Supporting Information

Endosomolytic reducible polymeric electrolytes for cytosolic protein delivery

Li Tian^{a,#}, Han Chang Kang^{b,#}, You Han Bae^{a, c,*}

^a Department of Pharmaceutics and Pharmaceutical Chemistry, The University of Utah, 30 S 2000 E, Rm 2972, Salt Lake City, Utah 84112, USA

^b Department of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, Republic of Korea

^c Utah-Inha Drug Delivery Systems (DDS) and Advanced Therapeutics Research Center, 7-50 Songdo-dong, Yeonsu-gu, Incheon, 406-840, Republic of Korea

[#]LT and HCK contributed equally to this work.

* Correspondence to:

Professor You Han Bae, Department of Pharmaceutics and Pharmaceutical Chemistry, The University of Utah, 30 S 2000 E, Rm 2972, Salt Lake City, Utah 84112, USA

Tel: +1-801-585-1518

Fax: +1-801-585-3614.

E-mail address: you.bae@utah.edu

Table S1. Consumed volume of 0.1 N HCl in protein solutions, polyelectrolyte solutions, and polyelectrolyte/protein complex solutions.

	$\Delta \mathrm{V}_\mathrm{HCl}$	$\Delta V_{ m HCl}$	$\Delta V_{ m HCl}$	$\Delta \mathrm{V}_\mathrm{HCl}$
	(pH 7.4 – 7.0)	(pH 7.0 – 6.0)	(pH 6.0 – 5.1)	(pH 7.4 – 5.1)
bPEI _{25kDa}	10.1	21.1	18.9	50.1
bPEI _{25kDa} /BSA (WR 1)	8.7	24.2	17.9	50.8
RPC-bPEI _{0.8kDa} 2	5.7	11.1	8.6	25.4
RPC-bPEI _{0.8kDa} 2/BSA (WR 1)	4.7	11.3	9.8	25.8
BSA	0.2	2.5	1.6	4.3
	$\Delta V_{ m HCl}$	$\Delta V_{ m HCl}$	$\Delta V_{ m HCl}$	$\Delta V_{ m HCl}$
	(pH 7.4 – 7.0)	(pH 7.0 – 6.0)	(pH 6.0 – 5.1)	(pH 7.4 – 5.1)
bPEI _{25kDa} COOH	2.6	9.3	8.0	19.8
bPEI _{25kDa} COOH/LYZ (WR 1)	3.5	8.1	8.6	19.9
RPA-bPEI _{0.8kDa} 2	2.5	8.0	7.5	18.0
RPA-bPEI _{0.8kDa} 2/LYZ (WR 1)	2.9	9.5	13.0	25.4
LYZ	1.6	2.8	3.5	7.9

Figure S1. ¹H-NMR spectra of RPC-bPEI_{0.8kDa}2 and RPA-bPEI_{0.8kDa}2

Figure S2. Time-dependent DTT-induced size change of polymer/protein complexes (WR 1) at RT in the presence of DTT (10 mM or 20 mM)

Figure S3. Time-dependent DTT-induced size change of RPC-bPEI_{0.8kDa}2/BSA complexes (WR 2) at RT in the presence or absence of DTT (20 μM or 20 mM)