SUPPLEMENTAL FIGURES AND TABLES

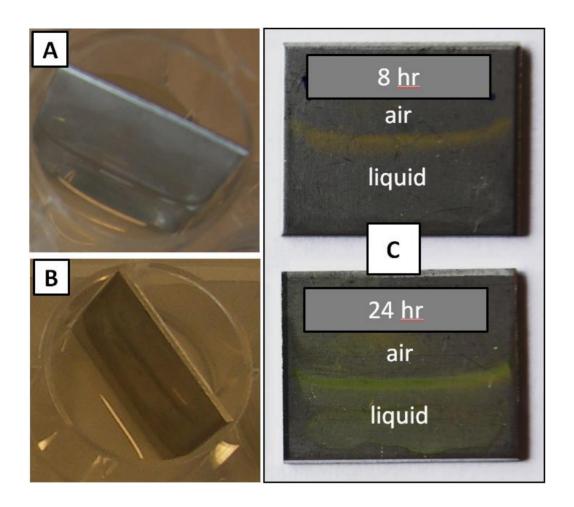
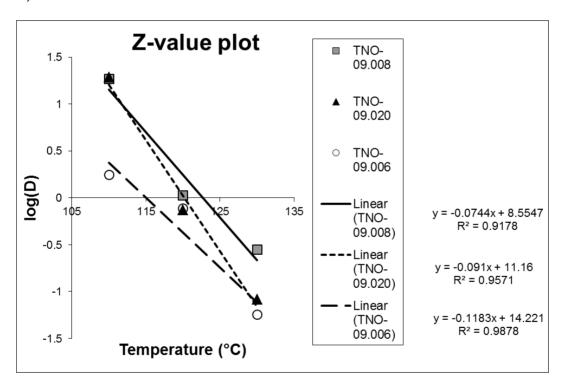



Figure S1. Standing steel biofilm model system. *Geobacillus thermoglucosidans* TNO-09.020 was cultured for 24h at 65°C. **(A)** Culture well with tryptone medium and stainless steel (SS) coupon. **(B)** Same well after 24h culturing: horizontal biofilm visible on washed SS coupon. **(C)** Auramine-stained coupons were harvested, washed and stained after 8 or 24 hours of culturing. The submerged and air-exposed parts of the coupons have been indicated (liquid air)

A)

Inactiv. Temp.	Strain	Kmax	Nres	D	R square
	TNO-09.006	1.25	3.11	2	0.9643
110 °C	TNO-09.008	0.13	1	18	0.9872
	TNO-09.020	0.12	1	19	0.8921
	TNO-09.006	3.01	2.92	0.8	0.9924
120 °C	TNO-09.008	2.19	4.03	1.1	0.9546
	TNO-09.020	3.09	5.01	0.8	0.9786
	TNO-09.006	40.34	2.08	0.06	0.9788
130 °C	TNO-09.008	8.24	1.49	0.28	0.9892
	TNO-09.020	27.88	2.22	0.08	0.9775

B)

C)

Strain	slope	Z	R square
TNO-09.006	-0.0744	13	0.9178
TNO-09.008	-0.091	11	0.9571
TNO-09.020	-0.1183	8	0.9878

Figure S2. Heat inactivation kinetics of spores from thermophilic strains

The heat inactivation kinetics of spores isolated in this study indicated by (A) D-values and other inactivation equation parameters, (B) linear logD/temperature equations, and (C) their slopes and Z-values. The D-values of the spore batches were derived from plots with log CFU versus incubation time by fitting the following log-linear model with tail to the data by using Excel add-in GlnaFiT:

$$logN_t = (logN_0 - logN_{res}) * exp(-k_{max} * t) + logN_{res}$$

In which log N_t is the spore count at a certain time point, $log N_0$ is the spore count at t=0, $log N_{res}$ is the number of spores in the tail and kmax is the inactivation constant. The D-value was derived by $\mathbf{D=In(10)/k_{max}}$. In case of no tailing ($log N_{res} = 0$), the model was reduced to a log-linear inactivation model. The z-values were calculated by plotting the log D value against the temperature and performing a linear regression. The z-value was calculated by $\mathbf{z=-1/slope}$.

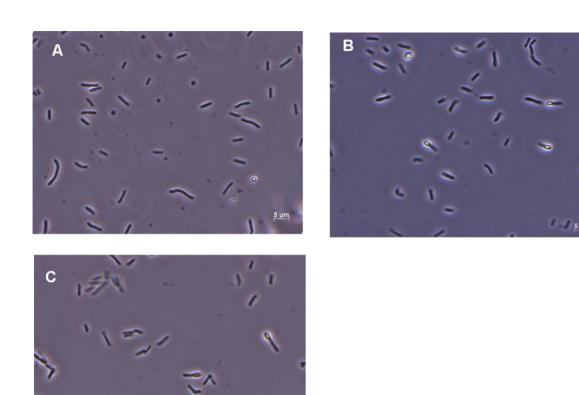


Figure S3. Phase-contrast micrographs of thermophilic sporeformers.

Planktonic cells and spores of the 3 thermophilic spore forming isolates. A)

Anoxybacillus flavithermus TNO-09.006; B) Geobacillus stearothermophilus

TNO-09.008; C) Geobacillus thermoglucosidans TNO-09.020.

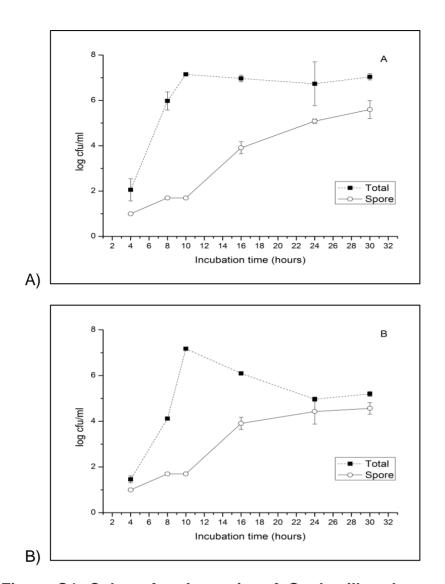


Figure S4. Colony forming units of *Geobacillus thermoglucosidans* TNO-09.020 in the standing steal biofilm system.

Graphical representation of bacterial counts development (CFU/ml) in the static standing steal biofilm system with 1% Tryptone at 60 °C. The 2 panels represent (A) the planktonic cells from the medium and (B) biofilm cells from the steel coupon. The total CFUs were determined, vegetative cells and spores (■), and for the same samples treated for 30 min at 100 °C, allowing spore counts (O). Means and standard deviations from 3 replicate static culture systems are shown.

			Concen-	Log(CFU/ml)		
Sample description	Id	Temperature in factory	tration or volume	Total 30 °C	Total 55°C	Spore 55 °C
M1 (Standard milk)	M1	4 °C	undiluted	7.0	3.0	2.0
M2 (Standard milk)	M2	4 °C	undiluted	4.5	3.3	1.1
Pipeline 1	i01	75 °C	0.07 g/ml	8.7	5.0	4.0
Pipeline 2	i02	75 °C	1.5 ml	8.7	4.0	4.0
Pipeline 3	i03	75 °C	0.33 g/ml	6.0	5.0	4.0
Pipeline 4	i05	75 °C	1.5 ml	2.0	4.0	3.0
Evaporator 1	i06	65 °C	1.0 g/ml	8.0	4.0	2.0
Evaporator 2	i07	65 °C	1.0 g/ml	6.1	3.4	3.0
Pasteur	i08	68 °C	0.90 g/ml	6.0	3.0	3.0
Tank	i09	45 °C	1.0 g/ml	8.0	4.0	3.0
Tankfilter	i10	37 - 45 °C	1.0 g/ml	7.0	3.0	2.0
Drying tower	i11	60 °C	0.15 g/ml	7.0	3.0	2.0
Dairy concentrates	i14	20 - 60 °C	0.10 g/ml	2.1	2.2	<1.8
Dairy concentrates	i15	20 - 60 °C	0.10 g/ml	<2.1	1.8	1.8

Table S1. Colony forming units of dairy factory samples used in this study.

Medium	Temperature	Fraction	Log(cfu) / Fraction
		medium	5.7
	55°C	steel	5.4
M2 (standard		well	5.5
milk)		medium	3.3
	65°C	steel	1.6
		well	2.1
M3 (Standard milk)		medium	5.4
	55°C	steel	5.5
		well	5.6
	65°C	medium	6.3
		steel	4.8
		well	5.8
Evaporator (i7)		medium	7.0
	55°C	steel	5.5
		well	5.4
	65°C	medium	5.7
		steel	4.2
		well	4.7

Table S2. Colony forming units of enrichments at 55°C and 65°C.

Standard milk (M1 and M2) or sterile milk inoculated with industrial fouling from a whey evaporator (i07) was cultured O/N at 55 or 65°C in plastic culture wells containing standing steel coupons (static biofilm model). The table shows the CFUs in the different fractions in the biofilm system: fraction in the medium (2 ml), on the stainless steel surface, and attached on the plastic well.