Supplemental Box

One method to understand feedback is to "break the loop," turning the closed-loop feedback system into one with a defined input and output. In the resulting open-loop system, the output would feed back into the input. In the following system, we break the loop in a system with an output *y* that feeds back into *x*:

We can then measure the sign and strength of the now-broken feedback loop with the concept of sensitivity: how much the output *y* changes for a small change in the input (y_0) . In this particular case, the sensitivity is called an open-loop gain because it measures the gain (or how much γ changes with respect to changes in γ_0) of the open-loop form of the closed-loop system. Mathematically, sensitivity of *y* to changes in the point of feedback

regulation (y_0) at a given steady state (\hat{x}, \hat{y}) is calculated with the formula $0 |_{y_0 = \hat{y}}$ *y* $\gamma = \frac{1}{\partial y}$ $=\frac{\partial y}{\partial y_0}\Big|_{y_0=\hat{y}}$. The sign of *γ* tells us the

sign of feedback. Note that the sign of feedback may not be obvious, and may emerge from complex interactions in the network that connects *x* to *y*.

For instance, we can find the open-loop gain in a simple mathematical model of a two-component system (Figure 1), by defining mathematical forms with one or more rate constant for each process embedded in the system. Sparing the details of computation, we found that *γ* is proportional to $k_{pt}k_d - k_{ph}k_e$ where k_{pt} and k_{ph} are respective rates of regulator phosphorylation and dephosphorylation by the sensor, k_d is the rate of dilution from growth, and *ke* is the rate parameter for exogenous phosphorylation. This simple relationship between the gain and rate constants tells us several things about transcriptional feedback in two-component systems:

(*i*) regulator dephosphorylation and exogenous phosphorylation are both necessary for negative feedback and thus overshoot kinetics;

 (iii) because the dilution rate k_d is small even for fast exponential growth, the rate of exogenous

phosphorylation can be small and still permit negative feedback;

(*iii*) different magnitudes of external signaling that modulate phosphorylation and dephosphorylation of the regulator via the sensor $(k_{pt}$ or k_{ph}) can result in different effective feedback signs.

If the circuit diagram of a network (Box 2) has only unambiguously *positive* feedback loops, and its openloop form has a single steady state, breaking the loop can determine if the intact system is bistable⁴⁷. The basic idea is to use the open-loop form of the system to quantify y at steady state as a function of y_0 . We denote this

function, the open-loop characteristic curve, by $f(y_0)$. Then graph $y = f(y_0)$ along with the feedback strength of the system (*i.e.* open-loop gain, here for simplicity $y_0 = y$) and look for intersections:

If the system is bistable as in the graph above, the system will have two stable steady states (black points) and one unstable (open circle).