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1 The integrated analysis method

We propose an integrated analysis of miRNA and mRNA expression based on
the global test [1]. The global test is a generalization for testing the global
null hypothesis of a linear (or generalized linear) regression model H0 : β1 =
β2 = · · · = βp = 0 when the number of features exceeds the number of samples
(p >> n).
In our integrated analysis the linear model with only an intercept is tested
against the alternative model y = Xβ. Here yn×1 represents the expression
profile of a certain miRNA and Xn×p the expression profiles of the predicted
mRNA targets for that miRNA. The number of targets p is generally larger
than the number of samples n.

A useful interpretation of the global test for the linear model is as a sum
of squared covariances between predictors and responses (see section 5 of [1]).
Consider the sample covariance, ry,x between a miRNA expression profile yn×1

and a single target xn×1 given by:

ry,x =
1

n− 1

n∑

k=1

(yk − ȳn)(xk − x̄n) =
(x − x̄n)

T (y − ȳn)

n− 1
, (1)

where ȳn and x̄n denote the sample means of miRNA and mRNA expression
profiles, ȳn and x̄n are vectorized versions (note that ry,x = rx,y). For multiple
mRNA profiles Xn×p the p × 1 vector of the sample covariances, ry,X can be
expressed as:

ry,X =
1

n− 1

n∑

k=1

(yk − ȳn)(Xkj − X̄j) =
(X− X̄)T (y − ȳ)

n− 1
. (2)

Note that this expression is valid even when the number of targets exceeds the
number of samples p > n, and again rTy,X = rX,y . Goeman et al. [1] proposed
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the following test statistics proportional to the squared sample covariance

(y − ȳn)
TXXT (y − ȳn)

(y − ȳn)T (y − ȳn)
∝ rTy,Xry,X. (3)

The global test can be used not only for a continuous response, as explained
here, but also for binary, multi-class, count and survival, and adjustment for
confounders is possible [2, 3]. Moreover, they derived an asymptotic distribution
for the test statistics, which is exact in case the linear model with normal errors
is correct [3]. See Supplementary Figure S3 for a comparison of z-scores from the
global test with pairwise correlations between three miRNAs and their predicted
targets.

2 Prioritization of microRNAs and their tar-

gets: quantitative comparison of global test,

correlation and lasso

2.1 Motivation

Several methods have been proposed to jointly analyse microRNA (miRNA)
and mRNA expression data, taking also into account in silico predicted targets.
Some of them are based on the strength and direction of the Pearson correlation
coefficient between the expression profiles the miRNAs and targets [4]. Others
have used lasso [5], a penalized regression algorithm, for example using miRNA
expression profiles as responses and targets expression profiles as covariates [6,
7]. However, a quantitative comparison between these methods in this context
is still lacking.

Here we perform a quantitative comparison between our proposed method,
based upon global test, with using correlation or lasso. We do this by considering
for each miRNA all mRNAs that are predicted as possible targets, as given by
the overlap of three target prediction tools; TargetScan, MicroCosm and PITA.
Firstly, we show how results using these three approaches are obtained and can
be related in general, when a large number of samples is available. Secondly, we
assess sensitivity and specificity of each method using a subsampling approach
where the full data set is taken as the truth. The prostate cancer data described
in the Methods section of the Main text is used in these comparisons.

2.2 Theoretical background

Correlations are statistics that are used to measure association between pairs
of variables. The Pearson correlation is in particular often used to measure lin-
ear correlation. There exists a statistical test, due to [8], to assess how likely a
Pearson correlation coefficient is to be observed if the variables are in fact uncor-
related. If that is the case, a function of the computed correlation is distributed
as a Student’s t-statistic with n− 2 degrees of freedom, where n represents the
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sample size. In the context of our problem, one correlation coefficient and its
p-value is produced per miRNA:mRNA pair.

The lasso [5] is a method for fitting regression models so as to select the
most relevant covariates to explain the outcome via shrinkage. The resulting fit
yields thus an interpretable and parsimonious function of the covariates. Be-
cause its aim is interpretability, it may eliminate covariates that are associated
with outcome, after retaining a single one that represents that association. In
addition, the amount of shrinkage must be estimated empirically, so that dif-
ferent fits are not necessarily comparable. Furthermore, each lasso fit yields at
most n non-zero coefficients, or n non-zero variables are selected, where n rep-
resents the sample size. This is both sensible and desirable for representation
and interpretability purposes, but not if the objective is to find all (or as many
as possible) active mRNA targets, especially in small studies when just tens of
samples are available - some miRNAs may have hundreds of possible mRNA
targets [9]. Finally, no statistical significance can be assigned to the resulting
fit, so prioritization of miRNAs according to how likely they are of regulating
mRNAs in the context under study is not straightforward.

The global test [1] was proposed as a test to assess association between an
outcome and a set of variables. It can be seen as a test for the variance of
a random effect relating the variable set and the outcome. As such, it can
be put in the same context as ridge regression, another well-known penalized
regression algorithm. However, as it focuses on testing the association, rather
than on describing the association as ridge regression, it eliminates the need for
estimating the amount of shrinkage. In addition, as the name says, it is a test
and thus produces p-values which enable objective prioritization of miRNAs.
Furthermore, for each miRNA the test statistic can be decomposed into the
independent contributions of each mRNA towards the final statistic, allowing
for prioritization of the mRNAs too. The global test statistic corresponds to
the average of these independent, per miRNA:mRNA pair, test statistics.

Under the null hypothesis that there is no association between miRNA and
the many mRNAs’ expression, the global test statistic has asymptotically a
distribution that is a weighted sum of independent chi-square distributions,
each with 1 degree of freedom. If the test is used with a linear model, rather
than a generalized linear model, this holds exactly. In particular, for a single
miRNA:mRNA pair the test statistic has a chi-square distribution, under a
linear model and the null hypothesis, and the test statistic itself is a function
of the data via the Pearson correlation. Since the statistical test statistic for a
Pearson correlation can be approximated by the normal distribution for large
sample sizes, its square is also asymptotically distributed as a chi-square. With
appropriate standardizations, thus, these two methods lead asymptotically to
the same p-value for each miRNA:mRNA pair. So, in the context of linear
models, the global test could be seen as an extension of Pearson correlation
testing to the case where multiple miRNA:mRNA pairs are considered.
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2.3 General comparison

Here we give an overview of results obtained with the three methods, using the
prostate cancer data set involving 139 prostate cancer samples for which both
miRNA and mRNA expression profiles are available (a total of 267 miRNAs
and 20035 mRNAs were used). For the global test, we computed for each
miRNA the global test statistic and its p-value, as well as the test statistics for
each miRNA:mRNA pair involved. The Pearson correlations for the relevant
miRNA:mRNA pairs were also computed. Finally, for each miRNA lasso was
fitted using the predicted mRNA targets.

Figure 4 of the Main text summarizes these results. The miRNAs are ordered
according to the global test statistic, with increasing significance from left to
right, and the vertical line separates not significant (left) from significant (right)
associations, all according to the global test. The stacked points represent the
global test statistics separately for each target, coloured according to significance
(black if significant, i.e. p-value < 0.001 after multiple testing correction using
Benjamini-Hochberg’s FDR; grey otherwise). The size of each point reflects the
absolute correlation coefficient. Two things are immediately evident from the
figure. Firstly, the ordering given by the correlation (square size) is indeed the
same as the ordering given by the pairwise global test statistics (square height),
as expected due to the relationship between the Pearson correlation coefficient
and the per-pair global test statistic. This is evident by the fact that, for
each vertical column of points, squares increase in size from bottom to top.
Secondly, the global test significance helps separating the miRNAs according
to the average association they display with target mRNAs: significant test
results may be yielded by a handful of particularly large correlations, or by
a larger group of medium-sized correlations. Making such distinctions is not
straightforward using pairwise results alone.

Still in Figure 4 of the Main text, red squares indicate miRNA:mRNA pairs
selected by lasso, so that in each vertical column of squares the red ones repre-
sent mRNA targets with a non-zero lasso-regression coefficient. It is clear that
lasso does not always prioritize large correlation, with some mRNAs with small
(and not significant) correlation being selected by lasso (red squares amongst
mostly grey ones), and some miRNA:mRNA pairs displaying large correlation
and zero lasso-regression coefficient (large black squares on the top). This can be
explained by the fact that lasso aims at an interpretable and parsimonious repre-
sentation, selecting one of any possible set of correlated mRNAs associated with
the outcome miRNA, and thus neglecting individually relevant miRNA:mRNA
pairs. In addition, lasso does not help to prioritize miRNAs playing a significant
role in mRNA regulation: red squares are observed on both sides of the vertical
line.
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2.4 Assessing consistency in sensitivity and specificity

2.4.1 Subsampling

In order to compute a method’s sensitivity (true positive rate) and specificity (1
- false positive rate), the truth must be known. In the context of miRNA:mRNA
expression associations, existing databases include but a small number of val-
idated targets to date, with this number further reduced if interest lies in one
specific tissue or condition. In contrast, lists of predicted mRNA targets per
miRNA amount to at least tens, if not hundreds of mRNAs per target predic-
tion tool. Thus restricting results lists to pairs already validated greatly limits
conclusions. A simulation study is normally used in such situations, but given
that this complex biological problem is not yet well understood by biologists,
involving many-to-many relations and various other issues, it is hardly possible
to come up with a simulation setup anywhere near realistic. Furthermore, the
three methods considered here are well-understood in the literature of statistical
methods (see ‘Theoretical background’ of the previous section), so there is not
a great deal to be learned from such a simulation study. What still lacks is an
understanding of these methods’ consistency for studies of various sizes.

To enable assessment of how consistent sensitivity and specificity measure-
ments are in a realistic setting, we used here a subsampling approach on the
prostate cancer dataset. This involved drawing different-sized subsets of the
data proportional to 40%, 80% and 90% of the total number of samples. For
each method, results obtained on each subset were compared to the results for
the full dataset, assumed to represent thus the truth. In this way it is possi-
ble to calculate ‘true’ positive and ‘false’ positive rates per method. For each
subset size, 25 subsets were used in order to obtain a sense of the variability of
the estimates. Note, however, that the rates here computed are relative to the
method, so care must be taken when comparing rates between methods.

2.4.2 Pearson correlation and the global test

For each miRNA, our approach yields a p-value derived from the global test.
This indicates evidence or not for the miRNA’s role in regulating expression
levels of mRNAs predicted as its targets. The list of p-values computed using all
samples is first produced. Then, for each subset, p-values are again computed for
the same miRNAs and their lists of mRNA targets. Using different significance
thresholds, we compute how many miRNAs are found to be significant or not,
in the subset and in the full dataset. The Benjamini-Hochberg multiple testing
correction procedure was applied to each generate list of p-values. So true and
false positive rates here refer to proportions of miRNAs found in the full dataset
that were also found in a subset, and proportions not found in the full dataset
that were however declared significant in a subset, respectively.

Pearson correlation p-values were also produced for all relevant miRNA:mRNA
pairs. We then needed to choose a rule to summarize results per miRNA: we de-
clared that a miRNA played a role in mRNA expression regulation if its largest
correlation yielded a p-value below a threshold.
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Results are grouped per threshold used (significance level) and per subsample
size (see Figure S4 A and B). In each case, a boxplot is made of true positive
rates (coloured boxes) and false positive rates (white boxes with only contours
coloured). It is clear from the figure that both sensitivity and specificity increase
as either the subset size (given by the box colour) or the significance level
increase, as expected. Also, the global test and Pearson correlation selections of
miRNAs yield relatively the same sensitivity with respect to the full dataset if
either 80% or more of the samples are chosen. When only 40% of the samples are
used, the global test displays a larger drop in sensitivity than correlation. This
is a consequence of taking as a summary the smallest p-value of all correlations
per miRNA, which also yields more false positives: while the global tests yields
a proportion of false positives in agreement with the significance level taken,
selected miRNAs by Pearson correlation include many more false positives than
expected. This illustrates well the advantage of taking a set of mRNAs together
to perform the association test: only consistent associations results are found,
and false positives are kept under the correct control level. Pairwise association
measures, such as the Pearson correlation, are more likely to be influenced by
individual pairs with large associations, which may well arise by chance.

Here a summary of results per miRNA had to be chosen for the Pearson
correlation coefficients. Other alternative summaries could be used. However,
any other arbitrary choice would likely have disadvantages due to first evaluating
results per miRNA:mRNA pair, then summarizing per miRNA. Indeed, the
global test has been shown to display more power against pairwise association
testing, for alternative hypotheses often of practical interest [10]. Thus, we
are confident that the conclusions above can be qualitatively extended to other
methods involving summaries in two stages.

2.4.3 Lasso and the global test

Lasso regression results cannot be summarized per miRNA in a meaningful,
practical way. All lasso fits yield at least one non-zero coefficient, so each miRNA
always has at least one mRNA left in the regression fit. The number of non-
zero coefficients remaining in the fit may also not be of relevance. So, for this
comparison, we decided to focus on pairs of miRNA:mRNA selected, where for
each miRNA only mRNAs that are predicted targets are considered, as before.

For each miRNA, the true positive rate represents the proportion of miRNA:mRNA
pairs with a global test p-value below a threshold using the subset, compared
with those found when using the full dataset. Similarly, the false positive rate
is the proportion of pairs found in the subset, that were not found using the full
dataset. As argued in section “Theoretical background”, results for the Pearson
correlation are identical to those of the global test (Figure S4 C). For the lasso,
no threshold can be used, so each subset yields a list of mRNAs with non-zero
coefficients, which is compared with the full dataset list to yield true and false
positive rates (Figure S4 D).

The trend of increasing true positive rate is still seen for increasing subset
sizes for both the global test and lasso. Also, false positive rates remain under
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control for global test results, in spite of splitting the results per pair. Lasso
keeps its false discoveries very much under control, compared to pairs found
using the full dataset. So, we can conclude that both methods yield consistent
results.

It is, however, surprising that true positive rates do not go above 80% when
results per pair are considered, in contrast with when results per set are eval-
uated. Indeed, if we compare the graphs for the global test only (Figures S4
A and C), we can see that once it is used considering gene sets, true positive
rates are reassuringly consistent with those of the full data set, but they drop
considerably when using miRNA:mRNA pairs, for any choice of threshold and
significance level . This illustrates another advantage of using our approach
with gene sets: it yields results that are more consistent with the full data set.

2.5 Conclusion

The results of the quantitative comparison strengthen the choice of the global
test for our approach for integrated analysis of miRNA and mRNA expression
data. The global test has similar sensitivity compared to Pearson correlation but
as important better specificity at an useful range of significance levels. For the
prioritization of miRNAs lasso does not perform well, furthermore, the selected
targets are not consistent in highly correlated targets.
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Figure S1: Venn diagrams showing the overlap between the significantly pre-
dicted miRNA:mRNA pairs with validated pairs from TarBase, miRTarbase and
miRecords and with manually collected pairs specifically for prostate cancer by
Lu et al.. In A the significantly predicted miRNA:mRNA pairs are obtained
by predicting miRNA expression using the predicted targets from the strict
overlap between TargetScan, PITA, microCosm. In B the reversed model (mR-
NAmiRNA) is used again with strict overlap of predicted targets. In C the same
model as in A is used except now using partial overlap between TargetScan,
PITA, microCosm and D is similar to C with the partial overlap.
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Figure S2: Venn diagrams showing the overlap between the significantly pre-
dicted miRNA:mRNA pairs using original (miRNAmRNA) and the reverse
(mRNAmiRNA) models with validated pairs from TarBase, miRTarbase and
miRecords and with manually collected pairs specifically for prostate cancer by
Lu et al.. In A and B the significantly predicted miRNA:mRNA pairs are ob-
tained using the predicted targets from the strict overlap between TargetScan,
PITA, microCosm, where in B only negatively associated miRNA:mRNA pairs
are shown. In C and D partial overlap between TargetScan, PITA, microCosm
was used, where inD only negatively associated miRNA:mRNA pairs are shown.
Actually, A combines Supplementary Figure 2a and 2b and C Figures 2c and
2d. B and D are similar to A and C except only negatively associated pairs
are shown.
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Figure S3: Comparison between the global test z-scores, representing the in-
dividual contributions for each target to the test statistic, and the pairwise
miRNA:mRNA correlations. For each miRNA the overlapping targets between
three prediction tools were used. Global test z-scores are proportional to the
square of the pairwise correlation between miRNA and mRNAs. In red are
the validated targets. A mmu-miR-133a with validated targets Foxc1, Ptbp2
and Arfip2, B mmu-miR-26a with validated targets: Epha2, Ezh2, Thrap3 and
Fbxl19 andCmmu-miR-22 with validated targets: Wasf1, Arpc5, Nr3c1, Arfip2
and Fbxl19.
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Figure S4: Assessment of consistency in sensitivity and specificity using global
test, correlation and lasso for the integrated analysis of miRNA and mRNA
expression data. A subsampling approach was used using the prostate cancer
dataset. For each method, results obtained on subsets were compared to the
results on the full dataset, assumed to represent the truth. The boxplots sum-
marize true positive rates (solid) and false positive rates (transparent) of 25
subsets sampled from the full dataset for three subsets sizes 40%, 80% and 90%
proportional to the original size of the data indicated in red, green and blue.
True positive rates and false positive rates were calculated at three different sig-
nificance levels 0.01, 0.05 and 0.1 using the Benjamini-Hochberg multiple testing
correction (x-axis). Assessment of consistency in sensitivity and specificity for
the selection of miRNAs A global test and B Pearson correlation (not possible
for lasso). C and D present the assessment of consistency in sensitivity and
specificity for the selection of targets respectively, for global test and Pearson
correlation (results are identical) and lasso. See Supplementary Section “Prior-
itization of miRNAs and their targets: quantitative comparison of global test,
correlation and lasso” for details.
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Table S1: Overview of targets for mmu-miR-133a, mmu-miR-22 and mmu-miR26a that were validated using the luciferase
assay, including information on the primers that were used for the cloning. The start position of the seed region is relative to
the UTR start position of the target gene.
Target Entrez Chr miRNA Validated Seed : Primera :

sequence start sequence position

Whsc2 24116 5 miR-133a Care et al. [11] UUGGUC 369 GCCATTTCTCTGGAGAGTTTAGGC

GTTTGAAATGTTTACAACTGTAC

33,898,574–33,898,597b 33,898,242–33,898,264

Arfip2 76932 7 -c 470 CACTCCCTGGCCAATGGCAT

AAAGGTTTATTCCTAGTGCTAG

105,635,631–105,635,652 105,635,940–105,635,959

Ptbp2 56195 3 - 979 GCCATCCTTAGTTTGTAATTAAG

TGTTCAAATAAATTTGACCTGTAG

119,719,201–119,719,224 119,719,504–119,719,526

Foxc1 17300 13 - 524 GTAAGTTTCTTGCGTTCAGAG

ATGATAGAAGGAGATTAATAC

31,809,488–31,809,509 31,809,181–31,809,202

Arpc5 67771 1 miR-22 - AGCUGC 422 GACCCTTTCATAACCATGTC

AGCATCATCTGGAGGCAAG

152,774,540–152,774,560 152,774,853–152,774,872

Fbxl19 233902 7 - 673 GAGGAGCAATTGGGGATCCGAGTG

CCCATCTTTAAGCTGACATTTCC

127,768,896–127,768,920 127,768,418–127,768,441

Nr3c1 14815 18 - 584 ATGCATGGAAACCTGAAAAA

AATTCCCCATGGAAGCAGA

39,414,050–39,414,069 39,413,726–39,413,745

Wasf1 83767 10 - 426 ACCTTAATTTTTCCCCCTGG

CCTTTAAGAGAATTCAACACTACAAGC

40,938,327–40,938,353 40,938,052–40,938,071

Arfip2 76932 7 - 377 CACTCCCTGGCCAATGGCAT

AAAGGTTTATTCCTAGTGCTAG

105,635,631–105,635,652 105,635,940–105,635,959

Epha2 13836 4 miR-26a Wong et al. [12] UCAAGU 25 GGTGGTACAGATGTCCAACG

TCCAAGTTTCCCAGGCTCAGG

141,328,668–141,328,688 141,324,367–141,324,386

Ezh2 14056 6 Wong et al. [12] 247 GGAAATCCCTTGACATCTACTACC

TCAACAACAAGTTCAAGTATTC

47,530,528–47,530,553 47,530,275–47,530,296

Fbxl19 233902 7 - 809 GAGGAGCAATTGGGGATCCGAGTG

CCCATCTTTAAGCTGACATTTCC

127,768,896–127,768,920 127,768,418–127,768,441

Fbxl19 233902 7 - 780 GAGGAGCAATTGGGGATCCGAGTG

CCCATCTTTAAGCTGACATTTCC

127,768,896–127,768,920 127,768,418–127,768,441

Thrap3 230753 4 - 1211 GTTGAAACATTTTCAGATGT

CATCTGCCACTTCATTTATTG

126,164,086–126,164,106 126,164,370–126,164,389

a First line represent the forward primer sequence and position second line the reverse.
b Primers genomic positions were obtained by BLAT (UCSC genome browser) genome build GRCm38/mm10.
c To our knowledge these are not experimentally validated.
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Table S2: Overview of miRNA mmu-miR-22 targets with strict overlap between
the three prediction tools TargetScan, microCosm and PITA, including the in-
dividual P-value for association with mmu-miR-22 expression. The targets in
bold are those that were used in validation experiments.

Negative associations Positive associations

Entrez Symbol P-value Entrez Symbol P-value

83767 Wasf1 0.00415 12391 Cav3 0.03830
233902 Fbxl19 0.07967 67092 Gatm 0.05633
76932 Arfip2 0.12357 232087 Mat2a 0.06313
19159 Cyth3 0.13766 56323 Dnajb5 0.12344
67771 Arpc5 0.18739 30948 Bin1 0.14616
14815 Nr3c1 0.31383 104263 Kdm3a 0.21728
17536 Meis2 0.32297 66240 Kcne1l 0.36748
22329 Vcam1 0.34188 107271 Yars 0.36959
21345 Tagln 0.45586 216850 Kdm6b 0.52230
16852 Lgals1 0.47281 27281 Hrasls 0.54816
67074 Mon2 0.51303 70315 Hdac8 0.54844
230596 Prpf38a 0.54665 380916 Lrch1 0.55348
108112 Eif4ebp3 0.55761 234964 Ccdc67 0.57421
67877 Naa20 0.57213 229700 Rbm15 0.58935
231887 Pdap1 0.66938 13831 Epc1 0.60787
219094 Khnyn 0.76520 17257 Mecp2 0.69782
75770 Brsk2 0.90336 276952 Rasl10b 0.75741
12226 Btg1 0.97314 16918 Mycl1 0.78415

18285 Odf1 0.78714
245469 Pdzd4 0.82422
239318 Plcxd3 0.87587
56349 Net1 0.96627
12978 Csf1r 0.97297
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Table S3: Overview of miRNA mmu-miR-133a targets with strict overlap be-
tween the three prediction tools TargetScan, microCosm and PITA, including
the individual P-value for association with mmu-miR-133a expression. The tar-
gets in bold are those that were used in validation experiments. The underlined
targets could not be cloned.

Negative associations Positive associations

Entrez Symbol P-value Entrez Symbol P-value

108013 Celf4 0.00224 19272 Ptprk 0.00593
17300 Foxc1 0.00895 19228 Pth1r 0.12300
13017 Ctbp2 0.00962 216190 Appl2 0.35621

29813 Zfp385a 0.01417 78593 Nrip3 0.47936
56195 Ptbp2 0.02202 243312 Elfn1 0.48227
76932 Arfip2 0.02642 216549 Aftph 0.52637
56526 Sept6 0.03019 14167 Fgf12 0.54326
23873 Faim 0.03089 21854 Timm17a 0.57684
19671 Rce1 0.04030 108071 Grm5 0.82700
13345 Twist2 0.04046 19277 Ptpro 0.87367
19052 Ppp2ca 0.05338 13803 Enc1 0.93127
13639 Efna4 0.05490 226896 Tcfap2d 0.99817
70122 Mllt3 0.07573 99326 Garnl3 0.99828
21873 Tjp2 0.08822
223870 Senp1 0.09540
13681 Eif4a1 0.14082
17925 Myo9b 0.14631
66940 Shisa5 0.14670
17886 Myh9 0.14858
105522 Ankrd28 0.18061
14573 Gdnf 0.18734
19053 Ppp2cb 0.19079
74442 Sgms2 0.21377
83675 Bicc1 0.22581
72587 Pan3 0.26695
12757 Clta 0.28853
66500 Slc30a7 0.39067
22218 Sumo1 0.40243
66588 Cmpk1 0.40671
217214 Nags 0.55364
69257 Elf2 0.63642
76787 Ppfia3 0.66704
242667 Dlgap3 0.80598
224530 Acat3 0.80903
16873 Lhx5 0.86312
56389 Stx5a 0.86889
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Table S4: Overview of miRNA mmu-miR-26a targets with strict overlap be-
tween the three prediction tools TargetScan, microCosm and PITA, including
the individual P-value for association with mmu-miR-26a expression. The tar-
gets in bold are those that were used in validation experiments. The underlined
targets could not be cloned.

Negative associations Positive associations

Entrez Symbol P-value Entrez Symbol P-value

230753 Thrap3 0.00975 232288 Frmd4b 0.01550

15402 Hoxa5 0.01171 215814 Ccdc28a 0.02566
14163 Fgd1 0.01818 27402 Pdhx 0.04878

18753 Prkcd 0.03200 22057 Tob1 0.04902
59027 Nampt 0.03455 60613 Kcnq4 0.05639

15234 Hgf 0.03738 11535 Adm 0.05794
233902 Fbxl19 0.04957 22652 Mkrn3 0.06351

18578 Pde4b 0.05925 320538 Ubn2 0.07083
68732 Lrrc16a 0.06011 18712 Pim1 0.07706
23873 Faim 0.07397 234875 Ttc13 0.09932

264064 Cdk8 0.08502 77044 Arid2 0.10003
66197 Cks2 0.09182 22065 Trpc3 0.11484

15446 Hpgd 0.13005 30928 Zfp238 0.12068
72549 Reep4 0.18209 231290 Slc10a4 0.14205

13836 Epha2 0.18782 213753 Zfp598 0.16269
66980 Zdhhc6 0.20504 229488 Fam160a1 0.17340
52708 Zfp410 0.22480 320213 Senp5 0.17368

14056 Ezh2 0.23016 231051 Mll3 0.17701
16647 Kpna2 0.23713 74132 Rnf6 0.18469

242466 Zfp462 0.31819 16650 Kpna6 0.19984
233833 Tnrc6a 0.41264 231600 Chfr 0.22044
12018 Bak1 0.44428 19212 Pter 0.23132

235441 Usp3 0.59153 208177 Phldb2 0.24115
217154 Stac2 0.60107 99167 Ssx2ip 0.25254

13445 Cdk2ap1 0.61613 76608 Hectd3 0.31757
66695 Aspn 0.69023 71795 Pitpnc1 0.32328

503610 Zdhhc18 0.73335 19893 Rpgr 0.39004
77128 A930001N09Rik 0.78505 227446 2310035C23Rik 0.41007
17532 Mras 0.89128 228983 Osbpl2 0.49724

100019 Mdn1 0.90387 74159 Acbd5 0.49863
192285 Phf21a 0.51123

22241 Ulk1 0.51187
17125 Smad1 0.51643
225055 Fbxo11 0.52365

238130 Dock4 0.53668
106369 Ypel1 0.53955

58242 Nudt11 0.54688
71069 Stox2 0.56330

14479 Usp15 0.56787
67071 Rps6ka6 0.64564
407823 Baz2b 0.67234

19266 Ptprd 0.68593
71673 Rnf215 0.71344

13831 Epc1 0.76169
269275 Acvr1c 0.76807
15112 Hao1 0.95523
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Table S5: Number of predicted miRNA:mRNA pairs, unique miRNAs and
unique mRNAs for the prostate cancer data using the additional features of
our approach a) strict versus partial overlap, b) reversing the model. For both
approach we also summarized the results when only looking at the negative
associations.

Strict Overlap Partial Overlap

Original model Reversed model Original model Reversed model
all negative all negative all negative all negative

pairs 1732 809 1653 775 13098 6229 12978 6187
miRNA 175 154 203 172 223 212 286 269

mRNA 1128 588 961 523 4845 3086 3876 2642
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Table S6: Overview of miRNA target pairs with strict overlap between the three
databases TargetScan, Microcosm and PITA using the original model
strict overlap original model.txt

Table S7: Overview of miRNA target pairs with strict overlap between the three
databases TargetScan, Microcosm and PITA using the reversed model
strict overlap reversed model.txt

Table S8: Overview of miRNA target pairs with partial overlap between the
three databases TargetScan, Microcosm and PITA using the original model
partial overlap original model.txt

Table S9: Overview of miRNA target pairs with partial overlap between the
three databases TargetScan, Microcosm and PITA using the reversed model
partial overlap reversed model.txt

These tables are available from http://www.humgen.nl/bioinf/iterson_

et_al_2013_suppl_tables6-9.zip
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Table S10: Similarities and differences between recently proposed gene set methods for the integrated analysis of miRNA and
mRNA expression data.

Bossel Ben-Moshe et al.[4] Engelmann et al.[6] van Iterson

Method: Pearson correlation LARS (LASSO) global test
Target predictions: PITA, TargetScan, miRanda microCosm, TargetScan, DI-

ANA/microT and doRiNA
(formely PicTar)

microCosm, PITA and Tar-
getScan

Differential expressiona: fold-change filter no no
Modelb: - mRNA ∼ miRNA, miRNA ∼

mRNA
miRNA ∼ mRNA, mRNA ∼

miRNA
Setsc: mRNA miRNA, mRNA mRNA, miRNA
Overlap: separate partial strict or partial
Associationd: both separate both both
Hypothesis teste: no no yes
Rankingf : yes - yes
Additional featuresg: weightsh non-canonical non-canonical, confounding,

weights, permutations
- Indicates that this features is not meaning full for this method e.g. the method of Artmann uses a single target prediction
tool so we can not speak about strict or partial overlap.
a Some methods first conduct a differential expression analysis on the miRNA and mRNA data, separately.
b Either the miRNA expression profiles are used as the responses in a linear model (miRNA ∼ mRNA) or the mRNA expression
profiles (mRNA ∼ miRNA).
c All methods use in silico predicted targets to define gene sets, either miRNAs targeting the same gene or targets of the same
miRNA.
d Some methods specifically test the association of up-regulated miRNAs with down-regulated mRNAs.
e Some methods require the computationally intensive bootstrapping in order to obtain p-values, others can directly calculate
p-values using a theoretical null distribution.
f Our proposed method not only ranks the miRNA but also the targets.
g Some methods have specific additional features that others do not have, although these could be added, in principle, to the
other methods as well.
h A GSEA-like approach is used were correlations and weights are combined.
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