Supplemental Data

Osteoclast-secreted Cthrc1 in the coupling of bone resorption to formation

Sunao Takeshita, Toshio Fumoto, Kazuhiko Matsuoka, Kyoung-ae Park, Hiroyuki Aburatani, Shigeaki Kato, Masako Ito and Kyoji Ikeda

Supplemental Figure 1 *Cthrc1* expression in osteoclasts cultured on dentin The results of microarray analysis on the mRNA for calcitonin receptor (*Calcr*) and *Cthrc1*. RNA was isolated from bone marrow macrophages (BMM), mononuclear TRAP-positive pre-osteoclasts (pOC), multinucleated TRAP-positive mature osteoclasts on a plastic plate (mOCp) and multinucleated TRAP-positive mature osteoclasts on dentin (mOCd), and subjected to gene expression analysis using Affymetrix Gene Chip.

Supplemental Figure 2 *Cthrc1* expression in chondrocytes

100µm

In situ hybridization revealed prominent expression of the *Cthrc1* transcript in chondrocytes in the mouse embryo at E14.5 (**A**) and also in postnatal growth plate at 3 months old (**B**). In A, the areas indicated by the black boxes are magnified in panels 1-5. A sense probe served as the negative control.

Sense Cthrc1

Anti-Cthrc1

С

Anti-Cathepsin K

DAPI

Merge

Supplemental Figure 3 *Cthrc1* is expressed in mature osteoclasts

(A) The *Cthrc1* transcript in multinucleated osteoclasts on trabecular bone (black arrow) in vivo by in situ hybridization (ISH) and co-staining with TRAP (red arrow). Sense *Cthrc1* probe served as the negative control. Note that the *Cthrc1* transcript was not detected in osteoblasts lining the bone surface (blue arrows) or osteocytes embedded inside the bone (yellow arrows). Scale bar; 10 μ m. (B) Cthrc1 was not detected in osteoblasts (blue arrows) on trabecular bone surface. Scale bar; 50 μ m. (C) Immunocytochemical detection of CTHRC1 protein in bone resorbing osteoclasts. Multinucleated mature osteoclasts were culutred on dentin slice and were stained with rabbit anti-CTHRC1 antibody or mouse anti-cathepsin K monoclonal antibody, and then with FITC-conjugated anti-rabbit IgG or Cy3-conjugated anti-mouse IgG and DAPI.

Supplemental Figure 4 Molecular structure of CTHRC1

(A) Molecular structure of CTHRC1 together with adiponectin and the complementC1q. (B) Western blotting analysis of CTHRC1. Recombinant CTHRC1 wasloaded and analyzed under reducing (R) and non-reducing (N) conditions.

Supplemental Figure 5 *Cthrc1* expression in osteoclasts

Osteoclasts were cultured in the presence of 40 mM CaCl₂, 32 mM MgCl₂, 20 mM Na₃PO₄, or 200 μ M GdCl₃ for 24 hours. RNAs were extracted and real time PCR was performed for *Cthrc1* expression. **p*<0.05, ***p*<0.01, ****p*<0.001 (n=3 each group)

Supplemental Figure 6 Cthrc1 stimulates the chemotaxis of stromal and osteoblastic cells

(A) Chemotaxis of stromal ST2 cells toward CTHRC1 and/or WNT3A was assessed using an EZ-TAXIScan[™] (Effector Cell Institute, Tokyo), as described in the Methods section. (B,C) The Cultrex 96 Well Cell Migration Assay Kit (Trevigen,

Inc. Gaithersburg, MD, USA) was used to assess the migration of ST2 cells (**B**) and calvaria-derived primary osteoblasts (**C**), as described in the Methods and Methods. Recombinant CTHRC1 protein was applied at 2 μ g/ml and 80 ng/ml in (**B**) and (**C**), respectively. *p<0.05 (n=3 each group)

Supplemental Figure 7 Generation of osteoclast-specific *Cthrc1* knockout mice

(A) Genotyping of the flox and excised (exon 2) allele ($\Delta E2$) at the *Cthrc1* gene locus. Ctr indicates the control tail DNAs from the wild-type (+/+), flox/+ (F/+) and flox/flox (F/F) mice. NC and PC indicate the negative and positive controls, respectively. Bone marrow macrophages (BMM) and osteoclasts (OC) were prepared from each mice and genomic DNAs were extracted. PCR was performed using primers listed in Table 1S. (B) Demonstration of the specific deficiency of the expression of the *Cthrc1* gene, but not the calcitonin receptor (*Calcr*), in osteoclasts generated ex vivo from conditional KO in osteoclasts (ΔOC) as well as systemic KO (sKO) mice.

Supplemental Figure 8 Alendronate reduces bone turnover

The serum CTX and osteocalcin (Ocn) concentrations were measured after 12-week-old male C57BL/6 mice were treated with alendronate (ALN) (1 mg/kg BW) 5 times a week for 4 weeks. *p < 0.05, **p < 0.01 (n=3 each group).

with aging \Rightarrow

normal

Supplemental Figure 9 Model for osteoclast-derived Cthrc1 in the coupling from bone resorption to formation

Cthrc1 production is reduced with aging or following alendronate treatment, which impairs the differentiation and/or recruitment of osteoblastic/stromal cells, thereby resulting in insufficient bone formation and reduced bone mass.

For general PCR	
Gene	Forward primer (5'-3')
	Reverse primer (5'-3')
Calcr	CATTCCTGTACTTGGTTGGC
	AGCAATCGACAAGGAGTGAC
Cthrc1	AAGCAGTGTTCGTGGAGT
	GTCCTTCCACAGAGGAAGT
Ctsk	GGAAGAAGACTCACCAGAAGC
	GTCATATAGCCGCCTCCACAG
Ctsk-cre	TTATTCCTTCCGCCAGGATG
	TAGTTTTTACTGCCAGACCG
ΔE2 Cthrc1	CGTTGGGTGAGGGAATTTGAGC
	GTCAGCACATTACCTATCCTG
Flox Cthrc1	GGGAAAATTGCGGTAAGTAAAGCCC
	GTCAGCACATTACCTATCCTG
Gapdh	ACTTTGTCAAGCTCATTTCC
	TGCAGCGAACTTTATTGATG
For real-time PCR	
Acp5	CGTCTCTGCACAGATTGCAT
	AAGCGCAAACGGTAGTAAGG
Alp	GAGTGAGCGCAGCCACAGA
	TGTGACCTCATTGCCCTGAGT
Ap2	AAGAGAAAACGAGATGGTGACAA
	CTTGTGGAAGTCACGCCTTT
Bglap	CTGACAAAGCCTTCATGTCCAA
	GGTAGCGCCGGAGTCTGTT
Calcr	CCTTCCAGAGGAGAAGAAACC
	GGAGATTCCGCCTTTTCAC
Col1a1	CGTCTGGTTTGGAGAGAGCAT
	GAGCCCTCGCTTCCGTACT
Cthrc1	AAGCAAAAAGCGCTGATCC
	CCTGCTGGTCCTTGTAGACAC
Ctsk	CTCCATCGACTATCGAAAGAAAG
	AAAGCCCAACAGGAACCAC
Gapdh	AGCTTGTCATCAACGGGAAG
	TTTGATGTTAGTGGGGTCTCG

Supplemental Table 1 Primers for PCR

Lpl	CTCGCTCTCAGATGCCCTAC
	GGTTGTGTTGCTTGCCATT
Pparg	GAAAGACAACGGACAAATCACC
	GGGGGTGATATGTTTGAACTTG
Runx2	TGCCCAGGCGTATTTCAG
	TGCCTGGCTCTTCTTACTGAG
Sp7	TCCCATTCTCCCTCCTCT
	GGACTGGAGCCATAGTGAGC