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1 The distribution of F+, TD and TBS statistics

When p ≥ n, the sample covariance matrix, S, is singular and not invertible, and

Hotelling’s T 2 statistic not well-defined. No test is invariant under nonsingular linear

transformation, the so-called MANOVA problem (Lehmann and Romano 2008).

Srivastava (2007) proposed a generalized Hotelling’s T 2 statistics, which is defined

as T+2
= n (x̄− µ0)

T S+ (x̄− µ0), where S+ is the Moore-Penrose inverse of S.

When using SVD to decompose S as S = UDUT , S+ is equivalent to S+ = HL−1HT ,

where H is a p × r matrix consisting of the first r columns of U , and r is the rank

of S. U is column orthogonal UUT = I, so that HHT = Ip. L = diag(d1, . . . , dr)
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is an r × r diagonal matrix, the diagonal elements of which are the first r non-

zero eigenvalues of S. Note that T+2
is not invariant. When p ≥ n and Σ = φIp

(φ > 0 is a constant), F+ = (p − m + 1)/m2T+2
, where m = n − 1, follows an

F -distribution with m and p − m + 1 degree of freedom. When Σ 6= φIp, F+ >

Fm,p−m+1 with probability one (Srivastava 2007). A suitably normalized F+ statistic

is asymptotically normally distributed under the null. The asymptotic distribution

of F+ is given by lim
m,p→∞

Pr

[
cm,p

(m

2

) 1
2
(
b̂F+ − 1

)
≤ z1−α

]
= Φ(z1−α), where

b̂ =
(m + 2)(m− 1)

m2

(trS/p)2

p−1
[
trS2 − 1

m
(trS)2

] , (1)

and cm,p =
(

p−m+1
p+1

)1/2

. The asymptotic power of the F+ test is given by β(F+) '
Φ

(
−z1−α +

(
m
p

) (
m
2

) 1
2 µT Λµ

trΣ2/p

)
, where Λ = diag(η1, . . . , ηp) and ηi are the eigenvalues

of the covariance matrix Σ.

Dempster (1958) and Dempster (1960) proposed a non-exact test that can be

applied to the cases when p ≥ n. Let H be an n × n orthogonal matrix with the

first row being 1√
n
(1, . . . , 1)′, and the rest m rows being orthogonal. Let Y = HX =

(y1, . . . , yn)′, with each yi being independent. Dempster proposed his test statistic

as TD = Q1/(
∑n

i=2 Qi/m), where Qi = yiyi
′. When p < n and Σ = Ip, the statistic

reduces to TD = nx̄T x̄
trS/p

, and the test is a uniformly most powerful invariant test.

Under the null, it approximately follows an F -distribution, TD ∼ F[pb̂],[mpb̂] where b̂

can be obtained by Equation (1), and [·] denotes the largest integer that is less than

the variable. However, when p ≥ n or Σ 6= Ip, the test statistic is not invariant. The

degree of freedoms of the asymptotic distribution of TD depends on b̂, and b̂ depends

on the covariance matrix.

Bai and Saranadasa (1996) proposed a standardized version of the TD test, TBS =

nx̄T x̄−trS
σBS

where σ2
BS = 2m(m+1)

(m+2)(m−1)

[
trS2 − 1

m
(trS)2

]
. Note that TBS is also not in-
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variant. Asymptotically, lim
m,p→∞

Pr(TBS ≤ z1−α) = Φ(z1−α). Furthermore, TD and TBS

have the same asymptotic power (Srivastava 2007). β(TD), β(TBS) ' Φ
(
−z1−α +

mµTµ√
2trΣ2

)
.

However, with severe missingness, these tests can be unreliable (see Simulations sec-

tion in the main text).

Following Example A in the main text, Figure S1 listed the distribution of Demp-

ster’s and Bai and Saranadasa’s test statistics when p < n.

Example B . We simulated a case where n = 10 and p = 20 and so p ≥ n.

We then sample X from a multivariate normal distribution N(µ, Σp×p), and consider

three different settings:

(1) Independent Null : µ1 = · · · = µ20 = 0; Σ = I;

(2) Dependent Null : µ1 = · · · = µ20 = 0; σii = 1 and σij = 0.5 for i 6= j;

(3) Dependent Alternative: µ1 = · · · = µ10 = 1, µ11 = · · · = µ20 = 0; σii = 1 and

σij = 0.5 for i 6= j.

Figure S2 shows the distribution of RHTBootstrap, RHT without bootstrap, F+,

Dempster’s and Bai and Saranadasa’s test statistics when p ≥ n.

2 Simulation: Comparing RHT test with and with-

out bootstrap as γ = p/n increases

In this simulation, we compare the performance of RHT test using the proposed

bootstrap-like procedure and without bootstrap when p ≥ n. Specifically, we fix

n = 20 and for each p ∈ {5, 10, 15, . . . , 100}, we simulate X ∼ N(µ, Σ), where µ = 0

under the null and µ = (0.5, . . . , 0.5)T under the alternative, σii = 1 and σij = 0.2

(i 6= j). We also simulate 20% of the data missing completely at random. The type I

error rate and power of the RHT test with and without bootstrap are calculated based

on 1000 simulations. The results are illustrated in Figure S3. We can see that as
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γ = p/n increases, both can control type I error rate, while the power of RHT test

with bootstrap exceeds that of RHT without bootstrap as γ increases. Under some

other missing/correlation settings, RHT test without bootstrap may occasionally give

anti-conservative type-I error rate, but RHT test with bootstrap always conservatively

controls type-I error rate (data not shown).

3 Two-sample regularized Hotelling’s T 2 statistic

Suppose x1, . . . , xnx

i.i.d∼ Np(µX , Σ) and y1, . . . , yny

i.i.d∼ Np(µY , Σ) with a common

covariance matrix Σ, and that one wishes to test whether the mean vectors of X and

Y are equal, i.e., H0 : µX = µY .

The two-sample Hotelling’s T 2 statistic is defined as

T 2 =
nxny

nx + ny

(x̄− ȳ)T S−1 (x̄− ȳ) ,

where x̄ = 1
nx

nx∑
i=1

xi, ȳ = 1
ny

ny∑
i=1

yi, and

S = 1
nx+ny−2

[∑nx

i=1(xi − x̄)(xi − x̄)T +
∑ny

i=1(yi − ȳ)(yi − ȳ)T
]
.

We decompose S as S = UDUT , and S−1 = UD−1UT . The regularized Hotelling’s

T 2 statistics is defined correspondingly as

RHT =
nxny

nx + ny

(x̄− ȳ)T U(D + λI)−1UT (x̄− ȳ)

When p < n and Σ is nonsingular, RHT = nxny

nx+ny
(x̄− ȳ)T (S + λI)−1 (x̄− ȳ) .

Note that our proposed procedure to choosing tuning parameter only uses the

eigenvalues from the sample covariance matrix S. Hence, it can also be applied to

the common sample covariance estimator for two-sample RHT test to obtain a tuning

parameter value for a conservative two-sample test.
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4 Simulations for two-sample testing

Figure S4 compared the type I error rates and power of RHT test with the other

competing tests in two-sample testing, for the cases in which m = nx + ny − 2 =

38 > p = 20 and the cases in which m = 8 < p = 20, with and without missing data.

When there is missingness, HT/F+ and TBS tests fail to control type I error rate. SAT

test does not control type I error rate under correlation. TD test controls type I error

rate but is not powerful when sample size is small and/or there are missingness in the

data. Our RHT test conservatively controls type I error rate under correlation and/or

missingness. When there is no missingness, in both p < n and p ≥ n, the RHT test is

the most powerful test among those controlling type I error rates.

5 Proteins lists for the five significant pathways

identified from HT proteomics study

1. HSA04610 Complement and coagulation cascades

A2M MASP1 MASP2 C1QC CFH CFI CFD F11 KNG1 F12 F10 F9 SERPING1

C8G PROC C1QA C1QB F5 SERPINF2 F2 TFPI PROS1 C7 MBL2 C9 C3 C6 C5

C1S F13B FGG FGA FGB KLKB1 SERPINC1 C2 CR2 CFB C4BPB C4BPA PLG

VWF CD59 SERPIND1 CPB2

2. HSA04512 ECM receptor interaction

VTN GP5 CD44 COL1A1 TNC DAG1 COL6A3 THBS1 THBS4 FN1 HSPG2 VWF

3. HSA01430 Cell communication

VTN COL1A1 FN1 TNC COMP COL6A3 KRT1 THBS1 THBS4 VWF DSC3 DSC1
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4. HSA04510 Focal adhesion

VEGFC FLNA COL6A3 THBS1 THBS4 IGF1 PDGFB PDGFA VTN COL1A1 FN1

TLN1 TNC COMP VWF

5.HSA04350 TGF-beta signaling

LTBP1 TGFB1 INHBE INHBC COMP THBS1 THBS4

6 Proofs

Comment on the decay rate of the signal size in Theorem 2. In order for the

RHT test to be asymptotically consistent, by Theorem 2, we require the “effect size”

‖ δn ‖ (where δn = Σ−1/2µ) to go to zero at rate n−1/4 or slower. It is in contrast with a

classical multivariate testing situation (i.e., p is fixed), where asymptotic consistency

of the Hotelling’s T 2 test is achieved as long as the effect size goes to zero at a rate

n−1/2 or slower. This phenomenon is an illustration of the differences between the

fixed p and p ∼ n scenarios. This effect of dimensionality can be seen clearly in the

expansion of the normalized RHT statistic in equation (26) in the main manuscript.

Notice that, the second and third terms on the right hand side of (26) behave very

differently when p is fixed versus when p is comparable to n. Specifically, when p is

fixed and n → ∞, the second term is OP (
√

n ‖ δn ‖) and the third term is bounded

below by a term of the order n ‖ δn ‖2. Therefore, n ‖ δn ‖2→∞ would be a sufficient

condition for the asymptotic consistency of the test. However, as the arguments

immediately after (26) show, when p ∼ n, it is necessary to have
√

n ‖ δn ‖2→ ∞.

Note also that under H0, the RHT statistic is stochastically bounded for the fixed p

setting, while it varies at a rate
√

p around pΘ1(λ) ∼ p when p ∼ n.

To illustrate this difference further, we consider an expository example. Let Σ = I
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and µ = (c, . . . , c)T for some c 6= 0. When p is fixed and n → ∞, we need c to be

at least as big as n−1/2, in order that n ‖ δn ‖2→ ∞, which ensures consistency.

When p ∼ n, for δn = µ having the same form, it is enough to have c À n−3/4, in

order that
√

n ‖ δn ‖2→ ∞. Thus, when p is comparable to n, even if each of the

coordinates of µ are smaller than 1/
√

n, still the power can converge to 1, which is

not possible in the fixed p setting. However, in the first setting ‖ δn ‖∼ c and in the

second ‖ δn ‖∼
√

nc showing that the overall signal strength is larger in the latter case.

Proof of Lemma 4. If gn|yn →D Z, it follows, for ∀c, Pr(gn ≤ c|yn) →a.s. Pr(Z ≤
c). Then, Pr(gn ≤ c) = Eyn (Pr(gn ≤ c|yn)) → E (Pr(Z ≤ c)) = Pr(Z ≤ c). ¤

Proof of (31). We give the proof only for λ > 0, although a slight modification of

the proof also works for λ = 0 when γ < 1. Then,

‖ Rn(−λ) ‖≤ 1/λ and max
1≤j≤N

‖ R(j)
n (−λ) ‖≤ 1/λ. (2)

We make use of the following lemma (see for example, Paul (2007)).

Lemma S1 Suppose that X ∼ N(0, In), and let C be a symmetric n×n matrix with

‖ C ‖≤ L. Then, for all 0 < t < L,

P(
1

n
|XT CX − tr(C)| > t) ≤ 2 exp

(
− nt2

4L2

)
. (3)

Using Lemma S1 and (2) we have, for any ε > 0, for n sufficiently large so that
√

(1 + ε) log n/n < 1/2,

P

(
max
1≤j≤n

|Y T
j Σ1/2

p R(j)
n (−λ)Σ1/2

p Yj − 1

n
tr(R(j)

n (−λ)Σp)| > 2τ1,p

λ

√
(1 + ε) log n

n

)
≤ 2n−ε

(4)
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and

P
(

max
1≤j≤n

|Y T
j Σ1/2

p R(j)
n (−λ)ΣpR

(j)
n (−λ)Σ1/2

p Yj − 1

n
tr(R(j)

n (−λ)ΣpR
(j)
n (−λ)Σp)|

>
2τ 2

1,p

λ2

√
(1 + ε) log n

n

)
≤ 2n−ε. (5)

Next, from (27) of the paper, we have, for j = 1, . . . , n,

1

n
tr(R(j)

n (−λ)Σp)− 1

n
tr(Rn(−λ)Σp) =

1

n

Y T
j Σ

1/2
p R

(j)
n (−λ)ΣpR

(j)
n (−λ)Σ

1/2
p Yj

1 + Y T
j Σ

1/2
p R

(j)
n (−λ)Σ

1/2
p Yj

≤ ‖ Σ
1/2
p R

(j)
n (−λ)Σ

1/2
p ‖

n
≤ τ1,p

nλ
, (6)

where the last inequality is due to (2). Now, recall that,

δ(1)
n =

1

p

n∑
j=1

[
1

1 + 1
n
tr(R

(j)
n (−λ)Σp)

− 1

1 + Y T
j Σ

1/2
p R

(j)
n (−λ)Σ

1/2
p Yj

]

=
1

p

n∑
j=1

Y T
j Σ

1/2
p R

(j)
n (−λ)Σ

1/2
p Yj − 1

n
tr(R

(j)
n (−λ)Σp)

(1 + 1
n
tr(R

(j)
n (−λ)Σp))2

−1

p

n∑
j=1

(Y T
j Σ

1/2
p R

(j)
n (−λ)Σ

1/2
p Yj − 1

n
tr(R

(j)
n (−λ)Σp))

2

(1 + 1
n
tr(R

(j)
n (−λ)Σp))2(1 + Y T

j Σ
1/2
p R

(j)
n (−λ)Σ

1/2
p Yj)

=
1

(1 + 1
n
tr(Rn(−λ)Σp))2

1

p

n∑
j=1

(Y T
j Σ1/2

p R(j)
n (−λ)Σ1/2

p Yj − 1

n
tr(R(j)

n (−λ)Σp))

+
1

p

n∑
j=1

(Y T
j Σ1/2

p R(j)
n (−λ)Σ1/2

p Yj − 1

n
tr(Rn(−λ)Σp))

·
(

1

(1 + 1
n
tr(R

(j)
n (−λ)Σp))2

− 1

(1 + 1
n
tr(Rn(−λ)Σp))2

)

−1

p

n∑
j=1

(Y T
j Σ

1/2
p R

(j)
n (−λ)Σ

1/2
p Yj − 1

n
tr(R

(j)
n (−λ)Σp))

2

(1 + 1
n
tr(R

(j)
n (−λ)Σp))2(1 + Y T

j Σ
1/2
p R

(j)
n (−λ)Σ

1/2
p Yj)

=
1

(1 + 1
n
tr(Rn(−λ)Σp))2

1

p

n∑
j=1

(Y T
j Σ1/2

p R(j)
n (−λ)Σ1/2

p Yj − 1

n
tr(R(j)

n (−λ)Σp))

+ oP (n−1/2), (7)
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where the last equality is due to (2), (4), (6) and assumptions A2 and A4.

Define,

Vj = Y T
j Σ1/2

p R(j)
n (−λ)Σ1/2

p Yj − 1

n
tr(R(j)

n (−λ)Σp), j = 1, . . . , n, (8)

and

Vjj′ = Y T
j Σ1/2

p R(jj′)
n (−λ)Σ1/2

p Yj − 1

n
tr(R(jj′)

n (−λ)Σp), 1 ≤ j 6= j′ ≤ n, (9)

where

R(jj′)
n (z) = (Sn − Σ1/2

p (YjY
T
j + Yj′Y

T
j′ )Σ

1/2
p − zIp)

−1 = R(j′j)
n (z), z ∈ C. (10)

Then Vj = Vjj′ +
1
n
Djj′ , for 1 ≤ j 6= j′ ≤ n, where

Djj′ = −n(Y T
j Σ

1/2
p R

(jj′)
n (−λ)Σ

1/2
p Yj′)

2 − Y T
j′ Σ

1/2
p R

(jj′)
n (−λ)ΣpR

(jj′)
n (−λ)Σ

1/2
p Yj′

1 + Y T
j′ Σ

1/2
p R

(jj′)
n (−λ)Σ

1/2
p Yj′

.

(11)

Since Yj and Yj′ are independent, and both are independent of R
(jj′)
n (−λ), the follow-

ing holds.

E(V12) = E(V21) = E(V12V21) = E(D12) = E(D21) = 0. (12)

Moreover,

Var(V12) = E(V 2
12) = E(E(V 2

12|R(12)
n (−λ))) =

2

n2
E(tr(R(12)

n (−λ)ΣpR
(12)
n (−λ)Σp)) = O(n−1),

(13)
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where the last equality is due to (2) and assumption A4. Similarly,

Var(D12) = E(D2
12) = E(E(D2

12|Y2, R
(12)
n (−λ)))

= 2E

[
E

(
(Y T

2 Σ
1/2
p R

(12)
n (−λ)ΣpR

(12)
n (−λ)Σ

1/2
p Y2)

2

(1 + Y T
2 Σ

1/2
p R

(12)
n (−λ)Σ

1/2
p Y2)2

| R(12)
n (−λ)

)]

≤ 2E
[
E

(
(Y T

2 Σ1/2
p R(12)

n (−λ)ΣpR
(12)
n (−λ)Σ1/2

p Y2)
2|R(12)

n (−λ)
)]

=
4

n
E(tr((R(12)

n (−λ)Σp)
4)) +

2

n2
(E(tr((R(12)

n (−λ)Σp)
2)))2 = O(1).(14)

From (14) and (14), we have Var(V1) = O(n−1). Since the random variables {Vj} are

exchangeable, we have

Var

(
1

n

n∑
j=1

Vj

)

=
1

n
Var(V1) +

(
n− 1

n

)
Cov(V1, V2)

=
1

n
Var(V1) +

(
n− 1

n

)
Cov

[
(V12 +

1

n
D12)(V21 +

1

n
D21)

]

=
1

n
Var(V1) +

1

n
(Cov(V12, D21) + Cov(V21, D12)) +

1

n2
Cov(D12, D21) (by (14))

≤ 1

n
Var(V1) +

2

n

√
Var(V21)

√
Var(D12) +

1

n2
Var(D12)

= O(n−2) + O(n−3/2) + O(n−2) = O(n−3/2), (15)

where the fourth step is due to (12) and Cauchy-Schwarz inequality, and the last step

is due to (13) and (14). Now, combining this with (7) we conclude that

√
nδ(1)

n = oP (1). (16)
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Next,

δ(2)
n =

n

p

[
1

1 + 1
n
tr(Rn(−λ)Σp)

− 1

n

n∑
j=1

1

1 + 1
n
tr(R

(j)
n (−λ)Σp)

]

=
1

p

n∑
j=1

(1/n)(tr(R
(j)
n (−λ)Σp)− tr(Rn(−λ)Σp))

(1 + 1
n
tr(R

(j)
n (−λ)Σp))(1 + 1

n
tr(Rn(−λ)Σp))

.

Thus, using (6), and assumptions A2 and A4 we have

√
nδ(2)

n = oP (1). (17)

Next, we write

δ(3)
n = (

1

p
tr(Rn(−λ))−mF̃n,p

(−λ)) + (mF̃n,p
(−λ)−mF (−λ)), (18)

where, for z ∈ C, mF̃n,p
(z) is the unique solution of the equation

m =

∫
dHp(τ)

τ(1− (p/n)− (p/n)zm)− z
.

Then, by assumption A2, the second term on the RHS of (18) is o(n−1/2), and using

Theorem 1.1 of Bai and Silverstein (2004), the first term on the RHS is OP (n−1), so

that we have
√

nδ(3)
n = oP (1). (19)

Combining (16), (17) and (19) we get (31) of the paper.

Proof of (34)

In order to prove (34) , first by using argument similar to (but simpler than)

those used in proving (16) and (17), we conclude that

max{|δ(4)
n |, |δ(5)

n |} = oP (1). (20)
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Next, define R̃n(λ) = Rn(−λ) and notice that the functions tr(R̃n(λ)Σp) and Θ1(λ, γ)

are differentiable for λ > 0 and their derivatives are uniformly bounded over λ ∈
(0,∞) (by assumptions (ii), (iii) and (iv)). Thus, given ε > 0, we can find η > 0 such

that

P
(
|1
η
(tr(R̃n(λ + η)Σp)− tr(R̃n(λ)Σp))− d

dλ
tr(R̃n(λ)Σp)| > ε/3

)
→ 0 (21)

and

|1
η
(Θ1(λ + η, γ)−Θ1(λ, γ))− ∂

∂λ
Θ1(λ, γ)| < ε/3. (22)

Now, using the first part of Lemma 2 (equation (19) in the paper) separately for λ

and λ + η, we have

P
(

1

η
|(tr(R̃n(λ + η)Σp)−Θ1(λ + η, γ)) + (tr(R̃n(λ)Σp)−Θ1(λ, γ))| > ε/3

)
→ 0

(23)

Combining (21), (22) and (23) we have that

P(|δ(6)
n | > ε) → 0 as n →∞.

Since ε > 0 is arbitrary, we conclude (34) by combining with (20).
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TABLES

Table S1: The number of significant pathways at FWER of 0.05 and 0.10 identified by
different tests. The numbers in the parenthesis are the percentages of the significant
ones out of all pathways (18 in total).

FWER cutoff RHT TD SAT HT/F+ TBS

0.05 4 (22.2%) 5 (27.8%) 7 (38.9%) 8 (44.4%) 16 (88.9%)
0.10 5 (27.8%) 6 (33.3%) 8 (44.4%) 9 (50.0%) 17 (94.4%)

FIGURES
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Figure S1: Distribution of TD and TBS statistics on a simulated example with p =
8, n = 10. The green curves are the densities of the test statistics from Independent
Null. The black curves are the densities under Dependent Null. And the red curves
are the densities under Dependent Alternative.
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(a) Log of RHTBootstrap, p ≥ n.
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(b) Log of RHT , p ≥ n.
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(c) Log of F+, p ≥ n.
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(d) Log of TD, p ≥ n.
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(e) TBS , p ≥ n.

Figure S2: Distribution of F+, TD and TBS statistics on a simulated example with p =
20, n = 10. The green curves are the densities of the test statistics from Independent
Null. The black curves are the densities under Dependent Null. And the red curves
are the densities under Dependent Alternative.
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Figure S3: Comparing type I error rate and power of RHT test with and without
bootstrap, as γ = p/n increases (we fix sample size at n = 20 and increases p).
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(a) Type I error rate, when p < n (nx =
ny = 20, p = 20)
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(b) Type I error rate, when p ≥ n (nx =
ny = 5, p = 20)
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(c) Power, when p < n
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Figure S4: Comparing type I error rates and power of RHT, SAT, HT/F+, TD and TBS

tests at 0.05 p-value cutoff in two-sample tests.
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Figure S5: Boxplots of pooled absolute protein log 2 ratios stratified by # missing
observation from the hormone therapy proteomics study.

Figure S6: The cell communication pathway from KEGG. This figure shows that four
out of the five identified pathways, cell communication, ECM receptor interaction,
focal adhesion and TGF-beta signaling pathways, are inter-related.
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