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INCORPORATING BACK MUTATIONS

In our derivation of the time-dependent effective population size, we have neglected the effect of back
mutations. In practice, back mutations only introduce terms of higher-order in µ/s, and thus are of negligible
contribution in the regime we consider. However, it is straightforward to incorporate these terms into our
analysis, which we do here.

First, we consider the steady-state distribution of mutations at a single site. This is determined by the
solution to the equations:
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where µf and µb are the forward and back mutation rates, respectively. This yields:
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When µb = 0, these reduce to the usual mutation-selection balance results, f1 = µf/s and f0 = 1 − µf/s.
Furthermore, if we define µf ≡ µ and µb ≡ cµ, and expand this result in orders of µ/s, we see that:
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Thus, we see that incorporating back mutations leads to a correction of order µ2/s2. As a consequence, the
effect of back mutations is negligible in the regime we consider. However, we may derive Equation 2 from
the main text including them. We have that:
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Solving this yields:
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which replaces Equation 2 in the main text. Similarly, Equation 1 may be recovered by substituting rx →
r(xi, xf ). We note that these equations are identical to those given in the main text to leading-order in µ/s,
and thus back mutations represent only a small correction to our results in the regime we consider.
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