-0.164	0.50	40.92	?	?	?	?	?	?	223	HOH	А	0	1
HETATM	520	0	0	•	HOH	Е	4	•	?	12.332	12.804	-0.232	1.00	59.02	?	?	?	?	?	?	224	HOH	А	0	1
HETATM	521	0	0	•	HOH	Е	4	•	?	14.811	-18.153	31.387	1.00	54.50	?	?	?	?	?	?	225	HOH	А	0	1
HETATM	522	0	0	•	HOH	Е	4	•	?	12.781	-17.856	31.806	1.00	47.82	?	?	?	?	?	?	226	HOH	А	0	1
HETATM	523	0	0	•	HOH	Е	4	•	?	1.224	6.114	15.685	1.00	60.25	?	?	?	?	?	?	227	HOH	А	0	1
HETATM	524	0	0	•	HOH	Е	4	•	?	10.603	6.919	-7.970	1.00	37.70	?	?	?	?	?	?	228	HOH	А	0	1
HETATM	525	0	0	•	HOH	F	4	•	?	-0.922	0.065	-5.369	1.00	42.62	?	?	?	?	?	?	101	HOH	В	0	1
HETATM	526	0	0	•	HOH	F	4	•	?	8.026	9.832	35.707	1.00	68.74	?	?	?	?	?	?	102	HOH	В	0	1
HETATM	527	0	0	•	HOH	F	4	•	?	15.975	-1.008	15.507	1.00	52.27	?	?	?	?	?	?	103	HOH	В	0	1

НЕТАТМ	528	0	0		нон	F	4		?	14,793	-2.822	15,169	1.00	58.11	?	?	?	?	?	?	104	нон	в	0	1
НЕТАТМ	529	0	0	•	нон	- F	Δ	•	• ?	_0 287	5 138	4 841	1 00	62 89	?	2	?	2	?	?	105	нон	B	0	1
IILIAIN	525	U	0	•	non	г	-	•	•	-0.207	5.150	4.041	1.00	02.00	•	•	•	•	•	•	105	non	Ъ	0	-
HETATM	530	0	0	•	HOH	F	4	•	?	2.869	1.485	6.566	1.00	45.01	?	?	?	?	?	?	106	нон	В	0	1
HETATM	531	0	0	•	HOH	F	4	•	?	2.751	0.192	9.510	0.50	39.34	?	?	?	?	?	?	107	HOH	В	0	1
HETATM	532	0	0	•	HOH	F	4	•	?	17.774	2.975	22.558	1.00	57.77	?	?	?	?	?	?	108	HOH	в	0	1
HETATM	533	0	0	•	HOH	F	4	•	?	16.850	0.536	28.081	1.00	66.55	?	?	?	?	?	?	109	HOH	в	0	1
HETATM	534	0	0	•	HOH	F	4	•	?	8.401	-1.858	12.571	0.50	37.14	?	?	?	?	?	?	110	HOH	В	0	1
HETATM	535	0	0	•	HOH	F	4	•	?	5.873	-5.073	9.869	1.00	47.64	?	?	?	?	?	?	111	HOH	в	0	1
HETATM	536	0	0	•	HOH	F	4	•	?	6.830	8.002	40.323	1.00	55.54	?	?	?	?	?	?	112	HOH	В	0	1
HETATM	537	0	0	•	HOH	F	4	•	?	12.523	-2.219	4.994	1.00	56.73	?	?	?	?	?	?	113	HOH	В	0	1
HETATM	538	0	0	•	HOH	F	4	•	?	8.144	3.642	30.083	1.00	38.91	?	?	?	?	?	?	114	HOH	В	0	1
HETATM	539	0	0	•	HOH	F	4	•	?	10.239	-1.894	19.211	1.00	41.32	?	?	?	?	?	?	115	HOH	В	0	1
HETATM	540	0	0	•	HOH	F	4	•	?	11.394	6.208	23.097	1.00	61.62	?	?	?	?	?	?	116	HOH	В	0	1
HETATM	541	0	0	•	HOH	F	4	•	?	-8.777	1.487	-2.112	1.00	70.13	?	?	?	?	?	?	117	HOH	В	0	1
HETATM	542	0	0	•	HOH	F	4	•	?	-1.820	0.663	3.075	1.00	52.05	?	?	?	?	?	?	118	HOH	В	0	1
HETATM	543	0	0	•	HOH	F	4	•	?	21.214	2.225	19.730	1.00	65.35	?	?	?	?	?	?	119	HOH	в	0	1
HETATM	544	0	0	•	HOH	F	4	•	?	16.869	1.303	20.043	1.00	54.01	?	?	?	?	?	?	120	HOH	В	0	1
HETATM	545	0	0	•	HOH	F	4	•	?	-2.810	-4.632	7.767	1.00	63.68	?	?	?	?	?	?	121	HOH	в	0	1
"																									

#

Table S2. Crystal and Data Collection Statistics for the First Crystal. It was used to obtain phases for theDDD-XY duplex.

Space group	Orthorhombic $P2_12_12_1$
Cell parameters (Å)	a=26.4, b=37.3, c=77.6
Temperature of data collection (° C)	-170
Wavelength (Å)	1.605
Min resolution (Å)	26.9
Max resolution (Å)	1.95
Unique reflections (observed)	5861
Completeness all(%)/1.98-1.95 Å	99.0/98.0
I/σ (I) all/1.98-1.95 Å	20.3/4.34
R _{merge} all/1.98-1.95 Å	0.08/0.63
R _{work}	0.36
R _{free}	0.39
Number of DNA atoms	427
Number of water molecules	14
Number of ions	4 Ba ²⁺

Table S3. Crystal Data, Data Collection, and Refinement Statistics for the Second Crystal. It was used to obtain the final structure of the DDD-XY duplex.

Space group	Orthorhombic $P2_12_12_1$
Cell parameters (Å)	a=26.38, b=36.77, c=77.65
Temperature of data collection (° C)	-170
Wavelength (Å)	0.97857
Min resolution (Å)	30.0
Max resolution (Å)	1.7
Unique reflections (all)	8811
Unique reflections (observed)	8236
Completeness all/1.76-1.70 Å (%)	93.4/61.1
Redundancy all/1.76-1.70 Å	6.4/4.0
I/σ (I) all/1.76-1.70 Å	52.3/5.65
R _{merge} all/1.76-1.70 Å	0.04/0.23
R _{work}	0.26
R _{free}	0.30
Number of DNA atoms	481
Number of water molecules	49
Number of ions	1 Sr ²⁺
r.m.s. distances (Å)	0.01
r.m.s. angles (°)	1.6

Table S4. NMR Restraints Used for the DDD-GY Structure Calculations and Refinement Statistics.

NMR restraints	
NOE restraints	
Internucleotide	75
Intranucleotide	78
Total	153
Backbone torsion angle restraints	100
H-bonding restraints	50
Deoxyribose restraints	18
Total number of restraints	321
Refinement Statistics	
Number of distance restraint violations	25
Number of torsion restraint violations	14
Total distance penalty/Maximum penalty [kcal mol ⁻¹]	2.60/0.46
Total torsion penalty/Maximum penalty [kcal mol ⁻¹]	1.24/0.36
r.m.s. distances (Å)	0.012
r.m.s. angles (°)	2.4
Distance restraint force field [kcal mol ⁻¹ Å ⁻²]	32
Torsion restraint force field [kcal mol ⁻¹ deg ⁻²]	32

Table S5. Structural Statistics for the DDD-GY Duplex.

	Average structure (obt	tained from 9 structures)	
RMS pairwise differen	ce between structures	0.71	
RMS difference from a	verage structure	0.47	
	CORMA analysis f	for average structure ^a	
	Intranucleotide	Internucleotide	Total
Rx ^b	0.10	0.10	0.10
Average error ^c			0.02
^a The mixing time was	250 ms. ^b Rx is 6th root l	R factor: $\Sigma[((Io)_i^{1/6}) - ((Ic)_i^{1/6})]$	$\frac{1}{\Sigma((Io)_i^{1/6})]}$. ^c Average error

 Σ (Ic-Io)/n, where Ic are NOE intensities calculated from refined structure, Io are experimental NOE intensities.

Figure S1. Structure of the DDD-XY duplex with water molecules (red spheres) and Sr^{2+} ion (yellow sphere) and spermine molecule (light blue). The benzyl groups of O^6 -Bn-dG (shown in blue) intercalate between the thymine and dPer bases (shown in green) from the opposite strand. The dPer bases are in the *syn* conformation about the glycosyl bond. Electron density for bases C¹ and C¹³ was not visible. Bases G¹² and G²⁴ flipped out from the duplex. The intercalated structures unwind the duplex as compared to the unmodified DDD.

Figure S2. Interbase pair parameters: (a) helical rise, (b) roll and (c) twist for the DDD-XY, DDD (PDB entry 355D) duplexes.

Figure S3. Comparison of backbone torsion angles (a) α and (b) β in the crystal

structures of the DDD-XY, DDD (PDB entry 355D) duplexes.

Figure S4. Comparison of (a) γ , (b) δ , (c) ϵ angles in the crystal structures of the DDD-XY, DDD (PDB entry 355D) duplexes.

Figure S5. Comparison of (a) χ and (b) ζ angles in the crystal structures of the DDD-XY, DDD (PDB entry 355D) duplexes.

Figure S6. NOESY spectrum of the DDD-XY duplex showing sequential NOEs between the aromatic and anomeric protons from C^1 to G^{12} . The spectrum was collected at 10 °C at 900 MHz with 250 ms mixing time.

Figure S7. (a) Interstrand NOE cross peaks between complementary bases for the DDD-XY duplex: a, $A^5 H^2 \rightarrow T^8 N^3H$; b, $A^5 N^6H^2 \rightarrow T7 N^3H$; c, $A^6 N^2H^2 \rightarrow T^7 N^3H$; d, $A^6 H^2 \rightarrow T^7 N^3H$; e, $C^{11} H^5 \rightarrow G^2 N^1H$; f, $C^{11} N^2H^2 \rightarrow G^2 N^1H$; h, $C^3 H^5 \rightarrow G^{10} N^1H$; i, $C^3 N^2H^2 \rightarrow G^{10} N^1H$; j, $C^3 N^2H^2 \rightarrow G^{10} N^1H$. (b) NOE connectivity of DDD-XY duplex, for the imino protons for the base pairs $G^2:C^{11}$, $C^3:G^{10}$, $X^4:Y^9$, $A^5:T^8$, $A^5:T^7$. Cross peaks between $T^8 N^3H \rightarrow T^7 N^3H$ and $G^2 N^1H \rightarrow G^{10} N^1H$ were present. There is no cross-peak between $T^8 \rightarrow Y^9$ and $Y^9 \rightarrow G^{10}$. $G^{10} N^1H$ has a cross peak with peak which is not visible on the diagonal and could not be assigned (k). The experiment was carried out at 500 MHz using a mixing time of 250 ms and at 7 °C.

Figure S8. One-dimentional NMR spectra, showing the imino proton resonances for the DDD-XY duplex as a function of temperature. Note that the imine nitrogen of the O^6 -Bn-dG nucleotide X⁴ is not protonated at neutral pH. The individual nucleotides are identified as superscripts. The experiments were carried out at 500 MHz.

Figure S9. The average structure obtained from a series of rMD calculations for the DDD-GY duplex. dPer bases are shown in green. The dPer base is in the *anti* conformation about the glycosyl bond and it forms wobble pair with the complementary dG. The dPer ring is oriented in the major groove. Hydrogens are omitted on the picture for clarity.

Figure S10. The superimposed nine structures obtained from a series of rMD calculations for the DDD-GY duplex. The average structure obtained from nine structures is shown in red.

Figure S11. Interbase pair parameters: (a) helical rise, (b) roll and (c) twist for the DDD-GY, DDD (PDB entry 355D) duplexes.

Figure S12. Comparison of backbone torsion angles (a) α and (b) β in the structures of the DDD-GY, DDD (PDB entry 355D) duplexes.

Figure S13. Comparison of (a) γ , (b) δ , (c) ϵ angles in the structures of the DDD-GY, DDD (PDB entry

355D) duplexes.

Figure S14. Comparison of (a) χ and (b) ζ angles in the crystal structures of the DDD-GY, DDD (PDB entry 355D) duplexes.