Stem Cell Reports, Volume 1

Supplemental Information

Do Pluripotent Stem Cells Exist in Adult Mice

as Very Small Embryonic Stem Cells?

Masanori Miyanishi, Yasuo Mori, Jun Seita, James Y. Chen, Seth Karten, Charles K.F. Chan, Hiromitsu Nakauchi, and Irving L. Weissman

Inventory of Supplemental Information:

Figure S1: related to Figure 2

Figure S2: related to Figure 3

Figure S3: related to Figure 4

Figure S4: related to Figure 4

Table S1: related to Figure 1

Table S2: related to Figure 1

Table S3: related to Figure 3 and Experimental Procedures

Figure S1

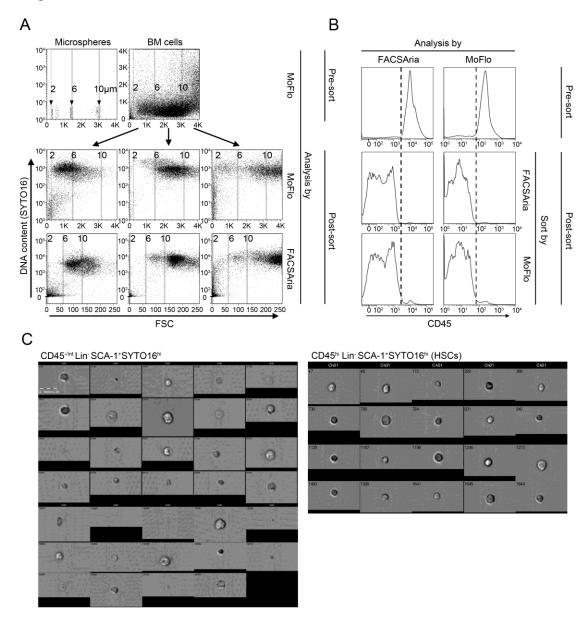
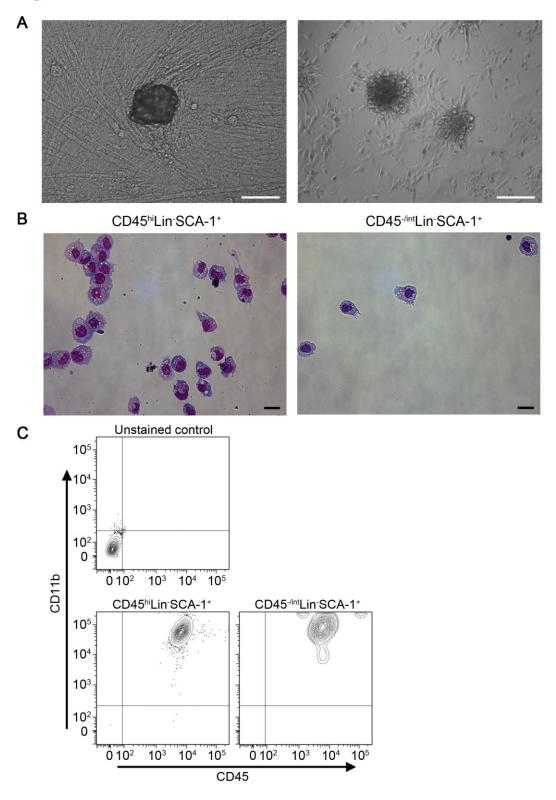



Figure S1. Bone Marrow Cell Analysis with Different Flow Cytometers, Related to Figure 2. (A) Representative re-analysis data of sorted BM cells. A MoFlo machine was used to sort events by FSC into 2-6, 6-10, and >10 μm (expected-size) subgroups (upper). Each subgroup was re-analyzed with the MoFlo (middle) and FACSAria (lower). Vertical lines indicate the positions of 2-, 6-, and 10-μm-microspheres. (B) Representative reanalysis data of sorted CD45-/int cells. These cells were sorted in parallel by FACSAria and MoFlo, and then re-analyzed with both of these sorters. Dotted lines indicate the threshold between CD45-/int and CD45hi. (C) Images of CD45-/intLin-SCA-1+SYTO16hi cells (candidate VSELs) and CD45hiLin-SCA-1+SYTO16hi cells (HSCs) captured by flow cytometry imaging. Shown here are 34 candidate VSELs and 20 HSCs, randomly chosen. The dotted bar in the top-left image indicates 20 μm.

Figure S2

Figure S2. Co-culture with the Myoblast C2C12 Cell Line, Related to Figure 3. (A) Representative photographs of spontaneously aggregated C2C12 cells on day 10 of culture in 2% FCS. White scale bars, 100 μm. (B) Representative photographs of cells derived from CD45^{hi}Lin⁻SCA-1⁺ and CD45^{-/int}Lin⁻SCA-1⁺ fractions (May-Giemsa staining; scale bars, 15 μm). (C) FACS analysis of the expression of CD45 (hematopoietic lineage marker) and CD11b (macrophage marker) in proliferating cells derived from CD45^{hi}Lin⁻SCA-1⁺ (lower left) and CD45^{-/int}Lin⁻SCA-1⁺ (lower right) cells.

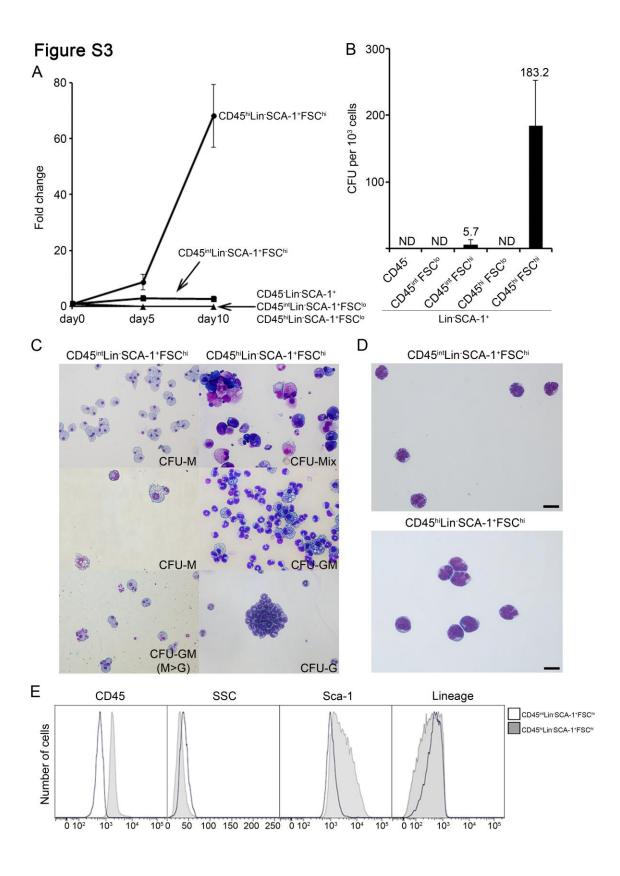


Figure S3. *In vitro* Assessment of Hematopoietic Lineage Potential among Candidate VSELs, Related to Figure 4. (A) Results of cell proliferation in a liquid culture. Lin SCA-1⁺ cells were cultured in IMDM plus 10% FCS supplemented with 10 ng/ml of SCF, IL-3, and Flt3 ligand. Shown are the mean ± SD from three independent experiments. (B) Representative methylcellulose colony assays of FACS-purified populations. Hematopoietic colonies developed only from CD45^{int}Lin SCA-1⁺FSC^{hi} and CD45^{hi}Lin SCA-1⁺FSC^{hi} cells. Data shown here are mean ± SD in five independent experiments. CFU, colony-forming unit; ND, not detected. (C) Representative photographs of cell components of colonies derived from each Lin SCA-1⁺ fraction indicated. (May-Giemsa staining). CFU-M, CFU-macrophage; CFU-Mix, CFU-erythroid and myeloid cells; CFU-GM, CFU-granulocytes/macrophages; CFU-G, CFU-granulocytes. Scale Bar, 20 μm. (D) Morphological and (E) immunophenotypical comparisons of freshly-isolated CD45^{int}Lin SCA-1⁺FSC^{hi} cells. Scale bars, 10 μm. These data were similar in three independent experiments.

Figure S4

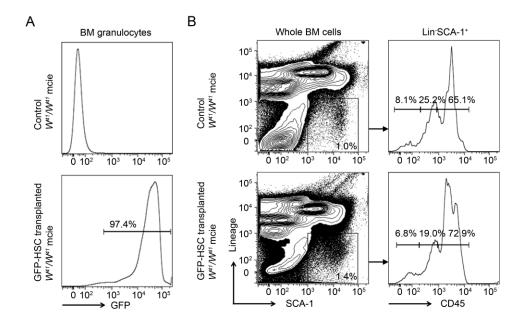


Figure S4. Analysis of Bone Marrow from Mice with EGFP⁺-HSC Transplants, Related to Figure 4. (A) FACS analysis of GFP⁺ cells in BM granulocytes from control mice (upper) and mice, 3 months after they were irradiated and received intravenous transplants of 10² long-term HSCs (lower). (B) A representative histogram of CD45 expression within the BM Lin⁻SCA-1⁺ fraction from control mice (right upper) and transplant-recipient mice (right lower) 3 months after transplantation. Data were similar in three independent experiments.

Table S1. Hierarchy of FACS gating and frequency of populations, Related to Figure 1.

Donulation	Frequency			
Population	(% of lysis-buffer-treated BM, mean \pm SD, n=22)			
FSC & SSC gated	37.28 ± 2.79			
SYTOX-Blue	32.94 ± 2.68			
Lin ⁻ SCA-1 ⁺	0.489 ± 0.095			
CD45	0.027 ± 0.013			
FSClo	0.024 ± 0.009			
FSChi	0.001 ± 0.001			
CD45 ^{int}	0.070 ± 0.027			
FSClo	0.041 ± 0.017			
FSC ^{hi}	0.019 ± 0.010			
CD45 ^{hi}	0.385 ± 0.011			
FSC^{lo}	0.023 ± 0.010			
FSC^{hi}	0.331 ± 0.058			

FSC^{lo}, <10 μm; FSC^{hi}, >10 μm.

Table S2. Age of Mice and Purification strategy for mouse VSEL used by Ratajczak group, Related to Figure 1.

Year	Authors	PMID	Age of mice used	Purification Strategy	
2006	Kucia M et al.	16498386	3–4 wk & 1 yr	CD45 ⁻ Lin ⁻ SCA-1 ⁺	
2008	Zuba-Surma EK et al.	18031297	4–8 wk	Size-beads & CD45 Lin SCA-1 7-AAD	
2008	Dawn B et al.	18420834	4–6 wk	Size-beads & CD45 ⁻ Lin ⁻ SCA-1 ⁺	
2008	Zuba-Surma EK et al.	18430437	6 wk & 15 wk	Size-beads & CD45 Lin SCA-1+	
2008	Kucia M et al.	18511604	4-6 wk & 1 yr	CD45 ⁻ Lin ⁻ SCA-1 ⁺	
2008	Zuba-Surma EK et al.	18951465	4–8 wk	Size-beads & CD45 ⁻ Lin ⁻ SCA-1 ⁺ 7-AAD ⁻	
2009	Shin DM et al.	19641521	4–5 wk	Size by lymphoid cells & CD45 ⁻ Lin ⁻ SCA-	
				1+	
2010	Shin DM et al.	20508611	4–5 wk	CD45 ⁻ Lin ⁻ SCA-1 ⁺	
2010	Wojakowski W et al.	20596650	4–8 wk	Size-beads & CD45 ⁻ Lin ⁻ SCA-1 ⁺	
2011	Zuba-Surma EK et al.	20629987	4–6 wk	Size by lymphoid cells & CD45 ⁻ Lin ⁻ SCA-	
				1+	
2011	Ratajczak J et al.	21034791	4-8 wk	Size by lymphoid cells & CD45 Lin SCA-	
				1 ⁺ 7-AAD	
2012	Shin DM et al.	22023227	4–5 wk	CD45 ⁻ Lin ⁻ SCA-1 ⁺	

Table S3. Primer sequences for Oct4, Related to Figure 3.

Pair		Sequence	Amplicon size	Reference
1	Sense	5'-CACGAGTGGAAAGCAACTCA	246bp	Toyooka et at., 2008
	Antisense	5'-AGATGGTGGTCTGGCTGAAC	2400p	
2	Sense	5'-ACCTTCAGGAGATATGCAAATCG	70bp	Kucia et al. 2006a
	Antisense	5'-TTCTCAATGCTAGTTCGCTTTCTCT	- 700р	
3	Sense	5'-AGTTGGCGTGGAGACTTTGC	160bp	Liu et at. 2009
	Antisense	5'-CAGGGCTTTCATGTCCTGG	1 1000р	
4	Sense	5'-TACAGCAGATCACTCACATCG		Mm.PT.51.7439100.g Integrated DNA
	Antisense	5'-GTAGCCTCATACTCTTCTCGTTG	133bp	
	Probe	5'-ACCACATCCTTCTCTAGCCCAAGC		Technologies