#### **Supporting Information**

## Direct Conversion of Glycerol into Formic Acid via Water Stable Pd(II) Catalyzed Oxidative Carbon-Carbon Bond Cleavage

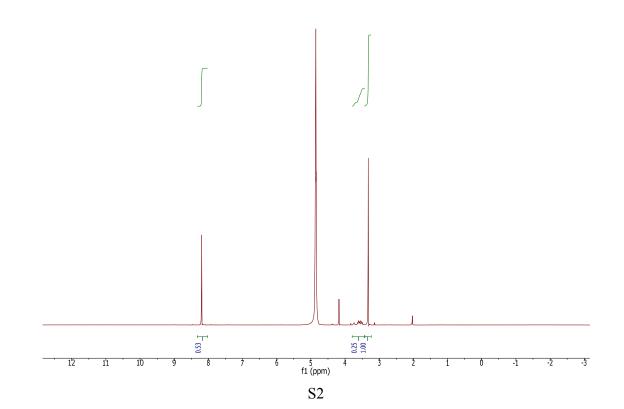
Prasanna Pullanikat, Joo Ho Lee, Kyung Soo Yoo, and Kyung Woon Jung\*

Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661

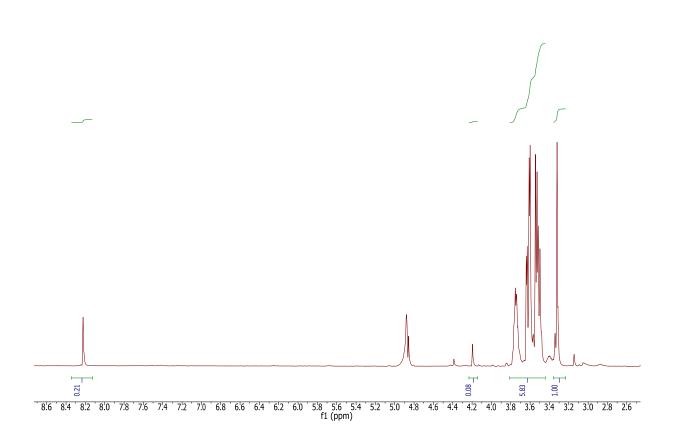
E-mail: <u>kwjung@usc.edu</u>

#### **Table of contents**

| 1. General Information                                                        | S2   |
|-------------------------------------------------------------------------------|------|
| 2. Catalytic oxidative carbon-carbon bond cleavage of glycerol (table 1)      | S2   |
| 3. Isotope labeled study of glycerol                                          | S4   |
| 4. Isotope labeled study of glycolic acid                                     | S7   |
| 5. Degradation of formic acid                                                 | S8   |
| 6. Optimization of reaction conditions                                        | S9   |
| 7. Figure 3. <sup>1</sup> H-NMR study for the degradation pathway of glycerol | -S10 |
| 8. References                                                                 | -S11 |


#### **1. General information**

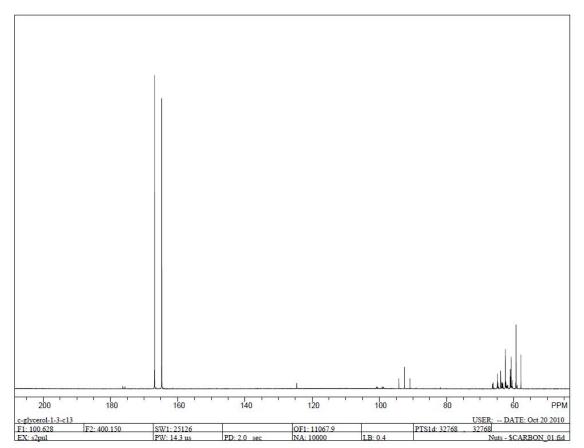
All commercially available reagents and solvents were used as received from Aldrich, Acros chemical and Mallinckrodt Chemicals without further purification. 2-<sup>13</sup>C and 1,3-<sup>13</sup>C glycerol were purchased from Isotope Lab. 1-<sup>13</sup>C glycolic acid and Pd complex **4** were prepared through the methods described in previous literatures.<sup>1,2</sup> <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on a 400MHz Varian instrument. Chemical shifts were reported in ppm relative to TMS for <sup>1</sup>H- and <sup>13</sup>C-NMR spectra while CDCl<sub>3</sub> and D<sub>2</sub>O were used as the NMR solvents. All the experiments were run in vials and stirred using magnetic stir bars. To collect NMR data for reaction mixtures in H<sub>2</sub>O solutions, the wet1D parameter was used. In addition, 1 or 2 µL methanol was added into the reaction mixture as an internal reference after the reaction.


# **2.** Catalytic oxidative carbon-carbon bond cleavage of glycerol with various oxidizing agents in the presence of Pd catalysts at room temperature (table 1).

Entries 1~3: Glycerol (10 mg, 10.8 x  $10^{-5}$  mol) and 5 mol% of Pd catalyst (entry 1: PdCl<sub>2</sub>, entry 2: Pd(OAc)<sub>2</sub>, and entry 3: 4) were placed in a 1 dram vial with a stir bar. After the addition of 30% H<sub>2</sub>O<sub>2</sub> (0.4 mL) and H<sub>2</sub>O (0.1 mL), the reaction vial was closed and the reaction mixture was stirred for 6 hours at ambient temperatures. For the NMR study, D<sub>2</sub>O (0.2 mL) and 1 µL of methanol were added into the reaction mixture. In the entry 4, *t*BuOOH (70% in H<sub>2</sub>O, 0.4 mL) was used instead of H<sub>2</sub>O<sub>2</sub>. Entries 5~6: 10.8 x 10<sup>-5</sup> mol of oxidant (entry 5: oxone, entry 6: K<sub>2</sub>S<sub>2</sub>O<sub>8</sub>) in 0.3 mL of H<sub>2</sub>O was used instead of H<sub>2</sub>O<sub>2</sub>. Entry 7: O<sub>2</sub> was bubbled in 0.3 mL of H<sub>2</sub>O solution of catalyst and glycerol.

#### <sup>1</sup>H wet1D NMR of table 1, entry 3




### <sup>1</sup>H wet1D NMR of table 1, entry 5



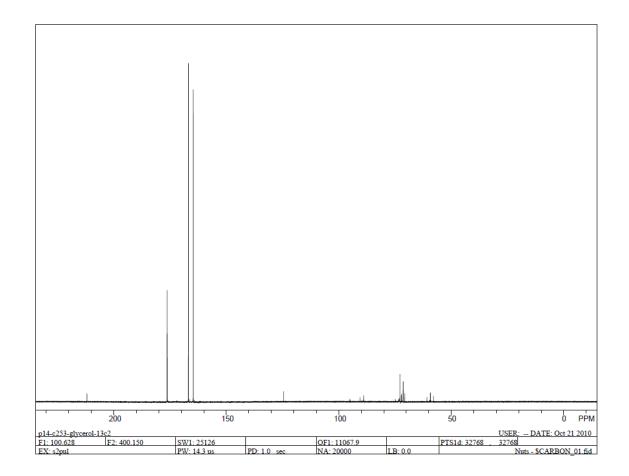
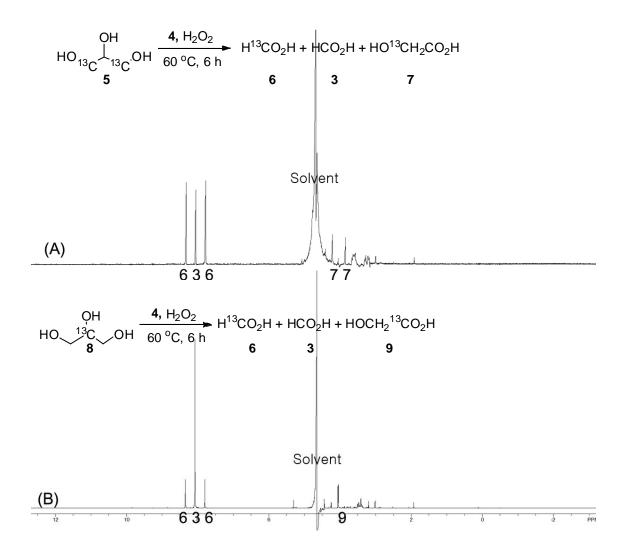
#### 3. Isotope labeled study of glycerol

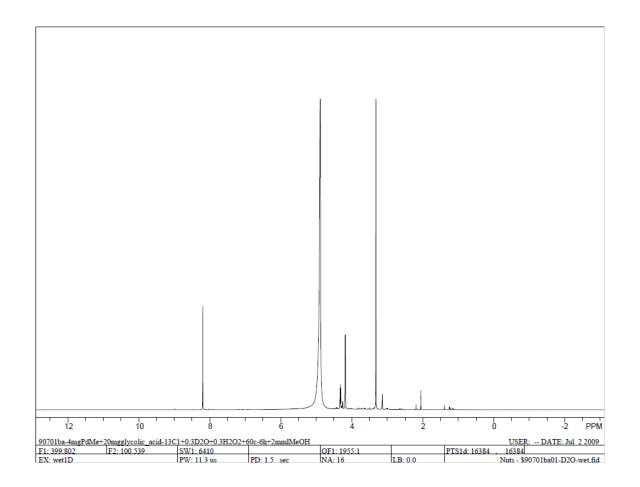
10 mg of <sup>13</sup>C-labeled glycerol (1,3 -<sup>13</sup>C (**5**) or 2-<sup>13</sup>C (**8**)) was placed in a one dram reaction vial with 4 mg of **4**. 0.4 mL of H<sub>2</sub>O<sub>2</sub> was added into the reaction mixture, which was placed on a 60 °C heating block for 6 hours. After the reaction, 0.2 mL of D<sub>2</sub>O and 1  $\mu$ L of methanol were added and wet1D NMR spectra of the product were collected. The ratio of H<sup>13</sup>CO<sub>2</sub>H (*J<sub>C-H</sub>* = 218 Hz, 8.2 ppm) and HCO<sub>2</sub>H (8.03 ppm) was 2 to 1 with 1,3 -<sup>13</sup>C glycerol and 1 to 2.5 with 2 -<sup>13</sup>C glycerol.

### Isotope labeled study of glycerol <sup>13</sup>C NMR with 5



## Isotope labeled study of glycerol <sup>13</sup>C NMR with 8

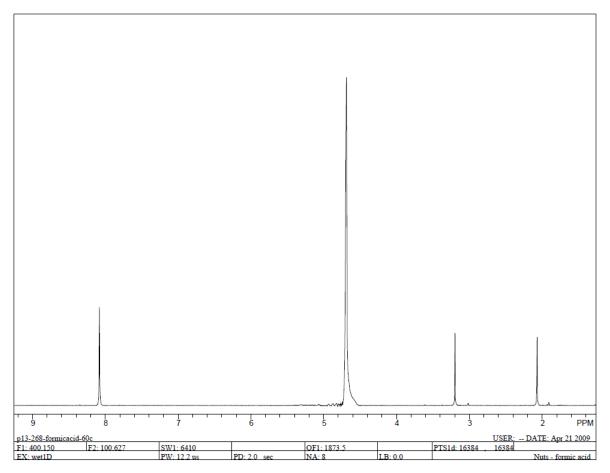





Figure 1. <sup>1</sup>H-NMR spectra for the oxidative degradation reactions of 1,3-<sup>13</sup>C-glycerol (A) and 2-<sup>13</sup>C-glycerol (B).



#### 4. Isotope labeled study of glycolic acid

4mg of **4** and 20 mg of  $1^{-13}$ C-labeled glycolic acid (**9**) were placed into a one dram reaction vial. Then 0.3 mL of H<sub>2</sub>O<sub>2</sub> was added into the reaction mixture, which was placed on a 60 °C heating block for 6 hours. After the reaction, 0.2 mL of D<sub>2</sub>O and 2 µL of methanol were added and wet1D NMR spectra of the product were collected. Conversion yield of formic acid (HCO<sub>2</sub>H at 8.2 ppm): 10% based on glycolic acid. No formation of H<sup>13</sup>CO<sub>2</sub>H was observed.


#### Isotope labeled study of glycolic acid wet1D



#### 5. Degradation of formic acid.

1 mg of Pd catalyst **4** was added to 16.4 mg of formic acid in a 1 dram vial. After the addition of 0.2 mL of  $H_2O_2$  and 0.2 mL of  $H_2O$ , the reaction mixture was stirred for 5 hours on a 60 °C heating block. Then 0.2 mL of  $D_2O$  and 1 µL of methanol were added, and wet1D NMR spectra of the product were collected. 3% of formic acid (8.2 ppm) remained.

#### **Degradation of formic acid**



#### 6. Optimization of reaction conditions

# Concentration changes vs. volume of $H_2O_2$ (A), reaction temperature (B), and time (C) for the oxidative carbon-carbon bond cleavage of glycerol (figure 2).

Glycerol (10 mg, 10.8 x  $10^{-5}$  mol) and 5 mol% of Pd catalyst (4) were placed in a 1 dram vial with a stir bar: (A) after the addition of 30% H<sub>2</sub>O<sub>2</sub> (0.1 mL ~ 0.4 mL) with H<sub>2</sub>O (0.1 mL) to the vial, the reaction vial was closed and the reaction mixture was stirred for 1 hour at 40 °C. (B) 0.4 mL of H<sub>2</sub>O<sub>2</sub> and 0.1mL of H<sub>2</sub>O were added to the mixture of glycerol and Pd catalyst. Reactions were conducted at various temperatures (25, 40, 50, or 60 °C) for 1 hour. (C) after the addition of 30% H<sub>2</sub>O<sub>2</sub> (0.4 mL) with H<sub>2</sub>O (0.1 mL) to the vial, reaction mixtures were stirred

for 1, 3, or 6 hours at 40 °C.

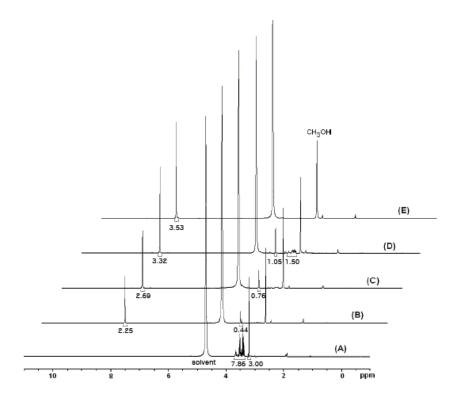
| (A) various all | $100111 01 \Pi_2 O_2$            |                                     |                                       |
|-----------------|----------------------------------|-------------------------------------|---------------------------------------|
| $H_2O_2$ (mL)   | Glycerol (x10 <sup>-5</sup> mol) | Formic acid (x10 <sup>-5</sup> mol) | Glycolic acid (x10 <sup>-5</sup> mol) |
| 0.1             | 8.2                              | 3.8                                 | 1                                     |
| 0.2             | 5.3                              | 6.4                                 | 1.4                                   |
| 0.3             | 3.5                              | 9.4                                 | 1.9                                   |
| 0.4             | 2.4                              | 10.7                                | 1.3                                   |

(A) Various amount of H<sub>2</sub>O<sup>4</sup>

#### (B) Temperatue

| Temp (°C | ) Glycerol (x $10^{-5}$ mol) | Formic acid $(x10^{-5} mol)$ | Glycolic acid $(x10^{-5} mol)$ |
|----------|------------------------------|------------------------------|--------------------------------|
| 25       | 5.1                          | 8.2                          | 1.8                            |
| 40       | 2.4                          | 10.7                         | 1.3                            |
| 50       | 1.8                          | 10.1                         | 1.9                            |
| 60       | 0.4                          | 10.3                         | 1.6                            |

#### (C) Time


| Time (hour) | Glycerol ( $x10^{-5}$ mol) | Formic acid $(x10^{-5} mol)$ | Glycolic acid $(x10^{-5} mol)$ |
|-------------|----------------------------|------------------------------|--------------------------------|
| 1           | 2.4                        | 10.7                         | 1.3                            |
| 3           | 1.6                        | 10.8                         | 2.2                            |
| 6           | 0.8                        | 10.5                         | 2                              |

#### Various amount of Pd catalyst (4)

Glycerol (10 mg, 10.8 x  $10^{-5}$  mol) and corresponded mol% of Pd catalyst (4) (2.5 %, 5, 10, and 15) were placed in a 1 dram vial with a stir bar. After the addition of 30% H<sub>2</sub>O<sub>2</sub> (0.3 mL) with H<sub>2</sub>O (0.1 mL) to reaction mixture, the mixture was placed heating bock (60 °C). After 3 hour, 0.2 mL of D<sub>2</sub>O and 2 µL of methanol were added and wet1D NMR spectra of the product were collected.

| Catalyst (mol %) | Glycerol (x10 <sup>-5</sup> mol) | Formic acid (x10 <sup>-5</sup> mol) | Glycolic acid (x10 <sup>-5</sup> mol) |
|------------------|----------------------------------|-------------------------------------|---------------------------------------|
| 2.5              | 3.9                              | 9.3                                 | 2.5                                   |
| 5                | 3.1                              | 14.7                                | 2.1                                   |
| 10               | 7.4                              | 6.7                                 | 1.0                                   |
| 15               | 7.7                              | 6.1                                 | 0.5                                   |

7. Figure 3. <sup>1</sup>H-NMR study for the degradation pathway of glycerol



#### 8. References

- [1] H. Hao, J. Sieler, D. Sicker, J. Nat. Prod. 2002, 65, 466-469.
- [2] J. H. Lee, K. S. Yoo, C. P. Park, J.M. Olsen, S. Sakaguchi, G. K. S. Prakash, T. Mathew, K. W. Jung, Adv. Synth. Catal. 2009, 351, 563-568.