Supplementary data for

The genetic code constrains yet facilitates Darwinian evolution

Elad Firnberg and Marc Ostermeier

Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218 USA

Supplementary Text

Strength of the TEM-1 adaptive mutations for tazobactam and cefotaxime

resistance. A comparison with previously reported adaptive mutations for tazobactam resistance indicates that the selective conditions we utilized to identify tazobactam resistance alleles restricts against adaptive mutations with a small effect (15). For the cefotaxime resistance mutations, we compared our list of adaptive amino acid substitutions with Schenk et al's (41) extensive list of 48 cefotaxime resistance adaptive point mutations identified from an error prone PCR library of TEM-1. Twenty of our 30 amino acid substitutions are unique to our result, and many of these have either not been previously reported or are not previously known to confer resistance in isolation (42). Our selection readily identified all seven adaptive amino acid substitutions previously shown to confer a >3-fold improvement in resistance (41). We find 26 of the 28 possible codon substitutions that can give rise to these seven amino acids substitutions, suggesting our list contains $\sim 93\%$ of all of adaptive alleles with >3-fold improvement in resistance. We identify some substitutions previously shown to confer between 2.6 and 3-fold improvement, and do not identify any substitutions shown to confer <2.6-fold improvement. Substitutions with a \leq 3-fold effect represent 85% of the adaptive point mutations (41). In summary, our selection identified a large set of adaptive alleles conferring about 2.5-fold or greater improvement in cefotaxime resistance, which we estimate to be the fittest 15% or more of all adaptive alleles with a single codon substitution

References

- 15. Firnberg, E. and Ostermeier, M. (2012) PFunkel: efficient, expansive, userdefined mutagenesis. *PLoS One*, **7**, e52031.
- 41. Schenk, M.F., Szendro, I.G., Krug, J. and de Visser, J.A. (2012) Quantifying the adaptive potential of an antibiotic resistance enzyme. *PLoS Genet*, **8**, e1002783.
- 42. Salverda, M.L., De Visser, J.A. and Barlow, M. (2010) Natural evolution of TEM-1 beta-lactamase: experimental reconstruction and clinical relevance. *FEMS Microbiol Rev*, **34**, 1015-1036.

Supplementary Fig. S1. Distribution of fitness effects of codon substitutions in (**A**, **B**) *HB36.4* and (**D**, **E**) *HB80.3* determined using codon enrichment values for experimentally observed codon substitutions. The distribution is partitioned into codon changes with 1-, 2-, and 3-base changes. The red dashed vertical line indicates the enrichment value of the parental genes, and the blue dashed horizontal bar indicates the fraction of all possible mutations of the gene that are point mutations. The difference between Fig. 2 and this figure is that in Fig. 2, the amino acid enrichment values from Whitehead et al. (17) were used and all the synonymous codon substitutions that could encode an amino acid substitution (whether they were present in the library or not) were assigned the same enrichment value. In this figure, only experimentally observed codon substitutions with >100 counts in the unselected library were included, and the enrichment values were calculated on an individual codon basis. (**E**) Median enrichment values for types of codon substitutions.

Colony	For position	s 42-104-182-238	MIC ^a (µg/ml)				
Colony	Amino acids	Codons	Replicate 1	Replicate 2	Replicate 3	Median	
-	No TEM-1 gene		0.08	0.08	0.08	0.08	
TEM-1	A-E-M-G	gca-gag-atg-ggt	0.08	0.08	0.08	0.08	
GKTS	G-K-T-S	gga-aag-acg-agt	90.5	90.5	90.5	90.5	
	ì		ì	r			
43, 48	G-K-M-A	ggg-aag-atg-gcg	90.5	90.5	90.5	90.5	
24	G-K-M-S	ggg-aag-atg-tca	45.3	45.3	64	45.3	
2	G-K-K-A	ggg-aag-aag-gct	64	64	128	64	
6		gga-aag-acg-gct	90.5	90.5	128	90.5	
34	G-K-T-A	ggg-aag-acg-gcg	181	181	181	181	
9		ggg-aag-aca-gcc	128	181	181	181	
32	G-K-T-S	ggg-aag-acg-tcg	90.5	64	128	90.5	
1	G-K-A-A	ggg-aag-gcg-gct	90.5	90.5	128	90.5	
38	CVAS	ggg-aag-gcg-agc	64	64	90.5	64	
16	U-K-A-5	ggg-aag-gcc-agc	90.5	90.5	90.5	90.5	
14		ggg-aag-cag-gca	90.5	90.5	128	90.5	
5, 31	G-K-Q-A	ggg-aag-cag-gcc	64	64	64	64	
7, 15		ggc-aag-caa-gca	90.5	128	128	128	
46	G-K-S-A	ggg-aag-agc-gct	181	128	90.5	128	
33	G-K-S-S	ggg-aaa-agt-agt	90.5	64	128	90.5	
3	CPSS	ggg-cgg-agc-tcg	64	64	90.5	64	
45, 49	U-K-3-3	ggt-aga-tct-tcg	181	128	128	128	

Supplementary Table S1. Replicate cefotaxime resistance of *TEM-1* alleles by plate assay

^a Plate MIC assays performed in $\sqrt{2}$ increments of cefotaxime (Mueller-Hinton-agar, 10⁴ CFU/spot, 35°C for 20 hours).

Colony	For position	s 42-104-182-238	MIC ^a (µg/ml)				
	Amino acids	Codons	Replicate 1	Replicate 2	Replicate 3	Median	
-	No TEM-1 gene		0.08	0.08	0.08	0.08	
TEM-1	A-E-M-G	gca-gag-atg-ggt	0.08	0.08	0.08	0.08	
GKTS	G-K-T-S	gga-aag-acg-agt	2048	4096	2048	2048	
43, 48	G-K-M-A	ggg-aag-atg-gcg	2048	2048	2048	2048	
24	G-K-M-S	ggg-aag-atg-tca	2048	2048	2048	2048	
2	G-K-K-A	ggg-aag-aag-gct	2048	2048	2048	2048	
6		gga-aag-acg-gct	2048	2048	2048	2048	
34	G-K-T-A	ggg-aag-acg-gcg	2048	2048	2048	2048	
9		ggg-aag-aca-gcc	2048	2048	2048	2048	
32	G-K-T-S	ggg-aag-acg-tcg	4096	4096	4096	4096	
1	G-K-A-A	ggg-aag-gcg-gct	2048	2048	2048	2048	
38	CKAS	ggg-aag-gcg-agc	4096	2048	2048	2048	
16	U-K-A-5	ggg-aag-gcc-agc	2048	2048	2048	2048	
14		ggg-aag-cag-gca	2048	2048	2048	2048	
5, 31	G-K-Q-A	ggg-aag-cag-gcc	2048	2048	2048	2048	
7, 15		ggc-aag-caa-gca	2048	2048	2048	2048	
46	G-K-S-A	ggg-aag-agc-gct	2048	2048	2048	2048	
33	G-K-S-S	ggg-aaa-agt-agt	2048	2048	2048	2048	
3	CPSS	ggg-cgg-agc-tcg	2048	2048	2048	2048	
45, 49	0-6-3-3	ggt-aga-tct-tcg	2048	2048	2048	2048	

Supplementary Table S2. Cefotaxime resistance of TEM-1 alleles by liquid assay

^a Liquid MIC assays performed in 2-fold cefotaxime increments (Mueller-Hinton broth, 5x10⁵ CFU/culture, 35°C for 20 hours)

		Cefotaxime MIC ^a (µg/ml)					
	Codon						
Allele	Substitutions	Replicate 1	Replicate 2	Replicate 3	Median		
AEMG	0	0.06	0.08	0.08	0.08		
GEMG	1	0.08	0.06	0.08	0.08		
AKMG	1	0.08	0.11	0.16	0.11		
AEQG	1	0.08	0.08	0.08	0.08		
AEMA	1	0.32	0.32	0.32	0.32		
GKMG	2	0.32	0.32	0.32	0.32		
GEQG	2	0.06	0.08	0.08	0.08		
GEMA	2	1.81	1.81	1.81	1.81		
AKQG	2	0.11	0.23	0.23	0.23		
AKMA	2	10.24	10.24	10.24	10.24		
AEQA	2	0.32	0.45	0.45	0.45		
GKQG	3	0.32	0.32	0.32	0.32		
GKMA	3	115.85	115.85	115.85	115.85		
GEQA	3	1.81	2.56	2.56	2.56		
AKQA	3	10.24	10.24	10.24	10.24		
GKQA	4	115.85	115.85	115.85	115.85		

Supplementary Table S3. Replicate cefotaxime resistance of *TEM-1* alleles for Figure 1.

^aMIC assays performed in $\sqrt{2}$ increments of cefotaxime (Mueller-Hinton-agar, 10⁴ CFU/spot, 35°C for 20 hours).

Supplementary Table S4 Median enrichment value of adaptive mutations as a function of the number of base changes in the codon.

	Median enrichment value				
Gene	Δ1-base	$\Delta 2$ -bases	Δ 3-bases		
HB36.4	0.933	1.172	1.192		
HB80.3	0.956	1.025	1.285		

Ambler	co	don	amino acid		occurrences
position	WT	mutated	WT	mutated	
69	atg	tgc	М	С	1
	0	tgt			1
104	gag	aag	Е	K	12
	8-6	atg		M	2
		coo		R	3
164	cat	955	R	Δ	1
104	Ugi	gea	K	<i>П</i>	1
		gcg			1
		gei		D	1
		gac		D	1
		gai		C	3
		ggc		U	<u> </u>
		ggg			5
		ggt			5
		cac		Н	1
		cat			17
		aac		N	7
		agc		S	1
		agt			11
		tca			2
		tcg			14
		tct			3
166	gaa	ссс	Е	Р	1
	0	ccg			1
171	gaa	gta	Е	V	2
	8	gtt			1
		tat		Y	2
172	acc	cac	А	Н	3
172	Bee	cat	11	11	<u> </u>
		cat		P	1
		cca		1	2
		eee			2
		CCI		т	<u> </u>
		aca		I	<u> </u>
		acc		3.7	5
		tac		Y	4
•••		tat	~		l
238	ggt	gca	G	A	1
		gcc			2
		gcg			4
		gct			3
		gac		D	1
		gat			16
		gaa		Е	2
		gag			3
		aac		N	1
		aat			1
		agc		S	2
		agt			45
		tca		1	2
		tcc		1	1

Supplementary Table S5. Experimentally identified adaptive codon substitutions for cefotaxime resistance in *TEM-1*

		tcg			3
		tct			2
		aca		Т	2
		act			1
240	gag	gca	Е	Α	1
		gcg			3
		gct			1
		gga		G	8
		ggc			9
		ggg			20
		ggt			10
		cca		Р	1
		ccg			8
		cct			2
		agc		S	5
		agt			1
		tca			2
		tcc			1
		tcg			1
		tct			1
		aca		Т	1
		act			1
241	cgt	cca	R	Р	15
		ссс			13
		ccg			25
		cct			13
243	tct	ggc	S	G	3
		ggg			1

		Number of amino acid substitutions in protein substitutions in protein substitutions in protein		Enrichment of			
Gene	Adaptive advantage	All	Accessible with a 1-bp substitution	All	Accessible with a 1-bp substitution	adaptive amino acids ^a (%)	p-value ^b
TEM-1	cefotaxime resistance	5434	1687	30	13	39.6	0.106
TEM-1	tazobactam resistance	5434	1687	19	8	35.6	0.210
HB36.4	hemagglutinin binding	932	309	127	55	30.6	0.0066
HB80.3	hemagglutinin binding	964	312	83	27	0.51	0.531
Variable for calculations		Ν	m	n	k		

Supplementary Table S6. Enrichment of adaptive amino acid substitutions by the genetic code.

^aenrichment =
$$\left[\frac{\frac{k}{n} - \frac{m}{N}}{\frac{m}{n}}\right] \times 100\%$$

^bcalculated from a hypergeometric distribution: $P(x = k) = \frac{\binom{m}{k}\binom{N-m}{n-k}}{\binom{N}{n}}$