Supplementary Information for

Caffeine Junkie: an unprecedented GST-dependent oxygenase required for

caffeine degradation by P. putida CBB5

Ryan M. Summers¹, Jennifer L. Seffernick², Erik M. Quandt³, Chi Li Yu¹, Jeffrey E. Barrick³, Mani V. Subramanian^{1*}

¹Center for Biocatalysis and Bioprocessing and Department of Chemical and Biochemical Engineering, The University of Iowa, Coralville, IA 52241, USA.

² Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, St. Paul, MN 55108, USA.

³Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712, USA.

*Correspondence should be addressed to Mani Subramanian (manisubramanian@uiowa.edu)

SUPPLEMENTARY METHODS

Determination of the full *ndmE* and *orf9* sequences. All PCR primers in this study (Table S3) were purchased from Integrated DNA Technologies (Coralville, IA). The theoretical peptide sequence of the known 5' end of *ndmE*, previously reported as incomplete orf8 (Summers et al., 2012), comprised 123 amino acids. The remaining 3' end of the ndmE gene and sequence 3'- to *ndmE* were obtained by sequencing two DNA fragments generated by PCR amplification from an EcoRI genomic DNA library (Summers et al., 2012). A BlastP search of the 123 N-terminal amino acids of NdmE revealed two highly homologous glutathione-S-transferase proteins: Gst9 from Janthinobacterium sp. Marseille (GenBank accession no. YP_001355366, E-value of 2×10^{-58}) and G1E_06908 from *Pseudomonas* sp. TJI-51 (ZP_08139011, E-value of 2×10^{-53}). An alignment of the two sequences revealed matching peptide sequences near the C-terminus (PGFTVMSGIFP, residues 198 to 208 of both proteins) with nearly identical DNA sequences. A degenerate reverse primer, gstdegR2, was designed from the DNA sequence encoding peptides 202 through 208 of both proteins. Primer gst-degR2 was used with primer gst-F1 and a thermal profile of 10 s at 98°C, 30 s at 55°C, and 15 s at 72°C for 35 cycles to generate an approximately 400 bp DNA fragment. This PCR product was gel-purified and directly sequenced. The 5' end of the PCR product completely matched the 3' end of the known *ndmE* sequence, while the 3' end brought the total known *ndmE* sequence to 620 bp. The stop codon was still missing from the incomplete *orf*8.

A nested PCR approach was used to amplify the missing 3' end of *ndmE* and an additional 1.3 kb of DNA 3' to *ndmE*. Two specific forward primers, gst-F3 and gst-F4, and two specific reverse primers, Marcy and Marcy2, were designed from the incomplete *ndmE*

ORF and the vector backbone of pUC19-Kan (Summers *et al.*, 2012). Using primers gst-F3 and Marcy2, a primary PCR reaction was run using the *EcoRI* genomic DNA library as a template with *Taq* DNA polymerase and a thermal profile of 30 s at 95°C, 30 s at 60°C, and 3 min at 72°C for 35 cycles. Then, 1 μ L of the primary PCR reaction was used as a template in a second round of PCR with primers gst-F4 and Marcy and *Taq* DNA polymerase. A thermal profile of 30 s at 95°C, 30 s at 60°C, and 1.75 min at 72°C for 35 cycles was used in the second round of PCR, resulting in amplification of an approximately 1.6 kb PCR product. Control PCR reactions using either gst-F4 or Marcy primers alone did not yield this 1.6 kb PCR product. DNA sequencing of the gel-purified 1.6-kb PCR product revealed the missing 3' end of *ndmE* and an additional ORF 3' to *ndmE*, designated as *orf9* (Fig 1A).

Deletion of *ndmC*, *ndmD*, and *ndmE* genes. CBB5 strains with a single gene deletion were created by the method of Link *et al.* (7) to create a truncated gene comprising the first and last 21 bp (14 amino acids total) of the gene of interest (GoI). The sequence starting between 600-800 bp upstream of the GoI and including the first 21 bp of the GoI was PCR-amplified using primers NdmX-KO-NF and NdmX-KO-NR (reaction N), where NdmX is either NdmC, NdmD, or NdmE. Similarly, the sequence downstream of the gene of interest, starting with the last 21 bp of the GoI and ending between 600-800 bp downstream of the GoI and ending between 600-800 bp downstream of the GoI was PCR-amplified using primers NdmX-KO-NF and NdmX-KO-CF and NdmX-KO-CR (reaction C). A thermal profile of 10 s at 98°C, 30 s at 58°C, and 30 s at 72°C for 35 cycles was used for both reaction N and C. Upon completion, reactions N and C were mixed 1:1 (v/v) and used as a template for a secondary PCR reaction with a thermal profile of 10 s at 98°C, 30 s at 58°C, and 60 s at 72°C for 35 cycles. This secondary PCR reaction resulted in a DNA insert with desired restriction sites at each end and the truncated GoI in the middle. The

PCR-amplified insert was digested with EcoRI and either BamHI (for the *ndmC* and *ndmD* knock outs) or XbaI (for the *ndmE* knock out) and ligated to the pEX18Gm plasmid previously cut with the same restriction enzymes, resulting in plasmids pCKO, pDKO, and pEKO.

Electrocompetent CBB5 cells were prepared by first growing overnight at 30°C and 225 rpm in a modified M9 medium supplemented with 0.4% soytone and 0.25% caffeine (M9CS medium) (Yu *et al.*, 2009). When the optical density at 600 nm (OD₆₀₀) reached 1.0-1.3, cells were incubated on ice for 10 min, followed by centrifugation at 4,000 g for 10 min at 4°C. Cells were then subsequently washed in 50, 25, and 12.5 mL 1 mM HEPES (pH = 7.5), and ultimately suspended in 200 μ L 1 mM HEPES (PH = 7.5). Between 1-2 μ g plasmid pCKO, pDKO, or pEKO were added to 40 μ L freshly prepared electrocompetent CBB5 and transformed in a 2 mm cuvette using 2.5 kV, 25 μ F, and 200 Ω . Transformed cells were rescued 1 h at 30°C in 1 mL SOC, plated on agar plates containing M9 salts, 4 g·L⁻¹ soytone, 3 g·L⁻¹ glucose, and 2.75 g·L⁻¹ ammonium chloride (M9SGN medium) with 5 μ g·mL⁻¹ gentamycin (Gm), and incubated 2 days at 30°C. The pEX18Gm plasmid cannot replicate in CBB5. Therefore, any resultant transformants must have integrated the plasmid into the chromosome *via* crossover with the sequence flanking the GoI.

One of each transformant was grown overnight in 5 mL M9SGN containing 5 μ g·mL⁻¹ Gm at 30°C and 225 rpm. About 5 μ L of overnight culture was then inoculated into 5 mL M9SGN without antibiotic and cultured at 30°C and 225 rpm for 20-24 h to allow for removal of the plasmid from the chromosome. These cell cultures without antibiotic were plated on LB agar containing 5% sucrose and incubated overnight at 30°C. Any resultant cells growing on the plates with 5% sucrose must have excised the plasmid, as presence of

the *sacB* gene would have toxic effects in the presence of sucrose. Because removal of the plasmid could result in either gene deletion or reversion to the native genotype, colonies were screened by PCR using primers flanking the GoI. Each gene deletion was confirmed by sequencing of PCR-amplified DNA.

Cloning of *ndm* **genes.** Forward primer ndmC-F-NdeI and reverse primer ndmC-R-XhoI were used for PCR amplification of *ndmC* from CBB5 genomic DNA using a thermal profile of 10 s at 98°C, 30 s at 58°C, and 30 s at 72°C for 30 cycles. The 0.8-kb PCR product was digested with NdeI and XhoI and ligated to the plasmid pET32a(+) previously digested with NdeI and XhoI, producing plasmid p32CHis. Primers ndmE-F-NdeI and ndmE-R-EagI were used to amplify *ndmE* from CBB5 genomic DNA with a thermal profile of 10 s at 98°C, 30 s at 58°C, and 30 s at 72°C for 35 cycles. The PCR product was digested with NdeI and EagI and ligated into the pET28a(+) plasmid previously cut with NdeI and EagI, producing plasmid p28HisE. The *ndmCDE* genes were PCR-amplified from CBB5 genomic DNA using primers ndmC-F-NdeI and ndmE-R-EagI with a thermal profile of 10 s at 98°C, 30 s at 58°C, and 105 s at 72°C for 35 cycles. The approximately 3.3-kb PCR product was digested with NdeI and EagI and ligated to the pET28a(+) plasmid previously digested with NdeI and EagI, resulting in plasmid p28HisCDE.

The *ndmA* and *ndmB* genes were cloned into the pACYCDuet-1 plasmid for coexpression with His₆-NdmCDE. *ndmA* was PCR amplified from CBB5 genomic DNA using primers NdmA-F-NcoI and NdmA-R-BamHI with a thermal profile of 10 s at 98°C, 30 s at 58°C, and 75 s at 72°C for 35 cycles. The approximately 1.1-kb PCR product was digested with NcoI and BamHI and ligated to pACYCDuet-1 previously cut with NcoI and BamHI, resulting in plasmid dA0. The NcoI and NdeI restriction sites were removed from *ndmB* using the procedure described in the QuikChangeII site-directed mutagenesis kit (Stratagene, Santa Clara, CA). PCR primers Bsdm-NcoI-F and Bsdm-NcoI-R were used with plasmid pET32-ndmB-His (Summers *et al.*, 2012) as template in the first round of site-directed mutagenesis to produce plasmid p32BHis-sdm1. This plasmid was then used as template for a second round of site-directed mutagenesis with primers Bsdm-NdeI-F and Bsdm-NdeI-R to produce plasmid p32BHis-sdm2. *ndmB* was PCR amplified from p32BHis-sdm2 using primers NdmB-F-NdeI and NdmB-R-KpnI. The resulting 1.1-kb PCR product was digested with NdeI and KpnI and ligated to plasmid dA0 previously cut with NdeI and KpnI, resulting in plasmid dAB.

Fig. S1. NdmAB do not complex with His₆-NdmCDE. (A) SDS-PAGE of Ni-eluted fractions. Lane M, MW ladder with size of peptides shown on the left; L, sample loaded on the column; W, unbound protein washed from the column; E, bound protein eluted from the column; S, Sephacryl S200-purified His₆-NdmCDE loaded as a standard. Fraction E contained NdmC activity, but was not active toward caffeine or 7-methylxanthine. Fraction W alone was not active toward caffeine, theobromine, or 7-methylxanthine. The size of His₆-NdmC (lanes E and S) is slightly smaller than that of NdmB (lane W). (B) Cell extracts of *E. coli* expressing His₆-NdmCDEAB (lane L) consumed 500 μ M caffeine (\blacksquare) in 180 min and 500 μ M theobromine (\blacktriangle) or 7-methylxanthine ($\textcircled{\bullet}$) in less than 60 min. No *N*-demethylation activity was detected in unbound protein (lane W). Bound and eluted protein (lane E) converted 148.3 μ M 7-methylxanthine to xanthine, but was not active toward caffeine or theobromine.

Fig. S2. (A) His₆-NdmCDE consumed 89.3 \pm 7.5 μ M oxygen for N_7 -demethylation of 96.7 \pm 6.2 μ M 7-methylxanthine. (B) Michaelis Menten plot for kinetic determination of His₆-NdmCDE toward 7-methylxanthine. The apparent K_m and k_{cat} values of His₆-NdmCDE for 7-methylxanthine in 50 mM KP_i (pH 7.5) and 30°C were 15.3 \pm 2.3 μ M and 9.4 \pm 0.3 min⁻¹.

Fig. S3. Characterization of 7-methyluric acid produced from 7-methylxanthine by single gene knock out strains of *P. putida* CBB5. (A) HPLC chromatogram of the CBB5 Δ *ndmD* reaction at 24 h analyzed at 269 nm. Peak i, 7-methylxanthine; peak ii, 7-methyluric acid. (B) UV spectra of the 7-methylxanthine (blue) and 7-methyluric acid (red) peaks from the chromatogram in part A (peaks i and ii, respectively).

Fig. S4. A schematic representation of predicted electron flow through the 7-methylxanthine N_7 -demethylation components in the caffeine degradation pathway of *P. putida* CBB5 based on that observed in other RO systems (*39*). The circles represent individual proteins. Two electrons are transferred from NADH to the FMN-containing FNR domain in NdmD (red). One electron at a time is transferred to the C-terminal ferredoxin domain of NdmD (green), which shuttles the electron to the NdmD N-terminal oxygenase Rieske domain (blue). The electrons finally transfer to the iron in the oxygenase alpha subunit (NdmC, pink), which can then N_7 -demethylate 7-methylxanthine to produce xanthine. NdmE (cyan) is required for function and may be involved in complex assembly.

Protein(s) Expressed	% Soluble ^a NdmC	% Soluble ^a NdmD	% Soluble ^a NdmE
NdmC	0	N. A.	N. A.
NdmD	N. A.	<10%	N. A.
NdmE	N. A.	N. A.	0
NdmCD	0	<10%	N. A.
NdmCE	0	N. A.	0
NdmDE	N. A.	<10%	0
NdmCDE	>50%	>50%	>50%

Table S1. Apparent solubility of NdmCDE expressed in different combinations in *E. coli* BL21(DE3).

^a% Soluble protein was determined by comparing the soluble and insoluble protein bands observed by SDS-PAGE.

Organism ^a	Plasmid	Accession and GI Numbers			
	encoded	1 st NdmC	2 nd NdmC	NdmD	NdmE
Pseudomonas putida CBB5	No	JQ061129	-	AFD03119	KC778191
		379334193		379334196	
Janthinobacterium sp.	No	YP_001355368	-	YP_001355367	YP_001355366
Marseille		152981996		152981877	152981788
Klebsiella pneumoniae subsp.	No	ZP_18487397	-	ZP_18487398	ZP_18487399
pneumoniae WGLW2		425084301		425084302	425084303
<i>Pseudomonas</i> sp. TJI-51 ^b	draft	ZP_08139009	-	ZP_08139010	ZP_08139011
		325272654		325272655	325272656
Mesorhizobium alhagi	No	ZP_09296067	ZP_09296068	ZP_09296069	ZP_09296070
CCNWXJ12-2		359793307	359793308	359793309	359793310
Mesorhizobium australicum	No	YP_007302813	YP_007302814	YP_007302815	YP_007302816
WSM2073		433772346	433772347	433772348	433772349
Mesorhizobium ciceri biovar	No	YP_004141258	YP_004141259	YP_004141260	YP_004141261
biserrulae WSM1271		319781782	319781783	31978178	319781785
Oceanicola sp. S124	No	ZP_09518460	-	ZP_09518461	ZP_09518462
		372282424		372282425	372282426
Octadecabacter arcticus 238	No	ZP_05063840	-	ZP_05068329	ZP_05062978
		254450403		254454892	254449541
Sinorhizobium medicae	plasmid pSM	YP_001314498	-	YP_001314497	YP_001314496
WSM419		150377903		150377902	150377901
1st -Sinorhizobium meliloti	pSymA	NP_436402	NP_436401	16263607	NP_436399
1021		16263609	16263608	NP_436400	16263606
2nd - Sinorhizobium meliloti	pSymA	NP_436064	NP_436063	NP_436062	NP_436061
1021		16263271	16263270	16263269	16263268
Sinorhizobium meliloti AK83	chromosome 3	AEG57528	AEG57527	AEG57526	AEG57525
		334099519	334099518	334099517	334099516
Sinorhizobium meliloti	pSINMEB01	YP_005718215	YP_005718214	YP_005718213	YP_005718212
BL225C		384532611	384532610	384532609	384532608
Sinorhizobium meliloti	Draft-	ZP_12973398	ZP_12973399	ZP_12973400	ZP_12973401

 Table S2: Protein accession and GI numbers for NdmCDE gene clusters.

CCNWSX0020	contig00009	418399852	418399853	418399854	418399855
	Not				
	determined				
Sinorhizobium meliloti GR4	pRmeGR4c	YP_007192877	YP_007192878	YP_007192879	YP_007192880
		433616082	433616083	433616084	433616085
Sinorhizobium meliloti Rm41	pSYMA	YP_006814644	YP_006814643	YP_006814642	YP_006814641
		407691060	407691059	407691058	407691057
Sinorhizobium meliloti SM11	pSmeSM11c	AEH81905	AEH81906	AEH81907	AEH81908
		336035974	336035975	336035976	336035977

^aThese are the only 18 organisms in the Genbank with an *ndmCDE* gene cluster as of March 11, 2013. ^bThe *ndmD* homolog in *P. putida* TJI-51does not contain an annotated N-terminal Rieske. The annotated start site is potentially wrong, as an upstream start site has the Rieske domain included. Proteins from this organism are not included in the phylogenetic trees.

Primer	DNA sequence
gst-degR2	5'-TGGRAAAATCCCCGACATBAC-3'
gst-F1	5'-TAAGAGCTGCTACTGGTACC-3'
gst-F3	5'-CGTGCCCGAGATTTGTTGAG-3'
gst-F4	5'-CGCAGACATCGCCTGTTTCC-3'
Marcy	5'-CAGGAAACAGCTATGACC-3'
Marcy2	5'-GTTAGCTCACTCATTAGGCACC-3'
NdmC-KO-NF	5'-CCCTTT <u>GGATCC</u> AAATCGCGGTCGCCCAATTGCGAGG-3'
NdmC-KO-NR	5'-TTAGTCCCGCAGAGCACCATAAATTACTTGGTCAGTAGACAT-3'
NdmC-KO-CF	5'-ATGTCTACTGACCAAGTAATTTATGGTGCTCTGCGGGACTAA-3'
NdmC-KO-CR	5'-CCCCCC <u>GAATTC</u> AAGTTCGTATCCTGGACGTCCCGGA-3'
NdmD-KO-NF	5'-CCCTTT <u>GGATCC</u> CAGTGAGATGTTCGATATTGCAGAG-3'
NdmD-KO-NR	5'-GCCTCACAGATCGAGAACGATTTTGTTGACGTCAAGTTTGTTCACGGC-3'
NdmD-KO-CF	5'-GCCGTGAACAAACTTGACGTCAACAAAATCGTTCTCGATCTGTGAGGCC-3'
NdmD-KO-CR	5'-CCCCCC <u>GAATTC</u> ATAGAAAAACAAGTCATGTAATCGCGCGG-3'
NdmE-KO-NF	5'-TTGACG <u>GAATTC</u> CGAGGAACGGTTTTCCAC-3'
NdmE-KO-NR	5'-CTATGCACTCACCCGTCGCGCATAGTCATAGAGTGTAATCACGG-3'
NdmE-KO-CF	5'-GTGATTACACTCTATGACTATGCGCGACGGGTGAGTGCATAG-3'
NdmE-KO-CR	5'-CCACTG <u>TCTAGA</u> AATAAGCGAGCACGCATC-3'
ndmC-F-NdeI	5'-GCGGCC <u>CATATG</u> TCTACTGACCAAGTAA-3'
ndmC-R-XhoI	5'-TTTAAT <u>CTCGAG</u> GTCCCGCAGAGCACCATA-3'
ndmE-F-NdeI	5'-GGCGCG <u>CATATG</u> ATTACACTCTATGACTATG-3'
ndmE-R-EagI	5'-ATTTTA <u>CGGCCG</u> TTATGCACTCACCCGTCGCG-3'
NdmA-F-NcoI	5'-GCAAGGT <u>CCATGG</u> AGCAGGCGATCATCAATGATGA-3'
NdmA-R-BamHI	5'-CCTCCG <u>GGATCC</u> TTATATGTAGCTCCTATCGCTT-3'
NdmB-F-NdeI	5'-GCAAGGT <u>CATATG</u> AAAGAACAGCTCAAGCCGCTGC-3'
NdmB-R-KpnI	5'-CCGCCG <u>GGTACC</u> TTACTGTTCTTCTTCAATAAC-3'
Bsdm-NcoI-F	5'-CCAGTGGGCACGGCCCAATGGGCGTCACCTTGC-3'
Bsdm-NcoI-R	5'-GCAAGGTGACGCCCATTGGGCCGTGCCCACTGG-3'
Bsdm-NdeI-F	5'-GGATAATCAACCTGATCACATGCACCTGGCTTTCC-3'
Bsdm-NdeI-R	5'-GGAAAGCCAGGTGCATGTGATCAGGTTGATTATCC-3'

Table S3. PCR Primers used in this study. Restriction sites are underlined, and mutations are italicized.