

Figure S1 Positions of 15-bp insertions in the transposition library (blue lines) and from the non-sectoring red colonies (red lines) were determined by Illumina sequencing. Insertions were identified using the unique *Not*I recognition sequence and shown along the *NDC80* gene. The read coverage from the sequencing is shown in green.

В Α 50 Transposition library Original: 5' - NNN12345NNN - 3' Lethal insertions Percent of insertions 40 Frame 1: 5' - N12 345 TGC GGC CGC A12 345 NNN - 3' 30 X X Cys Gly Arg X¹ X X 20 Frame 2: 5' - NN1 234 5TG CGG CCG CA1 234 5NN - 3' X X Leu Arg Pro His ХХ 10 Met Gln Val 0 Frame 2 Frame 3 Frame 1 Frame 3: 5' - NNN 123 45T GCG GCC GCA 123 45N - 3' CGR** *RP** X X X² Ala Ala Ala X X Example insertion: Original: 5' - CAAGTGGTTAT - 3' Frame 1: 5' - AGT GGT TGC GGC CGC AGT GGT TAT - 3' Ser Gly Cys Gly Arg Ser Gly Tyr Frame 2: 5' - AAG TGG TTG CGG CCG CAG TGG TTA - 3' Lys Trp Leu Arg Pro Gln Trp Leu Frame 3: 5' - CAA GTG GTT GCG GCC GCA GTG GTT - 3' Gin Val Val Ala Ala Val Val С 14000 Frame 1 Frame 2 12000 Frame 3 10000 Number of Notl reads 8000 6000 4000 2000 0

Figure S2 The reading frame targeted by transposition dictates the residues inserted. (A) The translation of the insertion depends on both the frame of insertion and the target sequence (adapted from Finnzymes Manual F-701). In the transposition library, each 15-bp insertion includes 5 bp of duplicated target sequence (red) and 10 additional nucleotides (blue). X is any amino acid; X¹ is Ile, Met, Thr, Asn, Lys, Ser, or Arg; X² is any amino acid except Gln, Glu, Lys, Met, and Trp. An example insertion is also shown. (B) The proportion of lethal insertions in each frame (red) is similar to that of the initial transposition library (blue). (C) The positions of lethal insertions (from Figure S1) are separated based on the frame of insertion. Traces are offset vertically for visual clarity.

1000

NDC80 gene position (bp)

1200

1400

1600

1800

2000

200

400

600

800

AAA

Figure S3 Validation of the lethal insertion clusters. Two subsets (green and blue bars) sequenced independently have the same lethal insertion clusters as the original 959 non-sectoring red colonies (red bars, from Figure 3D).

Figure S4 Lethal insertion mutants affect the ability of the Dam1 complex to enhance binding of the Ndc80 complex to microtubules. Using TIRF microscopy, single molecules of GFP-tagged Ndc80 complexes were visualized on taxol-stabilized microtubules. Representative kymographs show the binding and one-dimensional diffusion of 50 pM GFP-tagged Ndc80 complexes on microtubules in the presence or absence of 2.5 nM untagged Dam1 complex.

Figure S5 The effect of lethal insertions in Ndc80 on predicted coiled-coil formation. The probabilities of coiled-coil formation, as predicted by Paircoil2 (McDonnell *et al.* 2006), for Ndc80 containing the representative lethal insertions studied (black lines). Vertical red lines denote the positions of the representative insertions. The probabilities of coiled-coil formation for additional lethal insertions are also shown (blue and green dotted lines).

Table S1	Plasmids	used in	this	study

Diaconid	Delevent merkers	Deference
PidSIIIIQ	Relevant markers	Keierence
pRS316	CEN6 ARSH4 URA3 Amp ^r f1 origin	SIKORSKI and HIETER 1989
pKG9	NatMX	GREENLAND et al. 2010
pJT12	<i>NDC80 ADE3 LYS2</i> in 2 μm vector	This study
pJT36	<i>NDC80</i> in pRS316	This study
pJT153	GFP-NDC80 in pRS316	This study
pJT185	ins506 GFP-ndc80 in pRS316	This study
pJT187	ins656 GFP-ndc80 in pRS316	This study
pJT188	ins839 GFP-ndc80 in pRS316	This study
pJT189	ins940 GFP-ndc80 in pRS316	This study
pJT190	ins1148 GFP-ndc80 in pRS316	This study
pJT154	<i>ins1687 GFP-ndc80</i> in pRS316	This study
pJT155	ins1957 GFP-ndc80 in pRS316	This study
His ₆ -Spc24/Spc25 expression plasmid	His ₆ -SPC24/SPC25 dicistron, Kan ^r	WEI <i>et al.</i> 2005
Ndc80/Nuf2-GFP expression plasmid	NDC80/NUF2-GFP dicistron, Amp ^r	Powers et al. 2009
pJT138	ins506 ndc80/NUF2-GFP dicistron, Amp ^r	This study
pJT139	ins511 ndc80/NUF2-GFP dicistron, Amp ^r	This study
pJT140	ins656 ndc80/NUF2-GFP dicistron, Amp ^r	This study
pJT141	ins839 ndc80/NUF2-GFP dicistron, Amp ^r	This study
pJT142	ins940 ndc80/NUF2-GFP dicistron, Amp ^r	This study
pJT143	ins1148 ndc80/NUF2-GFP dicistron, Amp ^r	This study
pJT145	ins1687 ndc80/NUF2-GFP dicistron, Amp ^r	This study
pJT146	ins1957 ndc80/NUF2-GFP dicistron, Amp ^r	This study
Dam1 complex expression plasmid	DAD4/DAD3/DAD2/SPC19/ASK1 and DAD1/DUO1/SPC34-His ₆ /DAM1/HSK3 polycistrons, Amp ^r	MIRANDA et al. 2005

Table S2 Yeast strains used in this study

Strain	Genotype	Reference
W303	ade2-1oc can1-100 his3-11,15 leu2-3,112 trp1-1 ura3-1	
JTY1	MAT a / α ade2-1oc/ade2-1oc ade3 Δ -100/ade3 Δ -100 can1-100/can1-100 cyh2 ^r /CYH2 ^s	This study
	his3-11,15/his3-11,15 leu2-3,112/leu2-3,112 lys2Δ::HIS3/lys2Δ::HIS3 trp1-1/trp1-1 ura3-1/ura3-1	
JTY4	MAT a /α ade2-1oc/ade2-1oc ade3Δ-100/ade3Δ-100 can1-100/can1-100 cyh2 ^r /CYH2 ^s	This study
	his3-11,15/his3-11,15 leu2-3,112/leu2-3,112 lys2Δ::HIS3/lys2Δ::HIS3 trp1-1/trp1-1 ura3-1/ura3-1	
	NDC80/ndc80Δ::NatMX	
JTY5-5C	МАТ а ade2-1oc ade3Δ-100 can1-100 cyh2 ^r his3-11,15 leu2-3,112 lys2Δ::HIS3 trp1-1 ura3-1 ndc80Δ::NatMX [pJT12]	This study
JTY12-25A	MAT a ade2-1oc ade3Δ-100 can1-100 cyh2 ^r his3-11,15 leu2-3,112 trp1-1 ura3-1 NDC80	This study
	NUF2-mCherry::hphMX	
JTY29-1B	MATα ade2-1oc ade3Δ-100 can1-100 cyh2 ^r his3-11,15 leu2-3,112 trp1-1 ura3-1 NUF2	This study
JTY29-1C	MATα ade2-1oc ade3Δ-100 can1-100 CYH2 ^s his3-11,15 leu2-3,112 trp1-1 ura3-1	This study
	NUF2-TAP::KanMX	
JTY47-2A	MAT a ade2-1oc ade3∆-100 can1-100 CYH2 ^s his3-11,15 leu2-3,112 trp1-1 ura3-1 SPC24	This study
JTY47-2B	MATα ade2-1oc ade3Δ-100 can1-100 cyh2 ^r his3-11,15 leu2-3,112 trp1-1 ura3-1	This study
	SPC24-TAP::KanMX	

Table S3	Oligonucleotides	used for Illumin	a sequencing

Primer	Sequence
NDC80 forward PCR primer	TAAAGGGAACAAAAGCTGGG
NDC80 reverse PCR primer	ACGGCCAGTGAATTGTAA
Multiplex adapter 1	5' P-GATCGGAAGAGCACACGTCT
Multiplex adapter 2	ACACTCTTTCCCTACACGACGCTCTTCCGATCT
Multiplex forward PCR primer + index 1	AATGATACGGCGACCACCGCGATCTCGTGATACACTCTTTCCCTACACGACGCTCTTCCGATC
Multiplex forward PCR primer + index 2	AATGATACGGCGACCACCGCGATCTACATCGACACTCTTTCCCTACACGACGCTCTTCCGATC
Multiplex reverse PCR primer	CAAGCAGAAGACGGCATACGAGATACACTCTTTCCCTACACGACGCTCTTCCGATCT
Multiplex index sequencing primer	AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT
Multiplex read1 sequencing primer	ACACTCTTTCCCTACACGACGCTCTTCCGATCT
TruSeq Indexed Adapter AD002	GATCGGAAGAGCACACGTCTGAACTCCAGTCACCGATGTATCTCGTATGCCGTCTTCTGCTTG
TruSeq Indexed Adapter AD018	GATCGGAAGAGCACACGTCTGAACTCCAGTCACGTCCGCATCTCGTATGCCGTCTTCTGCTTG
TruSeq Indexed Adapter AD019	GATCGGAAGAGCACACGTCTGAACTCCAGTCACGTGAAAATCTCGTATGCCGTCTTCTGCTTG

Table S4 Illumina sequencing results

	Transposition library	Lethal insertions	Lethal insertion subsets	
			Subset 1	Subset 2
Number of sequencing runs	3	1	1	1
Number of 36-bp reads mapped to Chromosome IX	14,000,357	13,710,514	10,075,540	13,424,377
Number of Chromosome IX reads containing <i>Not</i> I	96,569	166,135	290,126	319,434
Number of Chromosome IX reads with <i>Not</i> I in <i>NDC80</i> + promoter/terminator	93,826	N/A	N/A	N/A
Number of Chromosome IX reads with <i>Not</i> I in <i>NDC80</i>	70,215	165,414	289,470	318,637
Number of unique Notl sites in NDC80	1,074	336	320	351
Coverage of NDC80 gene (%)	52	16	15	17
Number of unique codons containing insertions	444	162	149	165
Coverage of Ndc80 protein (%)	64	23	22	24

N/A, not applicable

Literature Cited

- GREENLAND, K. B., H. DING, M. COSTANZO, C. BOONE and T. N. DAVIS, 2010 Identification of Saccharomyces cerevisiae spindle pole body remodeling factors. PLoS One **5**: e15426.
- McDonnell, A. V., T. JIANG, A. E. KEATING and B. BERGER, 2006 Paircoil2: improved prediction of coiled coils from sequence. Bioinformatics **22:** 356-358.
- MIRANDA, J. J., P. DE WULF, P. K. SORGER and S. C. HARRISON, 2005 The yeast DASH complex forms closed rings on microtubules. Nat Struct Mol Biol **12**: 138-143.
- POWERS, A. F., A. D. FRANCK, D. R. GESTAUT, J. COOPER, B. GRACYZK *et al.*, 2009 The Ndc80 kinetochore complex forms loadbearing attachments to dynamic microtubule tips via biased diffusion. Cell **136**: 865-875.
- SIKORSKI, R. S., and P. HIETER, 1989 A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics **122**: 19-27.
- WEI, R. R., P. K. Sorger and S. C. HARRISON, 2005 Molecular organization of the Ndc80 complex, an essential kinetochore component. Proc Natl Acad Sci U S A **102:** 5363-5367.