1 Supplemental Material

- 2 MicroRNA-329 suppresses angiogenesis by targeting CD146
- 3 Ping Wang^{1,2}, Yongting Luo¹, Hongxia Duan^{1,2}, Shu Xing^{1,2}, Jianlin Zhang^{1,2}, Di Lu¹,
- 4 Jing Feng¹, Dongling Yang¹, Lina Song¹, Xiyun Yan^{1,*}
- 5 ¹ Key Laboratory of Protein and Peptide Pharmaceutical, CAS-University of Tokyo Joint
- 6 Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese
- 7 Academy of Sciences, 15 Datun Road, Beijing 100101, China
- 8 ² University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049,
- 9 China

10 ***Corresponding author:**

- 11 Xiyun Yan
- 12 Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101,
- 13 China
- 14 E-mail: <u>yanxy@ibp.ac.cn</u>
- 15 Tel: +86 10 64888583
- 16 Fax: +86 10 64888584
- 17

Table S1 Primer sequences.

Table S1 Primer sequences

<u>underlined</u> = mutations bold = re	bold = restriction sites				
Primers for cloning		Primer sequence (5' to 3')			
CD146 for pCR3.1-CD146-3'UTR	Sense	CCC AAGCTT ATGGGGCTTCCCAGGCTG			
	Antisense	CCGGAATTCCTACTTGTCATCGTCATC			
CD146 3'UTR for pCR3.1-CD146-3'UTR	Sense				
	Antisense				
CD146 3 UTR for Luc-3 UTR	Anticonco				
CD146 3'UTR-Mut-N1	Sense				
	Antisense				
CD146 3'UTR-Mut-N2	Sense	CGGGTGTGTGTGTCTGTCTCACACAATGCATACATATGTGTGTG			
	Antisense	ATATACACACATATGTATGCAT <u>TGTG</u> AGACAGACACACACACCCG			
CD146 3'UTR-Mut-N3	Sense	GTGTGTATGCATACATAT <u>CACACA</u> ATATATGGTTTTGTCAGGTG			
	Antisense	CACCTGACAAAACCATATAT <u>TGTGTG</u> ATATGTATGCATACACAC			
CD146 3'UTR-Mut-N4	Sense	TGTGTGTATATATGGTTTTGT <u>GTCCACACA</u> AAATTTGCAAATTGTTTCCTT			
	Antisense				
CD 146 3 0 TR-Mul-P4	Sense Antisansa				
	Antiochise				
Primers for qRT-PCR		Primer sequence (5' to 3')			
CD146	Sense	TCAACGGCACGGCAAGTG			
	Antisense	AGGCCGTGCATTCAACACC			
VEGF	Sense	GAGGGCAGAATCATCACGAA			
ICAM-1	Sense				
	Antisense	GTCCAGTTTCCCGGACAA			
IL-8	Sense	AAGAAACCACCGGAAGGAACC			
	Antisense	GTGTTGGCGCAGTGTGGTC			
MMP-2	Sense	AGTCTGAAGAGCGTGAAG			
	Antisense	CCAGGTAGGAGTGAGAATG			
MMP-9	Sense	AACCAATCTCACCGACAG			
	Antisense	AAAGGCGTCGTCAATCAC			
GAPDH	Sense				
mCD146	Sansa				
	Antisense	GGGAGTTGGAGGCTGTACACTCTGCACC			
mGAPDH	Sense	CTCACTCAAGATTGTCAGCA			
	Antisense	GTCTTCTgGGTGGCAGTGAT			
Primers for ChIP		Primer sequence (5' to 3')			
	0				
SITE 1	Sense				
site 2	Sense	TCATGGTTGATGTCTGACTTGTGCA			
	Antisense	GGTAGCCCATCTCACACAAATCCCT			
site 3	Sense	AGGGATTTGTGTGAGATGGGCTACC			
	Antisense	AGAGGTGGACATTGGTATAAACAGA			
site 4	Sense	CATTGAAGAGTTGCTTTCCTGTGTTGA			
	Antisense	AGGAGTTGTTTTGGTCAACCACCTCCCTA			
site 5	Sense	GCTTTGTTCATGAAGATGGCATGGTGGTTA			
cite C	Antisense				
SILE U	Antisonco				
site 7	Sense				
	Antisense	GCGTAGCGTAGTCAACCACGTCATT			
site 8	Sense	AAAAGGGTTCAGCCACACTGCATGTC			
	Antisense	TACCCCGAGGCAGTACTTGTACCAGAA			
site 9	Sense	GTTGGCCATGCTTCATATGTTTTAC			
	Antisense	CAGCACAAAGGAGCCCCTCAAGAAT			

Table S2 Screening for miRNAs regulating CD146.

Color	Inhibition			Regulation of CD146	Regulation of			
	0	No.	miRNAs	in endothelium tested	CD146 3'UTR tested			
	10%-30%			by western blot	by luciferase assay			
	30%-50%	1	miR-17					
	50%-80%	2	miR-93					
		3	miR-106a					
		4	miR-106b					
		5	miR-20b					
		6	miR-20a					
		7	miR-92a					
		8	let-7a-2					
		9	let-7d					
		10	miR-221					
		11	miR-122a					
		12	miR-34a					
		13	miR-96					
		14	miR-200b					
		15	miR-9					
		16	miR-24					
		17	miR-34c					
		18	miR-199a-5p					
		19	miR-107					
		20	miR-130a					
		21	miR-21					
		22	miR-31					
		23	miR-185					
		24	miR-25					
		25	miR-30c					
		26	miR-138-2					
		27	miR-143					
		28	miR-181a					
		29	miR-373					
		30	miR-342-5P					
		31	miR-527					
		32	miR-663					
		33	miR-632					
		34	miR-149					
		35	miR-329					

 Table S2

 Screening for miRNAs regulating CD146

Table S3 Algorithmic prediction of putative NF-κB binding sites within the miR-329

25 promoter.

putative binding sites	1	2	3	4	5	6	7	8	9		
start position from TSS	-2879	-2800	-2619	-2502	-2354	-2005	-1527	-468	-308		
end position from TSS	-2870	-2791	-2609	-2493	-2345	-1996	-1518	-459	-299		
sequence	GGCAATTTCT	GGGAGTTTTC	GGGGGACCCAC	AGGGTTTTCC	GGAAATGCCC	GGGACTTTCG	GGGAAATCGC	GGAAAGTCTCC	GGGGCTTTCT		

Table S3 Putative NF- κ B binding sites within the miR-329 promoter

26 TSS, transcription start site

29 FIG S1. Two screening strategies for miRNAs targeting endothelial CD146.

31 32

33 FIG S2. miR-329 down-regulates CD146 in HMECs. (A and B) Different doses of 34 miR-329 mimics or control miRNA (miR ctrl) were transfected into HMECs. The protein 35 and mRNA levels of CD146 were measured by western blot (A) or quantitative 36 real-time PCR (B), respectively. GAPDH was used as an internal control. The mRNA 37 expression was relative to that in HMECs transfected with control miRNA. (C and D) 38 miR-329 inhibitor (anti-miR-329) or control anti-miRNA (anti-miR ctrl) (50 nM) was 39 transfected into HMECs. The protein and mRNA expression of CD146 were analyzed 40 by western blot (C) or quantitative real-time PCR (D), respectively. GAPDH was used 41 as an internal control. The mRNA expression was relative to that in HMECs transfected 42 with control anti-miRNA. **P<.01, ***P<.001. Error bars represent ± s.d. Data are 43 representative of three independent experiments.

45

46

47 **FIG S3.** miR-329 does not impair TNF-α-induced NF- κ B activation. NF- κ B activation 48 (NF- κ B p65 phosphorylation and I κ B α degradation) induced by TNF- α was determined 49 by western blot after HUVECs were transfected with miR-329 or co-transfected with 50 CD146 ORF (open reading frame without a 3'UTR). GAPDH was used as an internal 51 control for I κ B α . Total p65 served as an internal control for p-p65.

FIG S4. miR-329 regulates CD146 expression in HUVECs. (A) HUVECs were transfected with anti-miR-329 or co-transfected with CD146 siRNA as indicated. The expression of CD146 was measured by western blot. GAPDH served as an internal control. (B) HUVECs were transfected with miR-329 or co-transfected with CD146 ORF (open reading frame without 3'UTR) as indicated. Protein levels of CD146 were determined by western blot. GAPDH was used as an internal control. **P*<.05, ***P*<.01, ****P*<.001. Results are presented as the mean ± s.d. of three independent assays.

61

53

63

64 FIG S5. miR-329 inhibits VEGF- and TNF- α -induced endothelial cell tube formation 65 and migration. VEGF-induced cell migration (A) or tube formation (B) was measured 66 after HUVECs were transfected with miR-329 or co-transfected with CD146 ORF. The 67 number of migrated cells or the length of the vessels was measured from 3 68 independent assays. TNF- α -induced cell migration (C) or tube formation (D) was determined in HUVECs with transfections as indicated. The number of migrated cells 69 70 or the length of the vessels was quantified and presented in the histogram. *P<.05, **P<.01, ***P<.001. Results are presented as the mean ± s.d. of three independent 71 72 assays.