1 Supplemental data to

2

## 3 Time-Delayed in vivo Assembly of Subunit a into Preformed

- **4** Escherichia coli F<sub>0</sub>F<sub>1</sub>-ATP Synthase
- 5
- Britta Brockmann, Kim Danielle Koop genannt Hoppmann, Henrik Strahl, Gabriele
  Deckers-Hebestreit
- 8

9 Abteilung Mikrobiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, D-49069
10 Osnabrück, Germany

| 2         |                |                      |                                                  |                 |
|-----------|----------------|----------------------|--------------------------------------------------|-----------------|
| 3 Pi      | rimer<br>umber | Primer               | Sequenz $(5' \rightarrow 3')$                    | Annealing       |
| 4 III<br> | umoer          | liame                |                                                  |                 |
| 5<br>6    | 1              | RT3-s                | CAG GCG CAG GCG GAA ATT G                        | 1626-1645       |
| 7         | 2              | atpF-rev             | CCG TAA TAA ATT CAG ACA TCA GCC CC               | 1821-1796       |
| 8         | 3              | atpA1-for            | GCG AAC TGA TCA AGC AGC GC                       | 2374-2393       |
| 9 4       | 4              | RT6-as               | ACC CAT AAC AAC CGC ACC TAC                      | 2579-2559       |
| D         | 5              | rpsL-for             | GGT ACG CAA ACC ACG TGC TCG                      |                 |
| 1         | 6              | rpsL-rev             | CAG GTT GTG ACC TTC ACC ACC                      |                 |
| 2 ′       | 7              | atpI-KpnI-for        | CGT GGG TTT TGG TAC CGG TGG TTC AG               | 85-110          |
| 3         | 8              | atpI-KpnI-rev        | CTG AAC CAG CGG TAC CAA AAC CCA CG               | 110-85          |
| 4         | 9              | D atpB s             | GCT GGT GGA TCC ACA AAA CCC                      | 235-255         |
| 5         | 10             | D atpB as            | GCG CGG GAT CCA CTG TGA CCA C <b>T</b> A CGG     |                 |
| 6         |                | - 1 -                | CAA C                                            | 868-838         |
| 7         | 11             | D atpB11 s           | CGC AGG ATT A <b>G</b> A TAG GAC ACC             | 177-197         |
| 3         | 12             | D atpB11 as          | GGT GTC CTA TCT AAT CCT GCG                      | 197-177         |
| 9         | 13             | $\Delta atpB-s$      | GTA ATT AAC AAC AAA GGG TAA TTT ACC              |                 |
| 0         |                |                      | AAC ACT ACT ACG                                  | 126-146/971-988 |
| 1         | 14             | ∆atpB-as             | CGT AGT AGT GTT GGT AAA TTA CCC TTT              |                 |
| 2         |                |                      | GTT GTT AAT TAC                                  | 988-971/146-126 |
| 3         | 15             | atpB-AseI            | GAA GAA CAT TAA TTT ACC AAC                      | 959-979         |
| 4         | 16             | atpF-C21A            | GGC TGC CAT TAA TGG CGG CCA TAC GTA              |                 |
| 5         |                | 1 I                  | CTT CAT G <b>GC</b> GAA CAG AAC G                | 1413-1368       |
| 6         | 17             | pET22-atpB-NdeI      | <i>GAG ATA TAC AT</i> A TGG CTT CAG AAA ATA      |                 |
| 7         |                |                      | TGA CG                                           | 155-175         |
| 8         | 18             | pET22-atpB-EcoRI     | GGA GCT CGA ATT CTT AAT GTT CTT CAG              |                 |
| 9         |                |                      | ACG CC                                           | 970-952         |
| 0         | 19             | pET-atpB-GTG-s-lang  | CTG AAG CCA CAT GTA TAT CTC CTT C                | 155-164         |
| 1 1       | 20             | pET-atpB-GTG-as-lang | <i>GAA GGA GAT ATA CAT</i> <u>G</u> TG GCT TCA G | 164-155         |
| 2 2       | 21             | pET-atpB-TTG-s-lang  | CTG AAG CCA <u>A</u> AT GTA TAT CTC CTT C        | 155-164         |
| 3         | 22             | pET-atpB-TTG-as-lang | <i>GAA GGA GAT ATA CAT</i> <b>T</b> TG GCT TCA G | 164-155         |
| 4         |                |                      | —                                                |                 |

## 1 TABLE S1 Primers for real-time RT-PCR and mutagenesis

Changes compared to the sequence of the wild type *atp* operon are in bold letters and underlined, whereas nucleotides of pET-22b are in italics. Numbering of the annealing region within the *atp* genes corresponds to plasmid pBWU13 starting with 1 at the second HindIII restriction site in *atpI*.

| Plasmid                         | Vector fragment       |                                  | Insert                      | Effect                        |
|---------------------------------|-----------------------|----------------------------------|-----------------------------|-------------------------------|
|                                 | Vector                | Vector or                        | Site(s) used for            |                               |
|                                 |                       | Template/Primer No. <sup>a</sup> | Cloning                     |                               |
|                                 |                       |                                  |                             |                               |
| pKH4 derivatives: atp ge        | enes are under        | control of the weak, cons        | stitutive <i>atp</i> promot | er P3                         |
| pBH12                           | pKH4                  | pBWU13                           | ScaI/EagI                   | WT atp operon                 |
| pBH13                           | pBH12                 | pBWU13 / 7+8                     | SspI                        | KpnI after P3 in <i>atpI</i>  |
| pBRO1                           | pBH13                 | pJGA1 / 7+8                      | HindIII/SphI                | $\Delta atpB$                 |
| pJS1                            | pBH13                 | pBH13 / 9+10                     | BamHI                       | aW231end                      |
| pKK1                            | pBH13                 | pBH13 / 11+12                    | SspI                        | aY11end                       |
|                                 |                       |                                  |                             |                               |
| pBWU13 derivatives: at          | p genes are un        | der control of the weak, c       | constitutive atp prop       | moter P3                      |
| pBH2                            | pSTK3                 | pKH4                             | BssHII/EagI                 | Cys-less, His <sub>6</sub> -β |
|                                 |                       |                                  |                             | atpG: - BsrGI (silent)        |
| pBH10                           | pBWU13                | pBH2                             | RsrII/PmeI                  | atpG: - BsrGI (silent)        |
| pJGA1                           | pBH10                 | pBWU13 / 13+14                   | HindIII/BsrGI               | $\Delta atpB$                 |
| pSTK3                           | pBWU13                | pBWU13 / 15+16                   | AseI                        | bC21A                         |
|                                 |                       |                                  |                             |                               |
| pBAD33 derivatives: atp         | p genes are und       | ler control of the arabinos      | se-inducible araBA          | D promoter                    |
| pBAD33.atp                      | pBAD33                | pBH13                            | KpnI/XbaI                   | WT atp operon                 |
| pBAD33.∆a                       | pBAD33.atp            | pJS1                             | KpnI/XbaI                   | aW231end                      |
| pBAD33.∆a2                      | pBAD33.atp            | pKK1                             | KpnI/XbaI                   | aY11end                       |
| pBAB33. $\Delta a3$             | pBAD33.atp            | pBRO1                            | KpnI/XbaI                   | $\Delta a t p B$              |
| 1                               | 1 1                   | 1                                | 1                           | 1                             |
| pET-22b derivatives: <i>atp</i> | <i>B</i> gene is unde | er control of the IPTG-ind       | ducible T7- <i>laco</i> pro | omoter                        |
| pET22-atpB                      | pET-22b               | pBWU13 / 17+18                   | NdeI/EcoRI                  | a, start codon ATG            |
| pET22-atpB-GTG                  | pET22-atpB            | pET22-atpB / 19+20               | NcoI/SpHI                   | a, start codon GTG            |
| pET22-atpB-TTG                  | pET22-atpB            | pET22-atpB / 21+22               | NcoI/SpHI                   | a, start codon TTG            |
|                                 | . 1                   |                                  | 1                           |                               |

## 1 TABLE S2 Construction of plasmids

<sup>a</sup> Primer sequences were listed with the corresponding number in Table S1.



1

Figure S1. Induction of the T7-laco promoter controlling the expression of *atpB* by IPTG. 2 DK8 transformed with pBAD33.atp, pET-22b, pT7POL26 (F<sub>0</sub>F<sub>1</sub>), and pBAD33.\Deltaa3, pET22-3 atpB, pT7POL26 (F<sub>0</sub>F<sub>1</sub>-a; ATG), respectively, was grown as described in Fig. 3B using IPTG 4 concentrations as indicated. Cells were harvested at OD = 0.8-1.0 and inverted membrane 5 vesicles were prepared. Upper panel, immunoblot analysis of membrane vesicles (20 µg 6 7 protein/lane). Immunolabeling was performed using monoclonal mouse anti-a (green) and polyclonal rabbit anti-b antibodies (red). Lower panel, ATP-driven proton translocation of 8 membrane vesicles measured via ACMA fluorescence quenching. The relative magnitude of 9 quenching induced by the addition of ATP is shown. 10



1

2 Figure S2. Induction of *araBADp* controlling expression of *atp* genes. Cells of *E. coli* DK8 transformed with pBWU13 (WT, control) and with pBAD33.atp, pET-22b, pT7POL26 3 (F<sub>0</sub>F<sub>1</sub>), respectively, were grown in LB medium supplemented with the corresponding anti-4 biotics and with arabinose or glucose concentrations as indicated. Cells were harvested at OD 5 = 0.8-1.0 and inverted membrane vesicles prepared. Upper panel, immunoblot analysis of 6 7 membranes (20 µg protein/lane). Immunolabeling was performed using monoclonal mouse anti-a (green) or polyclonal rabbit anti-b antibodies (red). Lower panel, ATP-driven proton 8 translocation of membrane vesicles measured via ACMA fluorescence quenching. The 9 relative magnitude of quenching induced by the addition of ATP is shown. ara, arabinose; glu, 10 glucose. 11

- 12
- 13



**Figure S3.** Degradation of *atp* mRNA after repression of *araBADp* controlling expression of *atpEFHAGDC* by glucose/D-fucose. DK8 carrying plasmids (A) pBAD33.atp, pET-22b, pT7POL26 ( $F_0F_1$ ) or (B) pBAD33. $\Delta a3$ , pET22-atpB-GTG, pT7POL26 ( $F_0F_1$ -*a*) was grown as described in Fig. 5. At each time point indicated, cells were harvested for isolation of total RNA. Real-time RT-PCR was performed using primer pair *atpE'F* (1/2). The amount of *atp* mRNA present in the samples grown in the presence of arabinose was set to 100 %. 100 % of  $F_0F_1$ -*a* corresponds to 54 % of  $F_0F_1$  for *atpE'F* (1/2).