Supplementary material

Figure S1. A typical titration profile of 3.6 μ M Mn^{III}TE-3-PyP in 2 M NaClO₄ with 0.2 M NaOH ($\theta = 25 \text{ °C}$, l = 1 cm). The pH values of the solution were varied within the pH-range 9.7-13 (for the sake of clarity not all measured spectra are shown). **Inset:** The theoretical spectra of the protonated, (—), mono-deprotonated (—), and double deprotonated (—) species.

Figure S2. Time-dependent spectral changes of $Mn^{III}TE-2$ -PyP in an anaerobic cell. **Left:** Condition: [Mn^{III}TE-2-PyP] = 49 μ M, **pH** = **8** (0.05 M NaH₂PO₄), *I* = 0.1 M (NaCl), θ = 25 °C, *l* = 0.1 cm, *E*_{cell} = -450 mV vs. Ag/AgCl. **Middle:** Condition: [Mn^{III}TE-2-PyP] = 29 μ M, **pH** = **4** (0.05M CH₃COONa), *I* = 0.1 M (NaCl), θ = 25 °C, *l* = 0.1 cm, *E*_{cell} = -450 mV vs. Ag/AgCl. **Right:** Condition: [Mn^{III}TE-2-PyP] = 37 μ M, **pH** = **1.5**, *I* = 0.1 M (NaCl), θ = 25 °C, *l* = 0.1 cm, *E*_{cell} = -450 mV vs. Ag/AgCl. **Right:** Condition: [Mn^{III}TE-2-PyP] = 37 μ M, **pH** = **1.5**, *I* = 0.1 M (NaCl), θ = 25 °C, *l* = 0.1 cm, *E*_{cell} = -450 mV vs. Ag/AgCl

Figure S3. Time dependent spectral changes of Mn^{III}TE-3-PyP in an anaerobic cell. **Left:** Condition: [Mn^{III}TE-3-PyP] = 50 μ M, **pH** = 9 (0.025M Na₂B₄O₇), *I* = 0.1 M (NaCl), θ = 25 °C, *l* = 0.1 cm, *E*_{cell} = -600 mV vs. Ag/AgCl. **Right:** Condition: [Mn^{III}TE-3-PyP] = 31 μ M, **pH** = 4 (0.05M CH₃COONa), *I* = 0.1 M (NaCl), θ = 25 °C, *l* = 0.1 cm, *E*_{cell} = -600 mV vs. Ag/AgCl.

Figure S4. The theoretical spectra of the protonated (—) and deprotonated (—) species of Mn^{III}TE-2-PyP predicted according to the 2-species model. **Inset**: The theoretical spectra of the fully protonated (—), monodeprotonated (—), and fully deprotonated (—) species predicted according to the 3-species model.

Figure S5. A typical titration profile of 4 μ M Mn^{II}TE-3-PyP in 2 M NaClO₄ with 0.2 M NaOH ($\theta = 25$ °C, l = 1 cm). The pH values of solution were varied within the pH-range 10.5-13.0 (for the sake of clarity not all measured spectra are shown). **Inset:** The theoretical spectra of the protonated (—) and deprotonated (—) species predicted according to the 2-species model. Spectra obtained at pH < 10.5 are shown in Figure S8.

Figure S6. The theoretical spectra of $Mn^{II}TE-3-PyP$ species obtained from the spectral changes observed in the spectroelectrochemical experiment at pH 9 (—) and in the pH-titration of $Mn^{III}TE-3-PyP^{5+}$ in the presence of ascorbic acid recorded at pH 10.5. (—).

Figure S7. A typical titration profile of 4.8 μ M Mn^{IV}TE-3-PyP in 2 M NaClO₄with 0.2 M NaOH ($\theta = 25 \text{ °C}$, l = 1 cm) in the presence of 0.1 mM [Mo(CN)₈]³⁻. The pH values of the solution were varied within the pH-range 10.5-13. (for the sake of clarity not all measured spectra are shown). **Inset:** The theoretical spectra of the protonated (—) and deprotonated (—) species.

Figure S8. A typical titration profile of $(4 \ \mu M \ Mn^{III}TE-3-PyP + 20 \ mM$ ascorbic acid + 0.5 mM [Fe(CN)₆]³⁻) in 2 M NaClO₄with 0.2 M NaOH ($\theta = 25 \ ^{\circ}C$, $l = 1 \ mbox{cm}$). The pH values were varied within the pH-range 7.4-10.5 (for the sake of clarity not all measured spectra are shown). **Inset:** The theoretical spectra of $(H_2O)_2Mn^{III}TE-3-PyP^{5+}$ (—) and $(H_2O)_2Mn^{II}TE-3-PyP^{4+}$ (—).

Figure S9. A typical titration profile of 4.8 μ M Mn^{III}TE-3-PyP in 2 M NaClO₄ with 0.2 M NaOH (θ = 25 °C, l = 1 cm) in the presence of 0.1 mM [Mo(CN)₈]³⁻ and 0.1 mM [Mo(CN)₈]⁴⁻. The pH values of the solution were varied within the pH-range 8-10 (for the sake of clarity not all measured spectra are shown). **Inset:** The theoretical spectra of the reduced (—) and oxidized forms of MnTE-3-PyP (—).

Figure S10. van't Hoff plots for deprotonation constants of Mn^{III}Ps, K_{a1} (**n**) and K_{a2} (**•**), I = 2 M (NaClO₄): **left:** Mn^{III}TE-2-PyP, **right:** Mn^{III}TE-3-PyP.

Figure S11. van't Hoff plots for deprotonation constants K''_{a1} of Mn^{IV}Ps, I = 2 M (NaClO₄): Mn^{IV}TE-2-Pyp (\bullet).

Figure S12. Temperature dependence of the formal potential for the reduction of 1 mM octacyanomolybdate, I = 2 M (NaClO₄).

Figure S13. Temperature dependence of the formal potential for the redox couple K, $2H^+/D$, as assigned in Scheme 1, I = 2 M (NaClO₄): **left:** MnTE-2-PyP, **right:** MnTE-3-PyP.

Figure S14. Temperature dependence of the formal potential for the redox couple K,2H⁺/D *vs*. SHE, as assigned in Scheme 1, I = 2 M (NaClO₄): **left:** MnTE-2-PyP, **right:** MnTE-3-PyP.

Table S1.	Thermodynamic data for	r the accessib	le redox couple	s of the studied	manganese	porphyrin
complexes	obtained in 2 M NaClC	4. The values	were calculated	l from absolute	redox poten	tials.

Couple	Parameter	•				
Couple	$\Delta H \pm \sigma^{a}$	$\Delta S \pm \sigma^{\rm b}$				
$(O)(H_2O)Mn^{IV}TE-2-PyP^{4+} + 2H^+ + e^- \rightarrow (H_2O)_2Mn^{III}TE-2-PyP^{5+}$	-606 ± 2	21 ± 7				
$(O)(H_2O)Mn^{IV}TE-2-PyP^{4+} + H^+ + e^- \rightarrow (OH)(H_2O)Mn^{III}TE-2-PyP^{4+}$	-557 ± 5	-23 ± 10				
$(O)(H_2O)Mn^{IV}TE-2-PyP^{4+} + e^- \rightarrow (O)(H_2O)Mn^{III}TE-2-PyP^{3+}$	-509 ± 8	-85 ± 21				
$[(O)(OH)Mn^{IV}TE-2-PyP^{4+}+2H^{+}+e^{-} \rightarrow (OH)(H_2O)Mn^{III}TE-2-PyP^{5+}$	-609 ± 8	14 ± 21				
$(O)(H_2O)Mn^{IV}TE-3-PyP^{4+}+2H^++e^- \rightarrow (H_2O)_2Mn^{III}TE-3-PyP^{5+}$	-598 ± 4	50 ± 12				
$(O)(H_2O)Mn^{IV}TE-3-PyP^{4+} + H^+ + e^- \rightarrow (OH)(H_2O)Mn^{III}TE-3-PyP^{4+}$	-547 ± 7	-1 ± 21				
$(O)(H_2O)Mn^{IV}TE-3-PyP^{4+} + e^- \rightarrow (O)(H_2O)Mn^{III}TE-3-PyP^{3+}$	-496 ± 10	-73 ± 32				
$(O)(OH)Mn^{IV}TE-3-PyP^{4+}+2H^{+}+e^{-} \rightarrow (OH)(H_2O)Mn^{III}TE-3-PyP^{5+}$	-597 ± 13	58 ± 40				
^a P _{anation} anthalnias are given in $k \mathbf{I}$ mol ⁻¹ ^b P _{anation} antronias are given in $\mathbf{I} \mathbf{V}^{-1}$ mol ⁻¹						

^a Reaction enthalpies are given in kJ mol⁻¹. ^b Reaction entropies are given in J K⁻¹ mol⁻¹.

Table S2. The formal reduction potentials vs. SHE for all experimentally available redox couples assigned as in Scheme 1, obtained by the spectrophotometric pH titrations at $\theta = 25$ °C, I = 2 M (NaClO₄).

Max ^X /Max ^{X-1}	Redox	$E^{0^{\circ}}$ / V				
IVIN /IVIN	couple	MnTE-2-PyP	MnTE-3-PyP	MnTnBu-2-PyP ^a		
	$D/B,H^+$	-0.550	-0.764	-0.506		
Mn(III)/Mn(II)	$E,H^+/A$	+0.789	+0.632	+0.875		
	F,2H ⁺ /A	+1.477	+1.384	+1.604		
	$F,H^+/B$	+0.782	+0.671	+0.895		
	K,2H ⁺ /D	+1.910	+1.915	+1.800		
	K,H ⁺ /E	+1.266	+1.231	+1.128		
Mn(IV)/Mn(III)	$L,3H^+/D$	+2.569	+2.624	+2.497		
	$L,2H^+/E$	+1.925	+1.940	+1.825		
	L,H ⁺ /F	+1.237	+1.189	+1.095		
	$K/A,2H^+$	+1.028	+0.932	+1.002		
Mn(IV)/Mn(II)	$L/A,3H^+$	+0.680	+0.575	+0.647		
$\operatorname{NIII}(1 \vee)/\operatorname{NIII}(11)$	K/B,H ⁺	+1.357	+1.286	+1.350		
	K/B,2H ⁺	+1.009	+0.930	+0.995		

^a Values taken from Reference 13.