Supporting Information

Contents

1.	NMR experiments	Page S2	
2.	Figure S1: One dimensional ¹ H NMR spectra	S 3	
3.	Figure S2: Expanded NOESY spectra	S4	
4.	Figure S3: Low field regions of ¹ H-NMR spectra	S6	
5.	Figure S4: IPAP spectra	S7	
6.	Deuterium isotope effect measurements, Table S1	S 8	
7.	UV thermal melting experiments	S9	
8.	UV melting and osmotic stress data for RNA and 2'-F RNA hairpins, Tables S2 to S7 and Figures S5 to S10	S10	
9.	Figure S11: NMR solution structure of RNA hairpin with U_4 loop	S22	

1. NMR experiments

Oligonucleotides were purified by RP-HPLC using a TEAA/acetonitrile buffer mixture and were lyophilized several times from aqueous ammonium solution and water to remove any trace of volatile HPLC material prior to preparation of the NMR sample. Oligonucleotides were dissolved in 180 μ L of D₂O containing 150 mM NaCl and 10 mM phosphate buffer (Na₂HPO₄/KH₂PO₄) at pH 7.4 (uncorrected for deuterium effect) for NMR analysis. The concentration of the 2'-F RNA sample was 1.4 mM and that of the native RNA was 1.75 mM. For the acquisition of spectra containing the exchangeable protons, the sample was dried and the residue immediately taken up in 180 μ L of H₂O/D₂O (9:1; v/v).

NMR experiments were performed either on Bruker AVANCE 800 MHz or 600 MHz spectrometers. Different sets of two-dimensional spectra were recorded at different temperatures varying from 5 to 40°C. NOESY experiments in D₂O buffer were acquired with mixing times of 400, 250, 125, and 62.5 ms. NOESY spectra detecting exchangeable protons were recorded with mixing times of 400, 250, and 100 ms. DQF-COSY and TOCSY spectra were recorded to aid the assignment, the latter with a mixing time of 80 ms. All two-dimensional spectra were acquired with 2k complex data points in *t*2 and 512 real points in *t*1 with a relaxation delay of 2 s.

¹H, ¹³C HMQC spectra were recorded on a Bruker AVANCE 14.1 T (600 MHz, ¹H nuclei) spectrometer at 25°C in 50% D_2O/H_2O . Two-dimensional spectra were acquired with 2k complex data points in *t*2 and 128 real points in *t*1 with a relaxation delay of either 2 s or 1.5 s.

Sequential assignment of exchangeable and non-exchangeable protons was conducted following standard methods for duplex RNA. The DQF-COSY spectrum showed four pairs of cross peaks, characteristic of J-coupled spins of the H_5 and H_6 protons in cytosine and uracil rings. Due to their labile nature H_8 protons from guanine bases in 2'-F RNA were difficult to assign and were therefore identified from leftover cross peaks and from $H_8/H_{2'}$ cross peaks.

Figure S1. One dimensional ¹H NMR spectrum of (a) $[r(CGAAUUCG)]_2$ and (b) $[f(CGAAUUCG)]_2$ in phosphate-buffered D₂O at 25°C.

Figure S2. Expansion of the NOESY spectrum of (a) $[r(CGAAUUCG)]_2$ and (b) $[f(CGAAUUCG)]_2$ in buffered D₂O at 800 MHz, 298 K and a mixing time of 250 ms, showing NOE connectivities between H1' resonances of riboses and protons of nucleobases.

Figure S3. Low field region of ¹H-NMR spectrum of (a) $[r(CGAAUUCG)]_2$ at 298 K and (b) $[f(CGAAUUCG)]_2$ at 313 K in phosphate-buffered D₂O at 800 MHz. Resonances of individual protons are labeled.

Figure S4. One-dimensional ¹⁵N-coupled ¹H IPAP spectra in the imino region of (a) 5'-[r(CGAAUUCG)]₂ and (b) [f(CGAAUUCG)]₂ in 10% D₂O/H₂O at 5°C. The specta at the top in (a) and (b) were obtained from adding the IP and AP spectra, whereas the lower spectra were obtained by subtraction, IP – AP.

Table S1. Deuterium isotope effect (DIE) measurements for RNA and 2'-F RNA^a

Base Pair	RNA $(\delta^{13}C2\{^{1}H3\})^{b}$	$\delta_{\rm H3}$ (RNA)	2'-F RNA $(\delta^{13}C2\{^{1}H3\})^{b}$	$\delta_{\rm H3}$ (2'-F RNA)
A3 :U14	-55.3±0.6	7.17	-63.6±0.1	7.15
A4:U13	-58.1±0.5	7.70	-62.8±0.2	7.70

^{*a*} Units of ${}^{n}\Delta A = \delta_{A} \{{}^{1}H3\} - \delta_{A} \{{}^{2}H3\}$ are in ppb, and units of δ_{H3} are in ppm. ^{*b*} Shown here are values from two separate data sets.

2. UV thermal melting experiments

Melting of each oligonucleotide hairpin (16 mM) was performed in 10 mM sodium cacodylate (pH = 7.4), 0.1 mM EDTA, and 300 mM NaCl in the presence of 0, 5, 10, 15, and 20 % weight/volume of either ethylene glycol or acetamide (**Table 1**). Absorbance vs. temperature profiles were measured at 280 nm on a Shimadzu 800 UV-Visible spectrometer equipped with an eight-position Peltier temperature controller. The temperature was increased at 0.5 °C per minute. The melting temperatures were obtained using the Shimadzu LabSolution TmAnalysis software. The experimental absorbance vs. temperature curves were converted into a fraction of strands remaining hybridized (α) vs. temperature curves by fitting the melting profile to a two-state transition model, with linearly sloping lower and upper base lines. The melting temperatures (T_m , **Table 1**, column 2) were obtained directly from the temperature at $\alpha = 0.5$. The final T_m was an approximation of usually five to eight measurements.

The thermodynamic parameters (Δ H, Δ S and Δ G) were obtained by van't Hoff analysis of melting curves using Varian Cary software (**Table 1**, columns 4-6). In addition, the enthalpy of the melting was determined from the width at the half-height of differentiated melting curves (**Table 1**, column 3). The fraction of strands remaining hybridized (α) vs. temperature curves were converted into differentiated melting curves [$\delta\alpha/\delta(T_m^{-1})$ vs. T_m] using Varian Cary software. The width of the differentiated melting curve at the half-height is inversely proportional to the van't Hoff transition enthalpy; for a monomolecular transition Δ H = 7.0/($T_1^{-1} - T_2^{-1}$) where T_1 is the lower temperature and T_2 is the upper temperature (both in K) at one-half of [$\delta\alpha/\delta(T_m^{-1})$].^[1]

Osmotic stress experiments were performed as described in previous publications.^[2] A detailed experimental manual has been also published.^[3]

^[1] K. J. Breslauer, *Methods Enzymol.* **1995**, *259*, 221-242.

 ^{[&}lt;sup>2</sup>] (a) E. Rozners, J. Moulder, *Nucleic Acids Res.* 2004, 32, 248-254. (b) P. S. Pallan, E. M. Greene, P. A. Jicman, R. K. Pandey, M. Manoharan, E. Rozners, M. Egli, *Nucleic Acids Res.* 2011, 39, 3482–3495.

^{[3}] E. Rozners, *Curr. Protoc. Nucleic Acid Chem.* **2010**, 7.14.1-7.4.13.

Trial #	0%	5%	10%	15%	20%	T1	T2	-ΔΗ (cal/mol) δα/δTm	Van't Hoff - ΔH (kcal/mol)	Van't Hoff -∆S (kcal/mol*K)	∆G(37°C) (kcal/mo)
	•	•	•		•	Ethylene Glycol at 28	Onm				
	52.5	51.7	50.5	49.9	49.0	39.34	66.58	27256	29.99	0.09193	-1.5
	51.5	51.6	50.2	50.1	48.7	38.73	64.85	28225	31.72	0.09772	-1.4
	51	51.9	50.3	50.0	48.3	38.17	64.01	28408	31.87	0.09832	-1.4
	52.7	51.1	50.3	48.3	48.4	38.88	65.26	27994	30.91	0.09497	-1.5
	52.1	51.4	50.5	49.8	48.6	41.07	69.05	26876	31.02	0.09449	-1.7
	51.6	50.9	50.2	49.2	48.2	38.81	64.95	28219	30.18	0.09275	-1.4
		51.9	50.3	49.4	47.3						
		51.8	50.5	49.9	48.8						
		52.6	50.0	49.0	48.9						
			50.5		48.5						
			50.8		48.7						
Average	51.9	51.7	50.4	49.5	48.5	39.2	65.8	27829.5	30.9	0.09503	-1.5
Standard Deviation	0.6	0.5	0.2	0.6	0.5	1.0	1.8	617.7	0.8	0.0025754	0.122359
						Acetamide at 280n	n				
		49.8	48.2	46.3	45.0						
		49.7	48.0	46.5	44.8						
		49.7	48.3	46.5	44.8						
		49.4	48.7	46	44.4						
		49.4	48.5	46.3	44.6						
		49.5	48.2	46.9	44.8						
		50.2	47.5	46.8	44.8						
		50.4	48.1	46.4	44.4						
		50.4		47	44.6						

Table S2. Experimental t_m and thermodynamic data for melting of r[GCGUUUCGC]

	49.8						
Average	49.8	48.2	46.5	44.7			
Standard Deviation	0.4	0.4	0.3	0.2			

Figure S5. Plot of the inverse of the melting temperature versus the natural log of the water activity for both acetamide and ethylene glycol.

Trial #	0%	5%	10%	15%	20%	T1	T2	ΔΗ (cal/mol) δα/δTm	Van't Hoff ∆H (kcal/mol)	Van't Hoff ΔS (eu)	ΔG(37°C) (kcal/mol)
						Ethylene Glycol at 280nm				•	
	64.1	63	61.3	56.7	55.5	53.1	76.9	33514	33.45	0.09905	-2.7
	63.4	62.6	61.0	57.2	55.9	52.8	76.4	33732	34.4	0.1	-2.8
	63.6	62.3	60.6	57.7	56.7	53.25	77.57	32920	33.93	0.1004	-2.8
	63	62.4	61.5	57.9	55.3	52.39	75.69	34087	33.69	0.1001	-2.7
	63.7	62.9	61.1	57.5	55.6	54.57	76.26	36923	37.56	0.1106	-3.3
	63.3	62.1	61.2	57.2	55.1	52.68	75.97	34159	34.1	0.1012	-2.7
	63.3				55.3	52.2	75.55	33980	34.09	0.1013	-2.7
						52.3	75.34	34427	33.84	0.1004	-2.7
						52.28	77.1	32118	36.34	0.1076	-3.0
						53.83	75.96	36076	36.58	0.1085	-2.9
						53.73	77.72	33436	36.57	0.108	-3.1
						53.14	75.8	35141	38.03	0.1127	-3.1
						52.72	75.75	34527	34.93	0.1034	-2.9
Average	63.5	62.6	61.1	57.4	55.6	53.0	76.3	34233.9	35.2	0.10426	-2.87396
Standard Deviation	0.4	0.4	0.3	0.4	0.5	0.7	0.8	1267.2	1.6	0.00459	0.19014
	-					Acetamide at 280nm					
		61.1	57.4	55.7	52.9						
		60.1	57.5	55.2	53.4						
		61.7	58.0	55.0	52.8						
		61.4	57.4	55.6	53.2						
		60.2	57.2	55.3	52.0						
		61.1	57.6	55.1	52.5						
		60.9	58.3	55.1	52.3						

Table S3. Experimental t_m and thermodynamic data for melting of r(GCGUUUCGCA)

	60.4	57.6	56.2				
	61.0	57.9	56.2				
	60.9	58.0	55.6				
	60.3	58.2	56.2				
	60.1		55.8				
	60.7		55.8				
	60.2		56.0				
	59.9		56.3				
			55.7				
Average	60.7	57.7	55.7	52.7			
Standard Deviation	0.5	0.4	0.4	0.5			

Values for In a(H2O) GCGUUUCGCA

Figure S6. Plot of the inverse of the melting temperature versus the natural log of the water activity for both acetamide and ethylene glycol.

Trial #	0%	5%	10%	15%	20%	T1	T2	ΔΗ (cal/mol) δα/δTm	Van't Hoff ΔH (kcal/mol)	Van't Hoff ∆S (eu)	ΔG(37°C) (kcal/mol)
						Ethylene Glycol at 280nr	n	1			1
	67.7	65.9	63.9	62	60.8	57.7	80.6	35770	38.56	0.1127	-3.623
	67.4	65.2	64	62.4	60.8	56.7	79.8	35270	39.8	0.1	-3.633
	68.1	66.4	64	62.7	60.8	55.4	78.34	35208	34.43	0.1014	-2.996
	67.6	65.7	63.8	62.4	60.5	55.4	79.08	34179	34.44	0.1013	-3.037
	68.4	65	63.8		60.9	56.6	81.31	33082	35.7	0.1043	-3.367
	67.9	65.2	63.8		60.6	56.4	80.09	34367	37.27	0.1092	-3.418
		65	63.8		60.4	57.6	79.41	37393	39.62	0.116	-3.66
		66.4	63.6		60.7	56.5	79	36084	40.03	0.1174	-3.636
		65.8	64		60.7	57.6	78.68	38608	42.24	0.1238	-3.862
		65.7	63.2		60.5	56.9	78.66	37320	40.1	0.1177	-3.613
Average	67.9	65.6	63.8	62.4	60.7	56.7	79.5	35728.1	38.2	0.11205	-3.4845
Standard Deviation	0.4	0.5	0.2	0.3	0.2	0.8	0.9	1682.0	2.7	0.007699	0.281094
						Acetamide at 280nm			•	·	
		65.7	61.4	58.8	55.8						
		65.2	61.7	59.1	55.5						
		64.5	61.9	59	54.7						
		65.6	61.8	59	55.1						
		64.6		59.4	55.6						
		64.3		59.3	55.7						
					55.2						
					55.0						
					54.7						

Table S4.	Experimental tm	and thermod	vnamic data	for melting of	of r(GCGUUUCGCAA)
	Ling of minoritori vill	wind the the the	11001110 000000		

Average	65.0	61.7	59.1	55.3			
Standard Deviation	0.6	0.2	0.2	0.4			

Figure S7. Plot of the inverse of the melting temperature versus the natural log of the water activity for both acetamide and ethylene glycol.

Trial #	0%	5%	10%	15%	20%	T1	Т2	ΔΗ (cal/mol) δα/δTm	Van't Hoff ∆H (kcal/mol)	Van't Hoff ∆S (eu)	∆G(37°C) (kcal/mol)
		•		•	•	Ethylene Glycol at 280n	n			•	
	57.3	56.4	55.6	54	53.9	42.94	72.22	26075.19	29.59	0.08929	-1.9101
	57.1	56.2	56.1	54.7	53.4	43.12	71.36	26983.48	30.46	0.09215	-1.8935
	57.6	56.6	55.9	54.8	53.6	43.25	69.7	28682.5	31.17	0.09444	-1.8936
	57.6	56	55.4	55.1	52.9	43.55	72.14	26749.86	28.84	0.08711	-1.8359
	57.5	56.7	55.4	54.9	52.9	43.23	72.97	25751.27	29.65	0.08937	-1.9453
	57	55.8		54.3	53.8	42.32	73.31	24665.68	27.09	0.08153	-1.8157
		56.7		54.1	53.1						
		56		54.9	53.4						
				54.6							
Average	57.4	56.3	55.7	54.6	53.4	43.1	72.0	26484.7	29.5	0.088982	-1.88235
Standard Deviation	0.3	0.4	0.3	0.4	0.4	0.4	1.3	1353.8	1.4	0.004452	0.048132
						Acetamide at 280nm					
		55.7	53.8	51.9	50.7						
		56.0	53.6	52.2	50.3						
		55.8	52.9	52.0	51.1						
		56.1	53.7		49.8						
		56.7									
Average		56.1	53.5	52.0	50.5						
Standard Deviation		0.4	0.4	0.2	0.6						

Table S5. Experimental t_m and thermodynamic data for melting of G_fCGUUUCGC_f

	1	111	2		0	1 1					
Trial #	0%	5%	10%	15%	20%	T1	T2	ΔΗ (cal/mol) δα/δTm	Van't Hoff ∆H (kcal/mol)	Van't Hoff ∆S (eu)	∆G(37°C) (kcal/mol)
	•		•	•		Ethylene Glycol at 280n	m		•		
	75	72.6	69.2	69.3	68.4	62.53	87.06	34475.19	37.64	0.1082	-4.098
	74.6	72.7	70.2	69.9	68.7	60.79	84.11	35780.37	39.75	0.1151	-4.069
	74.5	72.4	69.8	68.7	67.9	62.03	87.1	33686.08	37.16	0.1069	-4.021
	73.3	72.5	69.4	69.2	67.6	61.92	86.34	34498.41	37.38	0.1076	-4.024
	74	72.1	69.7	69.5	67.5	61.81	85.24	35834.24	37.64	0.1086	-3.974
	74.5	71.1	69.6	69	68	63.92	84.02	41891.06	39.74	0.1144	-4.276
	74.5	71.7	70.8	68.7	67.1						
		71.6	70.6	68.6	67.2						
		72.3	70.1	68.7	67						
		71.3	69.9	68.1	67.1						
		72		68.8	67.3						
		72.5		68.6	67.3						
		71.5		69	67.4						
				69.2	67.7						
Average	74.3	72.0	69.9	69.0	67.6	62.2	85.6	36027.6	38.2	0.110133	-4.077
Standard Deviation	0.5	0.5	0.5	0.5	0.5	1.0	1.4	2990.3	1.2	0.003629	0.106452
						Acetamide at 280nm					
		72.0	67.9	66.0	64.6						
		70.9	67.7	65.5	63.7						
		71.8	67.5	65.2	63.9						
		70.0	67.8	66.3	63.7						

Table S6. Expe	rimental tm and th	nermodynamic data	for melting of G	fCGUUUCGCfAf
----------------	--------------------	-------------------	------------------	--------------

	69.9	68.2	66.0	64.2			
	70.0	67.4	65.3	64.0			
	71.7	68.5	65.8	63.9			
	70.6	67.9	65.8	63.8			
	70.3	67.4	66.1	64.1			
	70.0		66.8	63.4			
	71.5		65.0	63.7			
	69.9		65.4	63.5			
Average	70.7	67.8	65.8	63.9			
Standard Deviation	0.8	0.4	0.5	0.3			

Values for In a(H2O) GfCGUUUCGCfAf

Trial #	0%	5%	10%	15%	20%	T1	T2	ΔΗ (cal/mol) δα/δTm	Van't Hoff ∆H (kcal/mol)	Van't Hoff ∆S (eu)	ΔG(37°C) (kcal/mol)	
Ethylene Glycol at 280nm												
	77.2	74.9	72.7	71.3	69.3	65.69	88.91	36952.07	38.59	0.1102	-4.428	
	77	73.9	72.1	71.6	69.3	64.89	89.02	35485.31	39.05	0.1117	-4.423	
	76.8	74.7	72.5	71	69.3	64.5	88.16	36062.57	39.83	0.1139	-4.521	
	76.5	74.5	71.9	71.1	69.8	67.02	89.94	37689.7	40.85	0.1161	-4.859	
	77.4	74	72.6	71.2	68.8	64.33	87.69	36459.8	39.69	0.1138	-4.412	
	77.2	74.9	72.4	71	68.8	65.73	90.34	35006.87	36.95	0.1053	-4.307	
	77.3	73.8	72.2	71.6	68.9							
		74.7	73	71.1								
		75	73	71.4								
		74.0	73.2	71.3								
		74.9	72.7	70.6								
				70.0								
Average	77.1	74.5	72.6	71.1	69.2	65.4	89.0	36276.1	39.2	0.111833	-4.49167	
Standard Deviation	0.3	0.5	0.4	0.4	0.4	1.0	1.0	976.8	1.3	0.003787	0.19236	
						Acetamide at 280nm	1	1				
		74.3	70.6	69.2	66.0							
		73.7	71.2	68.4	66.1							
		73.5	72.0	68.1	65.4							
		73.3	70.9	68.7	66.9							
		73.8	71.0	69.5	65.7							
		74.4	70.5	69.4								
		72.7	70.8									

Table S7. Expe	erimental t _m and	thermodynamic	data for melting	g of G	fCGUUUCGC _f A _f A _f
----------------	------------------------------	---------------	------------------	--------	--

	73.5						
Average	73.7	71.0	68.9	66.0			
Standard Deviation	0.5	0.5	0.6	0.6			

Figure S10. Plot of the inverse of the melting temperature versus the natural log of the water activity for both acetamide and ethylene glycol.

Figure S11. NMR solution structure of a portion of the U2 snRNA stem I from *S. cerevisiae* (PDB ID 2033)^[4] viewed into the minor groove (top) and rotated around the horizontal by 90 degrees (bottom). Only the (GCC):(GGC) stem and the U4 loop are depicted, with carbon atoms colored in gray and yellow, respectively. The two projections illustrate the absence of stacking among loop uracils and very limited stacking between U9 and C8 and between U12 and G13. Similarly, no hydrogen bonds are established between nucleobase moieties from loop residues.

[4] D. G. Sashital, V. Venditti, C.G. Angers, G. Cornilescu, S. E. Butcher, RNA 2007, 13, 328-338.