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Supplementary Information for Hallquist et al. RS-fcMRI manuscript
The Nuisance of Nuisance Regression: Spectral Misspecification in a Common
Approach to Resting-State fMRI Preprocessing Reintroduces Noise and Obscures

Functional Connectivity

S1. Detailed description of simultaneous bandpass filtering and nuisance regression
(Simult)

The notion of spectral filtering using sinusoidal regressors extends from harmonic
analysis, which seeks to estimate the strength of periodic components in the data when the
periodicities are unknown (Bloomfield, 2000). Any time series can be decomposed into
sinusoidal frequency components at the Fourier frequencies, f;:

(n-1)/2
X = ag + Z a; cos(anjt) + bjsin (27 f;t)

j=1
wheret = A, % (1,2,..n); fj = n%\t; n is the (odd) number of observations; j = 1,2, ...n/

2; and A; is the sampling period (in fMR], the repetition time [TR]) of the series (Shumway
and Stoffer, 2010). The intercept of the regression equation is a,, and the strength of the
signal fluctuations at each Fourier frequency, f;, are captured by the coefficients a; and b,
which correspond to the sine and cosine functions, respectively, at that frequency. Thus, a
time series of length n may be perfectly reconstructed by n total sine and cosine functions,

which form an orthogonal basis set that provides a unique mapping between the frequency

and time domain representations of the series.
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Using multiple regression, a bandpass filter can be applied by constructing a pair of
sine and cosine regressors at each of the nuisance frequencies, f;, regressing the input
signal against these components, and retaining the residuals as the filtered series. Further,

the bandpass sinusoids can be regressed alongside nuisance signals straightforwardly:

[crzer] + &
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Xy = ag + Z[aj cos(2nfjt) + b; sin(2nfjt)] +
j=1

where there are r nuisance frequencies, F = {f, f5, ..., fr}, and p nuisance signals. The
coefficients a; and b; capture the strength of signal fluctuation at each nuisance frequency, f;,
whereas the coefficients cx represent the association between each nuisance signal, zx, and
the outcome, x. This approach defines a single linear transformation of a time series that
removes both nuisance signals and frequencies, avoiding the problem of which filtering
step to perform first.

Moreover, in multiple regression the contribution of each predictor is net of the
effects of all other predictors (i.e., the effect of one predictor, controlling for all others in
the model; Cohen et al,, 2002). Thus, by including bandpass filter sinusoids among the
predictors, a given nuisance regressor (e.g., the WM signal), can only uniquely predict
variance at frequencies not represented by the bandpass sinusoids in the regression.
Consequently, all of the nuisance regressors are effectively bandpass filtered — that is, they
only help to remove nuisance variance in the fMRI signal within the passband (e.g., .009 -
.08 Hz). A practical ramification of this fact is that the same estimates for nuisance
regressors will be obtained when the fMRI data and nuisance regressors are bandpass
filtered prior to computing the regression. Said differently, whether using a truly

simultaneous approach (i.e., one that includes both nuisance frequencies and nuisance
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regressors among the signals to be filtered at once) or whether one bandpass filters all
regressors and fMRI data prior to nuisance regression, the effect is that the bandpass filter
removes all fluctuations in the fMRI signal in the stopband (e.g., f<.009 Hz and f> .08 Hz)
and the regression removes any nuisance regressor-related variability within the passband
(e.g.,.009 Hz < f < .08 Hz).

Although the simultaneous filtering approach using multiple regression is
conceptually elegant because it explicates how nuisance frequencies and noise sources can
be treated identically in the same statistical model, creating a set of cosine and sine time
series at the frequencies to be suppressed and incorporating these into a regression for
each region of interest or voxel may be both laborious and computationally expensive. By
contrast, modern spectral filtering methods based on the fast Fourier transform (FFT) are
considerably faster (Bloomfield, 2000) and can be applied to voxelwise fMRI data
reasonably quickly using existing software. Thus, for computational tractability, we suggest
that simultaneous bandpass filtering and nuisance regression should be accomplished by
bandpass filtering the regressors and fMRI time series, then conducting the nuisance

regression on the filtered signals. This approach will yield identical results.

S2. Results for parcellating brain regions into functional brain networks using BpReg
and Simult

In order to characterize differences between BpReg and Simult in the parcellation of
brain regions into functionally related networks, we applied a community detection
algorithm (Blondel et al., 2008) to the averaged and thresholded adjacency matrix for each

approach, where connection weights represented the mean across subjects’ 244 x 244
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adjacency matrices. Average adjacency matrices were then thresholded at 15% edge
density, which eliminated weak connections and negative weights. Because the threshold
chosen for defining functional connections can influence the definition of networks using
community detection methods, we also explored a weight-conserving algorithm that uses
the connectivity strength to define functional networks (Rubinov and Sporns, 2011), rather
than defining connections as present or absent at some connectivity threshold. To measure
the similarity of community assignments between BpReg and Simult, normalized mutual
information (NMI; see Newman, 2010) was calculated — NMI of 1.0 indicates that network
compositions are identical between approaches, whereas NMI of 0.0 indicates no overlap in
community assignments.

For the UPitt data, the algorithms classified 244 ROIs into six functional networks
for both BpReg and Simult. The composition of these networks was consistent with
previous literature (e.g., Fair et al., 2007), and we assigned the following labels: task
control/default mode network, frontal-parietal attention control network, cingulo-
opercular network, visual network, sensory-motor network, and cerebellar network
(Figure S1).

For the UPitt data, community assignments derived from the 15% threshold
algorithm largely overlapped between BpReg and Simult according to the normalized
mutual information criterion, NMI = .87. Notably, however, we identified important
differences between approaches in the composition of the task control/default mode,
frontal-parietal attention control, and cingulo-opercular networks (highlighted by black

circles in Figure S1). Using the weight-conserving modularity optimization algorithm, we
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found that NMI = .82 for BpReg versus Simult, corroborating a moderate to high level of
correspondence between approaches.

For the WashU data, using the 15% threshold approach, correspondence between
BpReg and Simult network definitions was NMI = 0.66. For the weighted modularity

method, we found a similarity of NMI = 0.77 between BpReg and Simult.

S$3. Comparing the effects of motion scrubbing, nuisance regression, and bandpass
filtering on functional connectivity estimates.

Figure 7 suggests the possibility that motion scrubbing and the nuisance regression
and bandpass filtering approach may have relatively independent effects on functional
connectivity estimates. Although we demonstrated that the Simult approach was
significantly better at controlling the motion-connectivity association in both datasets, we
did not address specifically whether changes in connectivity estimates due to motion
scrubbing were related to changes attributable to the Simult approach. To quantify the
whether scrubbing-related connectivity changes were associated with processing
approach, for each subject, we computed connectivity changes due to 1) the difference
between BpReg and Simult for unscrubbed data; 2) the difference between BpReg and
Simult for scrubbed data; 3) scrubbing the Simult data; and 4) scrubbing the BpReg data.
For each pairwise connection, we averaged scrubbing or approach-related differences
across subjects from the above conditions to form four 264 x 264 group matrices where
each cell represented the average connectivity change due to either scrubbing or use of
Simult over BpReg. Finally, we correlated average connectivity changes across pairwise

connections for the four matrices above to quantify the relationships among scrubbing and
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preprocessing approach effects. As detailed in Table S2, for both the UPitt and WashU
cohorts, connectivity differences between Simult and BpReg were essentially comparable
for scrubbed and unscrubbed data, suggesting that scrubbing had relatively little effect on
preprocessing-related changes in connectivity. Conversely, the effects of motion scrubbing
on connectivity estimates varied somewhat between BpReg and Simult (even though the
same volumes were censored from the time series), as indicated by only moderate
correlations between scrubbing-related connectivity changes for BpReg and Simult data.
Notably, however, we found modest associations between approach-related and scrubbing-
related connectivity changes, suggesting that these two procedures are largely
independent. There was a small negative correlation between approach-related
connectivity changes (BpReg - Simult) for the unscrubbed data and scrubbing-related
effects for BpReg, which suggests that for individuals with greater motion-related inflation
of connectivity estimates using the BpReg approach, scrubbing produces more pronounced
reductions in functional connectivity estimates.

Our interpretation that scrubbing- and approach-related connectivity changes are
relatively independent was bolstered by a comparison of Figures S4 and S5, which show
that distance-dependent changes in connectivity estimates due to preprocessing approach
are not qualitatively different after scrubbing, nor are distance-dependent changes due to
scrubbing qualitatively different between BpReg and Simult (consistent with Figure 7).
That said, our analyses indicate that the use of the Simult approach produced more
pronounced reductions of the motion-connectivity association than scrubbing, and this
may be related to the greater magnitude of connectivity changes related to use of the

Simult approach (Figure S4) relative to scrubbing effects (Figure S5).
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Figure S1. The parcellation of brain regions into functional networks differs between

BpReg and Simult approaches.
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Note. Spheres are colored according to their community/network assignments from the

modularity optimization algorithm. Black ovals highlight brain regions that differ in their

community assignments between BpReg and Simult approaches. Results are displayed for

the 15% threshold community detection algorithm applied to the UPitt data.
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Figure S2. Mean cross-spectral power between RS-fcMRI time series and 18 nuisance
regressors for the UPitt cohort.
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Figure S3. Mean cross-spectral power between RS-fcMRI time series and 18 nuisance
regressors for the WashU cohort.
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Figure S4. Mean differences in functional connectivity estimates between the BpReg and

Simult approaches as a function of interregional distance and motion scrubbing.
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Figure S5. Mean differences in functional connectivity estimates due to motion scrubbing as
a function of interregional distance and nuisance regression and bandpass filtering
approcach.
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Table S1. MNI coordinates of the 264 brain regions used throughout this paper, based on
Power et al. (2012a) and Power et al. (2011).

X y ROI

24 32 -18 3
-21 -22 -20 6
17 -28 -17 7
34 38 -12 12
-7 -52 61 13
-14 -18 40 14

0 -15 47 15
10 -2 45 16
-7 -21 65 17
-7 -33 72 18
13 -33 75 19
-54 -23 43 20
29 -17 71 21
10 -46 73 22
-23 -30 72 23
-40 -19 54 24
29 -39 59 25
50 -20 42 26
-38 -27 69 27
20 -29 60 28
44 -8 57 29
-29 -43 61 30
10 -17 74 31
22 -42 69 32
-45 -32 47 33
-21 -31 61 34
-13 -17 75 35
42 -20 55 36
-38 -15 69 37
-16 -46 73 38

2 -28 60 39

3 -17 58 40
38 -17 45 41
-49 -11 35 42
36 -9 14 43
51 -6 32 44
-53 -10 24 45
-3 2 53 47
54 -28 34 48
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Note. ROl numbers refer to the corresponding regions from Power and colleagues’ (2011;
2012a) papers. Twenty of the 264 ROIs from these papers were not acquired by the UPitt

EPI sequence and were omitted from UPitt analyses.
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Table S2. Correlations among functional connectivity changes due to motion scrubbing
versus the use of the Simult or BpReg approach.

Cohort Connectivity Difference 1 2 3 4
UPitt 1: Ar BpReg - Simult (unscrubbed) 1.0

2: Ar BpReg - Simult (scrubbed) 97 1.0

3: Ar Scrubbed - Unscrubbed (BpReg) -.29 -11 1.0

4: Ar Scrubbed - Unscrubbed (Simult) -.04 -.10 .50 1.0
WashU 1: Ar BpReg - Simult (unscrubbed) 1.0

2: Ar BpReg - Simult (scrubbed) 96 1.0

3: Ar Scrubbed - Unscrubbed (BpReg) -.24 -11 1.0

4: Ar Scrubbed - Unscrubbed (Simult) .01 -.06 72 1.0
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