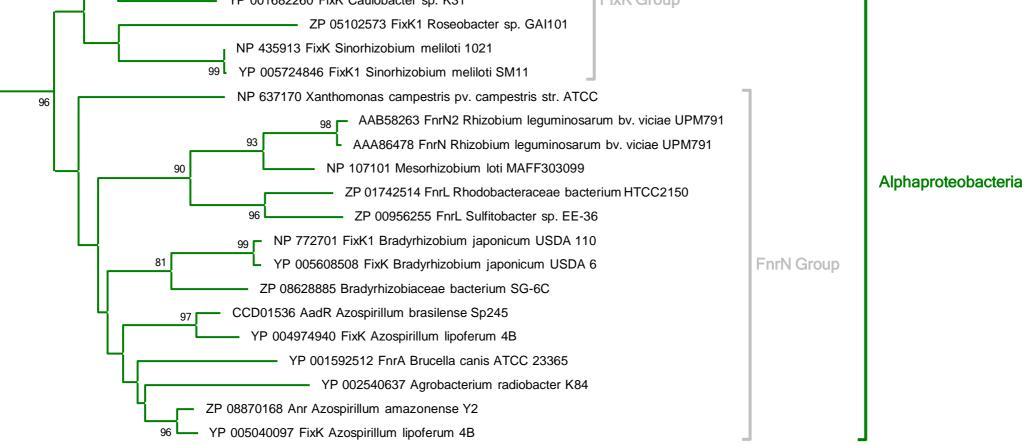
### SUPPLEMENTARY INFORMATION FOR:

# The *Herbaspirillum* seropedicae SmR1 Fnr orthologs controls the cytochrome composition of the electron transport chain

Marcelo B. Batista<sup>a</sup>, Michelle Z. T. Sfeir<sup>a</sup>, Helisson Faoro<sup>a</sup>, Roseli Wassem<sup>b</sup>, Maria B. R. Steffens<sup>a</sup>, Fábio O. Pedrosa<sup>a</sup>, Emanuel M. Souza<sup>a</sup>, Ray Dixon<sup>c</sup> and Rose A. Monteiro<sup>a<sup>\*</sup></sup>.

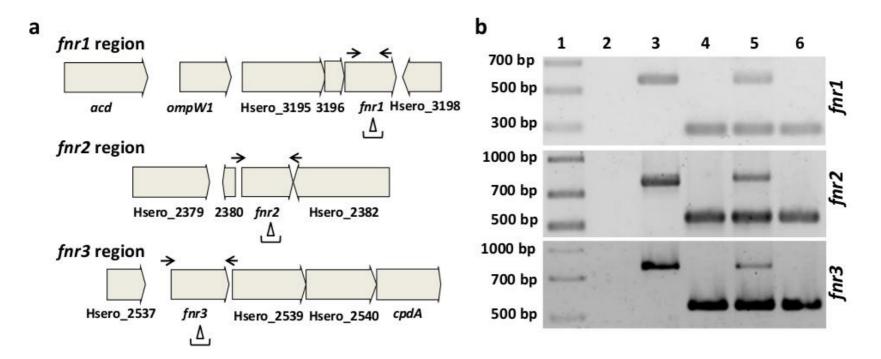
<sup>a</sup> Department of Biochemistry and Molecular Biology, UFPR, Curitiba-PR – Brazil <sup>b</sup> Department of Genetics, UFPR, Curitiba-PR - Brazil

<sup>c</sup> Department of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK

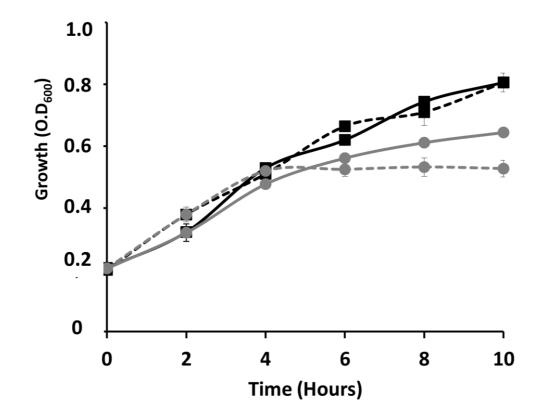

\*corresponding author:

Rose Adele Monteiro : roseadele@ufpr.br

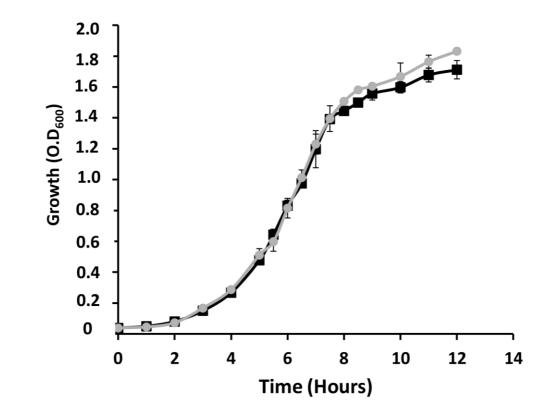
#### **Contents:**


- Supplementary Figures
- Supplementary Tables
- Supplementary References

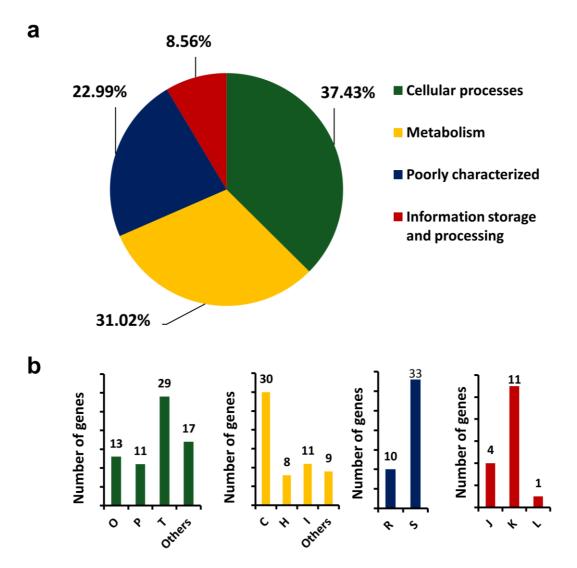
| 67 ZP 08132409 Anr Kingella denitrificans ATCC 33394                                                                            | -                  | 7         |
|---------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------|
| <sup>67</sup> ZP 08246766 Anr Neisseria bacilliformis ATCC BAA-1200                                                             |                    |           |
| 97 YP 208620 Neisseria gonorrhoeae FA 1090                                                                                      |                    |           |
| NP 903317 Chromobacterium violaceum ATCC 12472                                                                                  |                    |           |
| YP 002552485 Acidovorax ebreus TPSY                                                                                             |                    |           |
| 79 YP 001021661 Fnr Methylibium petroleiphilum PM1                                                                              |                    |           |
| VD 002522050 Siderovedona lithetrophique ES 1                                                                                   |                    |           |
| 92 YP 003846080 CarD Gallionella capsiferriformans ES-2                                                                         |                    |           |
| ZP 08505489 Anr Methyloversatilis universalis FAM5                                                                              |                    |           |
| YP 932855 Fnr Azoarcus sp. BH72                                                                                                 |                    |           |
| 99 YP 159953 Fnr Aromatoleum aromaticum EbN1                                                                                    |                    |           |
| 46 YP 726481 Fnr2 Ralstonia eutropha H16                                                                                        |                    |           |
| YP 586655 Cupriavidus metallidurans CH34                                                                                        |                    |           |
| 63 CP 004348107 Burkholderia gladioli BSR3                                                                                      |                    |           |
| P YP 335288 FnrL Burkholderia pseudomallei 1710b                                                                                | Betaproteobacteria |           |
| 99 – YP 336174 FnrL Burkholderia pseudomallei 1710b                                                                             |                    |           |
| ● YP 003775788 Fnr2 Herbaspirillum seropedicae SmR1                                                                             |                    |           |
| ● YP 003775945 Fnr3 Herbaspirillum seropedicae SmR1                                                                             |                    |           |
| 7091 — ● YP 003776587 Fnr1 Herbaspirillum seropedicae SmR1                                                                      |                    |           |
| 79 YP 001100589 Fnr Herminiimonas arsenicoxydans                                                                                |                    |           |
| 56 YP 001353329 Janthinobacterium sp. Marseille                                                                                 |                    |           |
| 97 YP 001099920 Btr Herminiimonas arsenicoxydans                                                                                |                    |           |
| NP 879971 Btr Bordetella pertussis Tohama I                                                                                     |                    | Fnr Group |
| 76 – NP 942911 Fnr Ralstonia eutropha H16                                                                                       |                    |           |
| 73 VP 726776 Fnr3 Ralstonia eutropha H16                                                                                        |                    |           |
| YP 584185 FnrL Cupriavidus metallidurans CH34                                                                                   |                    |           |
| YP 841586 Fnr5 Ralstonia eutropha H16                                                                                           |                    |           |
| YP 583842 FnrL Cupriavidus metallidurans CH34                                                                                   |                    |           |
| 88 YP 841057 Fnr4 Ralstonia eutropha H16                                                                                        | J                  |           |
| YP 002799173 CydR Azotobacter vinelandii DJ                                                                                     |                    |           |
| 42 VP 001750434 Resudemenses putide W640                                                                                        |                    |           |
|                                                                                                                                 |                    |           |
| ZP 05638922 Ani Pseudomonas synngae pv. labaci sir. ATCC                                                                        |                    |           |
| <ul> <li>NP 250235 Anr Pseudomonas aeruginosa PAO1</li> <li><sup>59</sup></li> <li>70 012056 10 Parmanalla maniambri</li> </ul> |                    |           |
| ZP 01305649 Bermanella marisrubri                                                                                               |                    |           |
| ZP 09189237 Anr Halomonas boliviensis LC1                                                                                       |                    |           |
| 51 YP 003145738 Kangiella koreensis DSM 16069                                                                                   |                    |           |
| YP 004392595 Aeromonas veronii B565 Gammaproteobacteria                                                                         |                    |           |
| 99 YP 003556912 EtrA Shewanella violacea DSS12<br>99 YP 001760790 Shewanella woodyi ATCC 51908                                  |                    |           |
| ZP 04412887 Vibrio cholerae bv. albensis VL426                                                                                  |                    |           |
| 58<br>                                                                                                                          |                    |           |
| <sup>41</sup> YP 005176618 Fnr Pasteurella multocida 36950                                                                      |                    |           |
| P 003468250 Fnr Xenorhabdus bovienii SS-2004                                                                                    |                    |           |
| 72 YP 002238752 Fnr Klebsiella pneumoniae 342                                                                                   |                    |           |
| 97 NP 415850 Fnr Escherichia coli str. K-12 substr. MG1655                                                                      |                    |           |
| 97 NP 769397 FixK2 Bradyrhizobium japonicum USDA 110                                                                            |                    | 1         |
| 94 YP 568479 FixK Rhodopseudomonas palustris BisB5                                                                              |                    |           |
| 65 NP 768749 FixK Bradyrhizobium japonicum USDA 110                                                                             |                    |           |
| YP 001682260 FixK Caulobacter sp. K31                                                                                           | up                 |           |



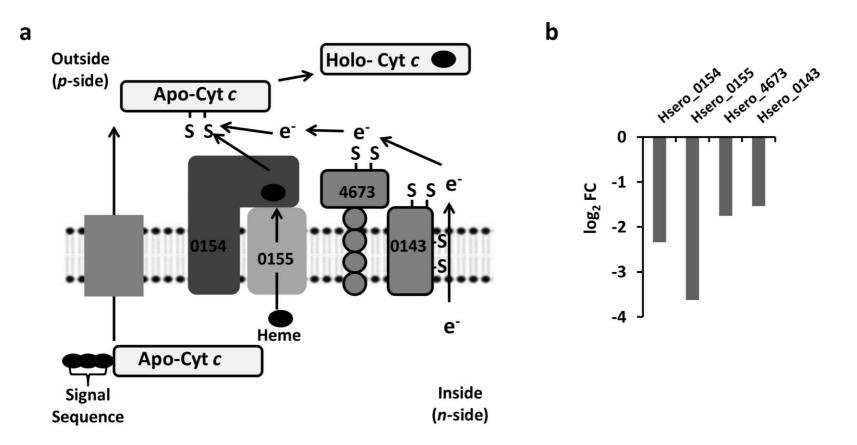

F


**Supplementary Figure S1:** Phylogenetic reconstruction of selected members of Fnr, FnrN and FixK groups of the CRP-FNR superfamily of transcriptional regulators. The unrooted, maximum-likelihood tree was constructed as described in the methods section. The tree with the highest log likelihood (-12984.9076) is shown. The members of the tree are identified by the NCBI Reference sequence identification number and by the name of the host bacterium. Drawings are to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 68 amino acid sequences. All positions containing gaps and missing data were eliminated. The branches of Alpha, Gamma and Betaproteobacteria are differentiated by the following colors: green, red and blue, respectively. *H. seropedicae* Fnr proteins are indicated with closed circles.

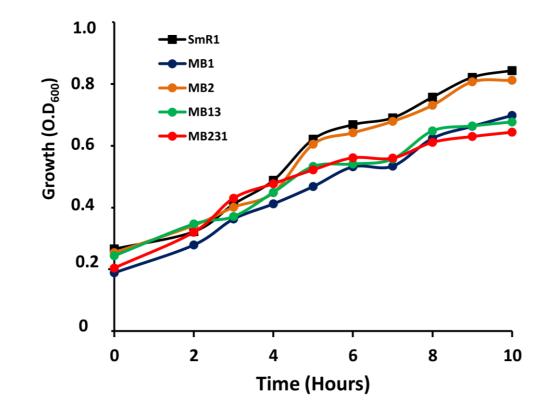



**Supplementary Figure S2:** Construction and validation of the *fnr1*, *fnr2* and *fnr3* mutant strains. (a) Chromosomal regions encoding *fnr1*, *fnr2* and *fnr3*. The genes and predicted functions in the *fnr1* locus are: *acd*, 1-aminocyclopropane-1-carboxylate deaminase; *ompW1*, outer membrane W protein; Hsero\_3195, fatty acid desaturase protein; Hsero\_3196 hypothetical protein; Hsero\_3198, transmembrane protein. The genes and predicted functions in the *fnr2* locus are: Hsero\_2379, AraC family transcription regulator protein; Hsero\_2380, hypothetical protein; Hsero\_2382, acyltransferase family protein. The genes and predicted functions in the *fnr3* locus are: Hsero\_2537, nicotinamidase protein; Hsero\_2539, type 2 phosphatidic acid phosphatase family protein; Hsero\_2540, sphingosine kinase/eukaryotic diacylglicerol kinase protein; *cpdA*, 3'5' cyclic-nucleotide phosphodiesterase protein. The regions deleted in *fnr1*, *fnr2* and *fnr3* are indicated by  $\Delta$ , as well the primers used for PCR genotyping are indicating by thin arrows external to the genes. (b) Genotypic validation of strains MB1 (*fnr1* deletion), MB2 (*fnr2* deletion) and MB3 (*fnr3* deletion). PCR was performed by using primers external to the targeted gene (as indicated in *A*). Lanes: 1, 1 Kb ladder Axygen; 2, water control; 3, SmR1; 4, suicide vector (pMBB1DS, pMBB2DS or pMBB3DS); 5, intermediate strain; 6, final deletion strain. Double and triple mutants were genotyped in the same fashion. On the left are indicated the length in base pairs (bp) of the DNA ladder.

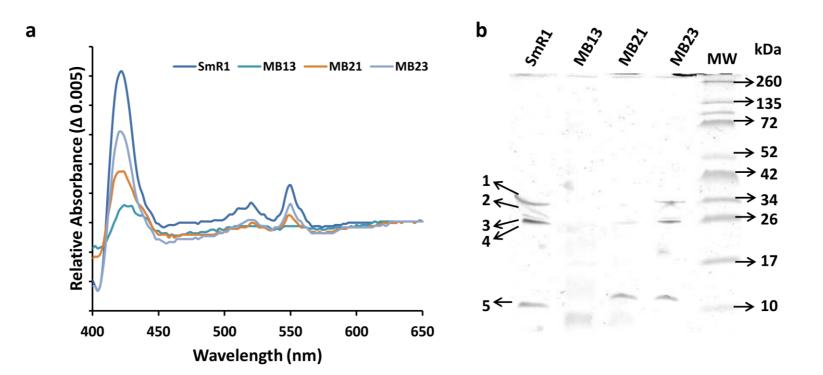



**Supplementary Figure S3:** Influence of *fnr* genes on growth under combined nitrogen and oxygen limitation. The growth of SmR1 (black squares) and MB231 (grey circles) were assayed in NFbHP-Malate minimal media supplemented with high (filled line) ammonium concentration (20mM NH4CI) or low (dotted lines) ammonium concentration (2mM NH4CI). The data represents the mean of three independent assays performed in duplicate. Error bars indicate standard deviations. In some case these are not visible as they are smaller than the graph points.

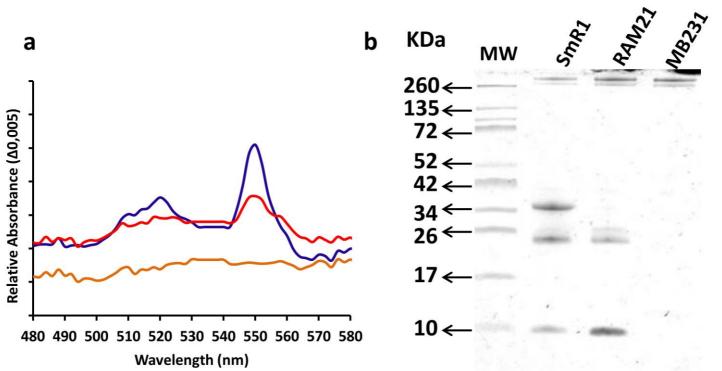



**Supplementary Figure S4:** Deletion of the three *fnr* genes does not affect growth under 20.8% oxygen. The growth of SmR1 (black squares) and MB231 (grey circles) were assayed in NFbHP-Malate minimal media supplemented with 20 mM ammonium chloride under air (20,8% oxygen). The data represents the mean of two independent assays performed in duplicate. Error bars indicate standard deviations. In some cases these are not visible as they are smaller than the graph points.




**Supplementary Figure S5:** Functional COG classification of all differentially expressed genes revealed by comparison of the RNA-Seq libraries of *H. seropedicae* MB231 (*fnr* ablated strain) and SmR1 (wild type) strains. (a) Distribution of regulated genes into four general categories. The categories were classified according to its abundance in the clockwise direction. (b) Detailed distribution of the most representative functional categories in the data. The letters referring to each specific category are: O, post-translational modification; protein turnover, chaperone functions; P, Inorganic ion transport and metabolism; T, signal transduction; C, energy production and conversion; H, coenzyme metabolism; I, lipid metabolism; R, general functional prediction only; S, function unknown; J, translation; K, transcription; L, replication and repair.




**Supplementary Figure S6:** The System II (CCS - <u>Cytochrome <u>C</u> <u>Synthesis</u>) for cytochrome *c* maturation pathway in *H. seropedicae.* (a) Schematic representation of cytochrome *c* maturation based on genes present in the genome. The genes and predicted functions are: Hsero\_0154: *resB* cytochrome *C*-type biogenesis transmembrane protein; Hsero\_0155: *ccmC* (*resC*) ABC-type transport system, permease component protein; Hsero\_4673: Hsero\_4673 (*resA*) thioredoxin protein; Hsero\_0143: *dsbD* thiol:disulfide interchange transmembrane protein. (b) Level of differential expression of genes coding for components of CCS. The genes were down regulated in the MB231 strain, indicating that they are Fnr activated. FC means fold change.</u>



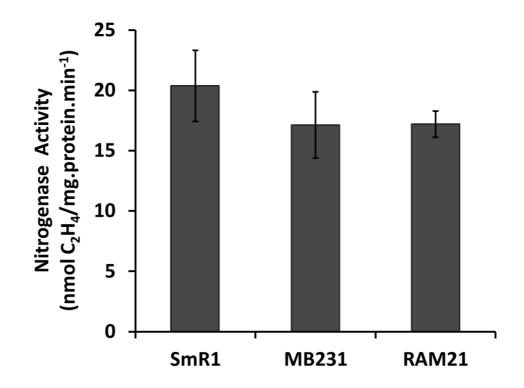
**Supplementary Figure S7:** The Fnr2 protein is not required for growth under oxygen-limiting conditions. The growth of SmR1 (black squares), MB1 ( blue circles), MB2 (orange circles), MB13 (green circles) and MB231 (red circles) were assayed in NFbHP-Malate minimal media supplemented with 20 mM ammonium chloride under an oxygen concentration of 5.0 % in the gas phase of the culture flask.



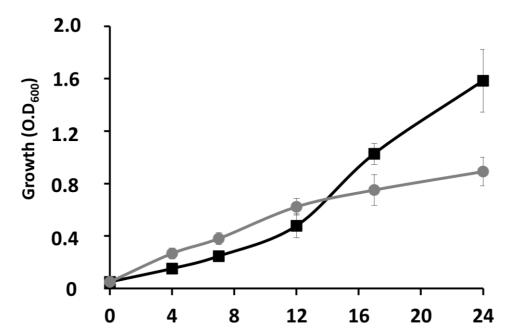
Supplementary Figure S8: The levels of c-type cytochromes in H.seropedicae strains MB13, MB21 and MB23 are similar to those of the strains, MB231, MB1 and MB3, respectively. (a) UV-visible reduced minus oxidized absorption spectra and (b) heme stain profile of protein extracts from *H. seropedicae* SmR1 (wild type), MB13, MB21 and MB23 mutant strains.



Supplementary Figure S9. The RAM21 strain is deficient in the levels of *c*-type cytochromes. (a) Reduced minus


oxidized visible absorption spectra of protein extracts from H. seropedicae SmR1 (blue), RAM21 (red) and MB231

(orange) strains. The UV-visible difference spectra of 0.3 mg.mL<sup>-1</sup> protein extracts was recorded as described in


Methods. (b) Heme stain profile of protein extracts from *H. seropedicae* SmR1 (wild type), RAM21 (fixN mutant) and

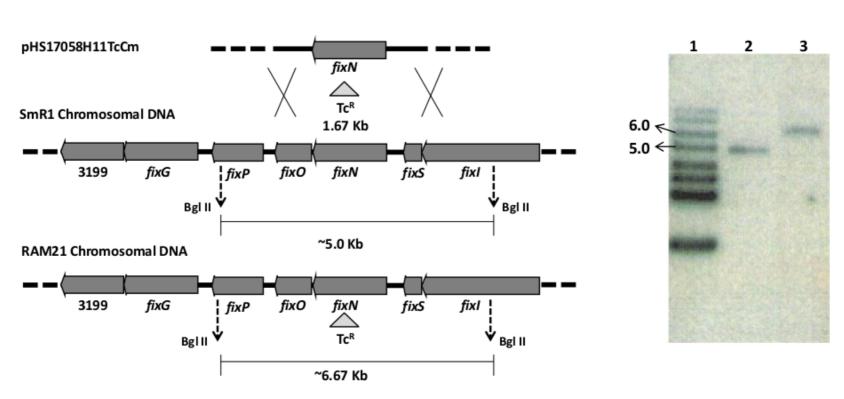
MB231(triple fnr mutant) strains. Samples (50 µg protein per lane) from all the strains were separated by 10% Tris-

Tricine SDS-PAGE and stained for covalently bound heme with *o*-dianisidine as described in Methods.



**Supplementary Figure S10.** Influence of Fnr and FixN on nitrogenase activity in semi solid media. The acetylene reduction assay was performed as described in Methods using strains grown in semi-solid medium supplemented with 0.5 mM of sodium glutamate. Data represent the average of two independent experiments performed in duplicate. Error bars indicate standard deviations.




### **Days Post Inoculation**

Supplementary Figure S11: Influence of *fnr* genes deletion on diazotrophic growth. The SmR1 (black squares) and

MB231 (grey circles) strains were collected by centrifugation, washed with NFbHP-Malate minimal media without

addition of nitrogen source and ressuspended back in the same media to an initial optical density of 0.05. Strains

were incubated statically at 30°C. In some cases error bars are not visible as they are smaller than the graph points.



b

**Supplementary Figure S12:** Construction and validation of the *fixN* mutant strain. (a) Schematic representation of the mutagenic plasmid (pHS17058H11TcCm) and its integration into *H. seropedicae* SmR1 *fixN* chromosomal region. The genes and predicted functions in the locus are: Hsero\_3199, FixH domain containing protein; *fixG*, iron-sulfur 4Fe-4S ferredoxin transmembrane protein; *fixP, cbb<sub>3</sub>*-type cytochrome c oxidase-subunit III; *fixO, cbb<sub>3</sub>*-type cytochrome oxidase-subunit II; *fixN,cbb<sub>3</sub>*- type cytochrome c oxidase, subunit I; *fixS*, nitrogen fixation protein P-type ATPase protein; *fixI,* cation transport P-type ATPase protein. Genes are not drawn to scale. (b) Genotypic validation of RAM21 strain (insertion of Tc<sup>R</sup> transposon into *fixN* gene) by DNA hybridization using a specific *fixN* probe. Lanes: 1, 1 Kb ladder (Fermentas); 2, *H. seropedicae* SmR1 chromosomal DNA digested with Bgl II; 3, *H. seropedicae* RAM21 chromosomal DNA digested with Bgl II. On the left are indicated the length in kilobase pairs of the DNA ladder.

| Strains and<br>Plasmids | Relevant Characteristic                                                                                             | Source or<br>Reference |
|-------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------|
| E. coli                 |                                                                                                                     |                        |
| TOP 10                  | hsdR, mcrA, lacZ∆M15, recA                                                                                          | INVITROGEN             |
| S17.1                   | Sm <sup>R</sup> , Tra⁺                                                                                              | (3)                    |
| H. seropedicae          |                                                                                                                     |                        |
| SmR1                    | Z78 but Sm <sup>R</sup> 100µg/mL, Nif+                                                                              | (4)                    |
| MB1                     | Same as SmR1, but with a deletion at <i>fnr1</i> gene                                                               | This work              |
| MB2                     | Same as SmR1, but with a deletion at <i>fnr</i> 2 gene                                                              | This work              |
| MB3                     | Same as SmR1, but with a deletion at <i>fnr</i> 3 gene                                                              | This work              |
| MB13                    | Same as SmR1, but with deletions at <i>fnr1</i> and <i>fnr3</i><br>genes                                            | This work              |
| MB21                    | Same as SmR1, but with deletions at <i>fnr2</i> and <i>fnr1</i> genes                                               | This work              |
| MB23                    | Same as SmR1, but with deletions at <i>fnr</i> 2 and <i>fnr</i> 3 genes                                             | This work              |
| MB231                   | Same as SmR1, but with deletions at <i>fnr1</i> , <i>fnr2</i> and <i>fnr3</i> genes                                 | This work              |
| RAM21                   | Same as SmR1, but with insertion of a TET-1 transposon at <i>fixN</i> gene                                          | This work              |
| Plasmids                |                                                                                                                     |                        |
| pTZ57R/T                | Amp <sup>R</sup> , TA cloning vector                                                                                | FERMENTAS              |
| pSUP202                 | Cb <sup>R</sup> , Cm <sup>R</sup> , Tc <sup>R</sup> , Mob                                                           | (3)                    |
| pMH1701                 | Km <sup>R</sup> , contains the <i>nptI-sacR-sacB</i> cassete                                                        | (5)                    |
| pPW452                  | Same as pMP220, but with inverted cloning site                                                                      | (6)                    |
| pTnMod-OCm              | pMB1, Cam <sup>R</sup> mob+ Tn5 tnp                                                                                 | (7)                    |
| pHS17058H11             | pUC18 derivative plasmid from <i>H. seropedicae</i> SmR1 genomic sequencing library containing the <i>fixN</i> gene | (8)                    |
| pHS17058H11Tc           | Same as pHS17058H11 with the TET-1 transposon inserted at the <i>fixN</i> gene                                      | This work              |
| pHS17058H11TcCm         | Same as pHS17058H11Tc with the Cam <sup>R</sup> cassete (from pTnMod-Com) inserted outside the <i>fixN</i> gene     | This work              |
| pTZFNR1A                | Contains 198 bp upstream to <i>fnr1</i> plus 294 bp of the 5' coding region in pTZ57R/T vector.                     | This work              |
| pTZFNR1B                | Contains 245 bp downstream to <i>fnr1</i> plus 255 bp of the 3' coding region in pTZ57R/T vector                    | This work              |
| pTZFNR2A                | Contains 333 bp upstream to <i>fnr2</i> plus 279 bp of the 5' coding region in pTZ57R/T vector                      | This work              |
| pTZFNR2B                | Contains 357 bp downstream to <i>fnr2</i> plus 273 bp of the 3' coding region in pTZ57R/T vector                    | This work              |

## Supplementary Table S1: Strains and plasmids used in this study

| pTZFNR3A   | Contains 315 bp upstream to <i>fnr</i> 3 plus 255 bp of the 5'<br>of the coding region in pTZ57R/T vector                       | This work |
|------------|---------------------------------------------------------------------------------------------------------------------------------|-----------|
| pTZFNR3B   | Contains 315 bb downstream to <i>fnr3</i> plus 264 pb of the 3' coding region in pTZ57R/T vector                                | This work |
| pTZFNR1DEL | Contains the XhoI and HindIII fragment of pTZFNR1A vector in pTZFNR1B to yield a plasmid with a 279 bp deletion in <i>fnr1</i>  | This work |
| pTZFNR2DEL | Contains the XhoI and HindIII fragment of pTZFNR2A vector in pTZFNR2B to yield a plasmid with a 276 bp deletion in <i>fnr</i> 2 | This work |
| pTZFNR3DEL | Contains the XhoI and HindIII fragment of pTZFNR3A vector in pTZFNR3B to yield a plasmid with a 267 bp deletion in <i>fnr3</i>  | This work |
| pMBB1D     | Contains the HindIII and BamHI fragment of<br>pTZFNR1DEL vector in pSUP202 sucide vector                                        | This work |
| pMBB2D     | Contains the HindIII and BamHI fragment of<br>pTZFNR2DEL vector in pSUP202 sucide vector                                        | This work |
| pMBB3D     | Contains the HindIII and BamHI fragment of<br>pTZFNR3DEL vector in pSUP202 sucide vector                                        | This work |
| pMBB1DS    | Same as pMBB1D, but with the <i>nptI-sacR-sacB</i> cassete inserted at BamHI site                                               | This work |
| pMBB2DS    | Same as pMBB2D, but with the <i>nptI-sacR-sacB</i> cassete inserted at BamHI site                                               | This work |
| pMBB3DS    | Same as pMBB3D, but with the <i>nptI-sacR-sacB</i> cassete inserted at BamHI site                                               | This work |
| pTZPFN     | Contains the putative promoter region of <i>fixNOP</i> operon in pTZ57R/T vector                                                | This work |
| pTZPHN     | Contains the putative promoter region of <i>hemN</i> -<br>Hsero_3206-fixIS operon in pTZ57R/T vector                            | This work |
| pPWPFN     | TcR, Mob, <i>fixN::lacZ</i> fusion, PstI and BgIII fragment of<br>pTZPFN in pPW452 vector                                       | This work |
| pPWPHN     | TcR, Mob, <i>hemN::lacZ</i> fusion, PstI and BgIII fragment of<br>pTZPHN in pPW452 vector                                       | This work |

| Supplementary Table S2: Sequences Retrieved for Phylogenetic Analyses |
|-----------------------------------------------------------------------|
|-----------------------------------------------------------------------|

| Class               | Clade  | Order | Ref seq <sup>a</sup> | Locus Tag <sup>b</sup> | Definition                                           | Gene | Organism                                  |
|---------------------|--------|-------|----------------------|------------------------|------------------------------------------------------|------|-------------------------------------------|
|                     |        | 1     | ZP_08132409          | HMPREF9098_0136        | transcriptional regulator Anr                        | -    | Kingella denitrificans ATCC 33394         |
|                     |        | 2     | ZP_08246766          | HMPREF9123_0193        | transcriptional regulator Anr                        | -    | Neisseria bacilliformis ATCC BAA-1200     |
|                     |        | 3     | YP_208620            | NGO1579                | anaerobic transcriptional regulator                  | -    | Neisseria gonorrhoeae FA 1090             |
|                     |        | 4     | NP_903317            | CV_3647                | Crp/Fnr family transcriptional regulator             | -    | Chromobacterium violaceum ATCC 12472      |
|                     |        | 5     | YP_002552485         | Dtpsy_1007             | Crp/Fnr family transcriptional regulator             | -    | Acidovorax ebreus TPSY                    |
|                     |        | 6     | YP_001021661         | Mpe_A2471              | transcription factor Fnr                             | fnr  | Methylibium petroleiphilum PM1            |
|                     |        | 7     | YP_003523050         | Slit_0422              | Crp/Fnr family transcriptional regulator             | -    | Sideroxydans lithotrophicus ES-1          |
|                     |        | 8     | YP_003846080         | Galf_0271              | CarD family transcriptional regulator                | carD | Gallionella capsiferriformans ES-2        |
|                     |        | 9     | ZP_08505489          | METUNv1_02552          | Transcriptional activator protein anr                | -    | Methyloversatilis universalis FAM5        |
|                     |        | 10    | YP_932855            | azo1351                | fnr gene product                                     | -    | Azoarcus sp. BH72                         |
|                     |        | 11    | YP_159953            | ebA5149                | transcription factor Fnr                             | -    | Aromatoleum aromaticum EbN1               |
| ria                 |        | 12    | YP_726481            | H16_A2013              | transcriptional regulator, FNR-like                  | fnr2 | Ralstonia eutropha H16                    |
| cte                 |        | 13    | YP_586655            | Rmet_4521              | Crp/Fnr family transcriptional regulator             | -    | Cupriavidus metallidurans CH34            |
| Betaproteobacteria  |        | 14    | YP_004348107         | bgla_2g01140           | Transcriptional regulator, Crp/Fnr family protein    | -    | Burkholderia gladioli BSR3                |
| eo                  |        | 15    | YP_335288            | BURPS1710b_A0129       | fnrL gene product                                    | fnrL | Burkholderia pseudomallei 1710b           |
| ē                   |        | 16    | YP_336174            | BURPS1710b_A1016       | fnrL gene product                                    | fnrL | Burkholderia pseudomallei 1710b           |
| ap                  |        | 17    | YP_003775788         | Hsero_2381             | Crp/Fnr family transcription regulator               | fnr2 | Herbaspirillum seropedicae SmR1           |
| at met              |        | 18    | YP_003775945         | Hsero_2538             | Crp/Fnr family transcription regulator               | fnr3 | Herbaspirillum seropedicae SmR1           |
| -                   |        | 19    | YP_003776587         | Hsero_3197             | Crp/Fnr family transcription regulator               | fnr1 | Herbaspirillum seropedicae SmR1           |
|                     |        | 20    | YP_001100589         | HEAR2336               | fnr gene product                                     | fnr  | Herminiimonas arsenicoxydans              |
|                     |        | 21    | YP_001353329         | mma_1639               | Crp/FNR family transcriptional regulator             | -    | Janthinobacterium. sp. Marseille          |
|                     | Group  | 22    | YP_001099920         | HEAR1637               | btr gene product                                     | btr  | Herminiimonas arsenicoxydans              |
|                     | ē      | 23    | NP_879971            | BP1197                 | btr gene product                                     | btr  | Bordetella pertussis Tohama I             |
|                     | ۵<br>۵ | 24    | NP_942911            | PHG276                 | transcriptional regulator                            | fnr  | Ralstonia eutropha H16                    |
|                     | Fnr    | 25    | YP_726776            | H16_A2312              | transcriptional regulator, FNR-like                  | fnr3 | Ralstonia eutropha H16                    |
|                     |        | 26    | YP_584185            | Rmet_2037              | fnrL gene product                                    | fnrL | Cupriavidus metallidurans CH34            |
|                     |        | 27    | YP_841586            | H16_B2074              | transcriptional regulator, FNR-like                  | fnr5 | Ralstonia eutropha H16                    |
|                     |        | 28    | YP_583842            | Rmet_1692              | fnr gene product                                     | fnr  | Cupriavidus metallidurans CH34            |
|                     |        | 29    | YP_841057            | H16_B1540              | transcriptional regulator, FNR-like                  | fnr4 | Ralstonia eutropha H16                    |
|                     |        | 30    | YP_002799173         | Avin_19910             | cydR gene product                                    | cydR | Azotobacter vinelandii DJ                 |
|                     |        | 31    | YP_259029            | PFL_1910               | anr gene product                                     | anr  | Pseudomonas fluorescens Pf-5              |
|                     |        | 32    | YP_001750434         | PputW619_3583          | Crp/FNR family transcriptional regulator             | -    | Pseudomonas putida W619                   |
|                     |        | 33    | ZP_05638922          | PsyrptA_020100016591   | transcriptional regulator Anr                        | -    | Pseudomonas syringae pv. tabaci str. ATCC |
| ia.                 |        | 34    | NP_250235            | PA1544                 | anr gene product                                     | anr  | Pseudomonas aeruginosa PAO1               |
| ter                 |        | 35    | ZP_01305649          | RED65_09994            | transcriptional regulator Anr                        | -    | Bermanella marisrubri                     |
| Gammaproteobacteria |        | 36    | ZP_09189237          | KUC_2859               | Transcriptional activator protein anr                | -    | Halomonas boliviensis LC1                 |
|                     |        | 37    | YP_003145738         | Kkor_0550              | unnamed protein product                              | -    | Kangiella koreensis DSM 16069             |
|                     |        | 38    | YP_004392595         | B565_1943              | fumarate/nitrate reduction transcriptional regulator | -    | Aeromonas veronii B565                    |
| p                   |        | 39    | YP_003556912         | SVI_2163               | etrA gene product                                    | etrA | Shewanella violacea DSS12                 |
| m                   |        | 40    | YP_001760790         | Swoo_2417              | fumarate/nitrate reduction transcriptional regulator | -    | Shewanella woodyi ATCC 51908              |
| am                  |        | 41    | ZP_04412887          | VCA_001046             | fumarate and nitrate reduction regulatory protein    | -    | Vibrio cholerae bv. albensis VL426        |
| Ö                   |        | 42    | ZP_02477756          | HPS_05113              | regulatory protein HlyX                              | -    | Haemophilus parasuis 29755                |
|                     |        | 43    | YP_005176618         | Pmu_07350              | fnr gene product                                     | fnr  | Pasteurella multocida 36950               |
|                     |        | 44    | YP_003468250         | XBJ1_2353              | fnr gene product                                     | fnr  | Xenorhabdus bovienii SS-2004              |

|                    |       | 45 | YP_002238752 | KPK_2925      | fnr gene product                                    | fnr   | Klebsiella pneumoniae 342                       |
|--------------------|-------|----|--------------|---------------|-----------------------------------------------------|-------|-------------------------------------------------|
|                    |       | 46 | NP_415850    | b1334         | DNA-binding transcriptional dual regulator          | fnr   | Escherichia coli str. K-12 substr. MG1655       |
|                    |       | 47 | NP_769397    | bll2757       | fixK gene product                                   | fixk  | Bradyrhizobium japonicum USDA 110               |
|                    | ٩     | 48 | YP_568479    | RPD_1340      | transcriptional regulator FixK                      | fixk  | Rhodopseudomonas palustris BisB5                |
|                    | Group | 49 | NP_768749    | bll2109       | fixK gene product                                   | fixk  | Bradyrhizobium japonicum USDA 110               |
|                    | ō     | 50 | YP_001682260 | Caul_0629     | transcriptional regulator FixK                      | fixk  | Caulobacter sp. K31                             |
|                    | Fixk  | 51 | ZP_05102573  | RGAI101_3810  | FixK1 Transcriptional activator                     | fixk  | Roseobacter sp. GAI101                          |
|                    | ΪĒ    | 52 | NP_435913    | SMa1225       | transcriptional regulator FixK                      | fixk  | Sinorhizobium meliloti 1021                     |
|                    |       | 53 | YP_005724846 | SM11_pC0964   | fixK1 gene product                                  | fixk1 | Sinorhizobium meliloti SM11                     |
| b                  |       | 54 | NP_637170    | XCC1805       | fumarate and nitrate reduction regulatory protein   | fnr   | Xanthomonas campestris pv. campestris str. ATCC |
| eri                |       | 55 | AAB58263     | 1             | Fnr-type transcriptional regulator FnrN2            | -     | Rhizobium leguminosarum bv. Viciae UPM791       |
| act                |       | 56 | AAA86478     | 2             | FnrN                                                | -     | Rhizobium leguminosarum bv. Viciae UPM791       |
| ĝ                  |       | 57 | NP_107101    | mll6632       | Fnr-type transcriptional regulator                  | -     | Mesorhizobium loti MAFF303099                   |
| ote                |       | 58 | ZP_01742514  | RB2150_17129  | Crp-Fnr regulatory protein (FnrL)                   | -     | Rhodobacteraceae bacterium HTCC2150             |
| pre                |       | 59 | ZP_00956255  | EE36_11304    | Crp-Fnr regulatory protein (FnrL)                   | -     | Sulfitobacter sp. EE-36                         |
| Alfaproteobacteria | Group | 60 | NP_772701    | bll6061       | fixK gene product                                   | fixk  | Bradyrhizobium japonicum USDA 110               |
|                    | G     | 61 | YP_005608508 | BJ6T_36460    | fixK gene product                                   | fixk  | Bradyrhizobium japonicum USDA 6                 |
|                    | FnrN  | 62 | ZP_08628885  | CSIRO_1970    | transcriptional regulator, Crp/Fnr family           | -     | Bradyrhizobiaceae bacterium SG-6C               |
|                    | й.    | 63 | CCD01536     | AZOBR_p210200 | transcriptional activatory protein aadR             | aadR  | Azospirillum brasilense Sp245                   |
|                    |       | 64 | YP_004974940 | AZOLI_p20689  | Crp family transcriptional regulator                | -     | Azospirillum lipoferum 4B                       |
|                    |       | 65 | YP_001592512 | BCAN_A0667    | transcriptional activator protein fnrA              | fnrA  | Brucella canis ATCC 23365                       |
|                    |       | 66 | YP_002540637 | Arad_7576     | nitrogen fixation transcriptional regulator protein | fixkf | Agrobacterium radiobacter K84                   |
|                    |       | 67 | ZP_08870168  | AZA_90412     | Transcriptional activator protein Anr               | -     | Azospirillum amazonense Y2                      |
|                    |       | 68 | YP_005040097 | AZOLI_2692    | fixK gene product                                   | fixk  | Azospirillum lipoferum 4B                       |

<sup>a</sup> NCBI reference sequence number

<sup>b</sup> Locus Tags are given for all organisms that have complete genome deposited in NCBI database until June 2012. The sequences identified with NCBI reference sequence numbers AAB58263 and AAA86478 were subject of independent deposition in NCBI database in 24-FEB-1997 (1) and 15-DEC-1994 (2), respectively.

## Supplementary Table S3: Primers used in this study

| Primer       | Restriction<br>Site | Sequence (5'>3') <sup>a</sup>                                     | Genome<br>Position <sup>b</sup>            | Aplication                                                                 | Source                   |  |
|--------------|---------------------|-------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------|--------------------------|--|
| 1DA+         | HindIII             | TGCATC <b>AAGCTT</b> GTGTGGTA                                     | From 3659172<br>to 3659191                 | Cloning 198 bp<br>upstream to <i>fnr1</i> plus                             | This work                |  |
| 1DA-         | Xhol                | GCCGTC <b>CTCGAG</b> TTCCTGATA                                    | From 3659664<br>to 3659684                 | 294 bp of the 5' coding region                                             | THIS WORK                |  |
| 1DB+         | Xhol                | GTGAAC <b>CTCGAG</b> TCACGCTAC                                    | From 3659952<br>to 3659972                 | Cloning 245 bp downstream to <i>fnr1</i>                                   | This work                |  |
| 1DB-         | BamHI               | TCTTTT <b>GGATCC</b> TCAACCCG                                     | From 3660432<br>to 3660451                 | plus 255 bp of the 3'<br>coding region                                     |                          |  |
| 2DA+         | HindIII             | GGAACA <b>AAGCTT</b> TCAGCAGC                                     | From 2710337<br>to 2710356                 | Cloning 333 bp<br>upstream to <i>fnr2</i> plus                             | This work                |  |
| 2DA-         | Xhol                | GGTATG <b>CTCGAG</b> GGCAATCAC                                    | From 2710928<br>to 2710948                 | 279 bp of the 5' coding<br>region                                          |                          |  |
| 2DB+         | Xhol                | AATGCC <b>CTCGAG</b> GAATTCTCG                                    | From 2711216<br>to 2711236                 | downstream to fnr2                                                         | This work                |  |
| 2DB-         | BamHI               | AGGTTG <b>GGATCC</b> TGGTGGAAG                                    | From 2711825<br>to 2711845<br>From 2891852 | plus 273 bp of the 3'<br>coding region                                     |                          |  |
| 3DA+         | HindIII             | ACTGGA <b>AAGCTT</b> GGCCTATG                                     | to 2891871<br>From 2892401                 | Cloning 315 bp<br>upstream to <i>fnr</i> 3 plus<br>255 bp of the 5' of the | This work                |  |
| 3DA-         | Xhol                | CTGGAAGGT <b>CTCGAG</b> ATGGCC                                    | to 2892421<br>From 2892671                 | coding region<br>Cloning 315 bb                                            |                          |  |
| 3DB+         | Xhol                | ATGACGGCG <b>CTCGAG</b> AAGATG                                    | to 2892691<br>From 2893229                 | downstream to <i>fnr</i> 3<br>plus 264 pb of the 3'                        | This work                |  |
| 3DB-<br>PFNP | BamHI<br>Pstl       | GTATAGCCC <b>GGATCC</b> AGTTCG<br>TGGAAG <b>CTGCAG</b> ATCTCCTCAT | to 2893249<br>From 3666293                 | coding region                                                              |                          |  |
| PFNP         | BgIII               | ATTGGCGCAGATCTGTGTAGTT                                            | to 3666314<br>From 3665955                 | Amplify 360 bp of the<br>promoter region of<br><i>fixNXOP</i> operon       | This work                |  |
| PHNP         | Pstl                | TTAACATTG <b>CTGCAG</b> TTGGGCT                                   | to 3665976<br>From 3671461                 | Amplify 367 bp of the                                                      |                          |  |
| PHNB         | BgIII               | TCTTGTTCA <b>AGATCT</b> CGAGACT                                   | to 3671440<br>From 3671095<br>to 3671116   | promoter region of<br>hemNHsero_3206fixIS<br>operon                        | This work                |  |
| 1F           | None                | ACCAGTTGTGCCTGCCCA                                                | From 3659509<br>to 3659526                 | Confirmation of cloning                                                    | This second              |  |
| 1R           | None                | CTGCTTGCGGAACTTGGA                                                | From 3660075<br>to 3660089                 | and mutations                                                              | This work                |  |
| 2F           | None                | CAATGACCTGAGTAAGCGT                                               | From 2710684<br>to 2710702                 | Confirmation of cloning                                                    | This work                |  |
| 2R           | None                | GAACTTGCTGATGAGGCG                                                | From 2711297<br>to 2711314                 | and mutations                                                              | THIS WORK                |  |
| 3F           | None                | TTCCACCCACAAGCATTC                                                | From 2892184<br>to 2892201                 | Confirmation of cloning                                                    | This work                |  |
| 3R           | None                | TGAAGTTGGTCAGCAGGC                                                | From 2892819<br>to 2892836                 | and mutations                                                              |                          |  |
| pmpfor       | None                | GCTCACCCCAAAAATGGCA                                               | Not applicable                             | Confirmation of plasmidial <i>lacZ</i>                                     | Wassem, R<br>unpublished |  |
| laczrev      | None                | GCAAGGCGATTAAGTTGGGT                                              | Not applicable                             | transcriptional fusions                                                    | unpublished              |  |

<sup>a</sup>Highlighted in bold are the sequences of restriction sites inserted in the primers

<sup>b</sup>Positions of primers annealing are given for *H.seropedicae* SmR1 genome

#### **Supplementary References**

- Gutiérrez, D., Hernando, Y., Palacios, J.M., Imperial, J. & Ruiz-Argüeso, T. FnrN controls symbiotic nitrogen fixation and hydrogenase activities in *Rhizobium leguminosarum biovar viciae* UPM791. *J. Bacteriol.* **179**, 5264-5270 (1997).
- Hernando, Y., Palacios, J.M., Imperial, J. & Ruiz-Argüeso, T. The *hypBFCDE* operon from *Rhizobium leguminosarum biovar viciae* is expressed from an Fnr-type promoter that escapes mutagenesis of the *fnrN* gene. *J. Bacteriol.* **177**, 5661-5669 (1995).
- Simon, R., Prieffer, U. & Puhler, A. A broad host range mobilization system for in vitro genetic engineering, transposon mutagenesis in Gram-negative bacteria. *Nat. Biotechnol.* 1, 784-791 (1983).
- Souza, E.M., Pedrosa, F.O., Rigo, L.U., Machado, H.B. & Yates, M.G. Expression of the *nifA* gene of *Herbaspirillum seropedicae*, role of the NtrC and NifA binding sites and of the -24/-12 promoter element. *Microbiology* **146**, 1407-1418 (2000).
- Hynes, M.F., Quandt, J., Oconnell, M.P. & Puhler, A. direct selection for curing and deletion of Rhizobium plasmids using transposons carrying the *Bacillus subtilis sacB* gene. *Gene* **78**, 111-120 (1989).

- Woodley, P., Buck, M., & Kennedy, C. Identification of sequences important for recognition of *vnf* genes by the VnfA transcriptional activator in *Azotobacter vinelandii*. *FEMS Microbiol. Lett.* **135**, 213-22 (1996).
- Dennis, J. J. & Zylstra, G. J. Plasposons, modular self-cloning mini-transposon derivatives for the rapid genetic analysis of gram-negative bacterial genomes. *Appl. Environ. Microbiol.* 64, 2710–2715 (1998).
- Pedrosa, F.O. *et al.* Genome of *Herbaspirillum seropedicae* strain SmR1, a specialized diazotrophic endophyte of tropical grasses. *PLoS Genet.* 7, e1002064. doi, 10.1371/journal.pgen.1002064 (2011).