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The Q function

We now derive the Q function for our model. For two parameter sets Θ and
Θt we define

Q(Θ|Θt) =
∑
y

P (y|x,Θt) logP (x,y|Θ). (1)

The probability of the data given the parameters Θ can be expressed as
the product of the probabilities of the initial interactions and the transition
probabilities:

P (x,y|Θ) =
∏
e∈E

(
p
Ae(y)
e,Θ · (1− pe,Θ)A¬e(y)

)
.

Taking the logarithm we obtain:

logP (x,y|Θ) =
∑
e∈E

(Ae(y) log pe,Θ + A¬e(y)(1− log pe,Θ))

which we can plug into (1):

Q(Θ|Θt) =
∑
y

P (y|x,Θt)

[∑
e∈E

(Ae(y) log pe,Θ + A¬e(y)(1− log pe,Θ))

]
=
∑
y

∑
e∈E

P (y|x,Θt)Ae(y) log pe,Θ +
∑
y

∑
e∈E

P (y|x,Θt)A¬e(y) log(1− pe,Θ)

=
∑
e∈E

log pe,Θ
∑
y

P (y|x,Θt)Ae(y) +
∑
e∈E

log(1− pe,Θ)
∑
y

P (y|x,Θt)A¬e(y)

We thus obtain the following formula for the Q

Q(Θ|Θt) =
∑
e

(
E(Ae) log pe,Θ + E(A¬e) log(1− pe,Θ)

)
, (2)

where the mean values are taken with respect to the probability distribu-
tion P (−|x,Θt).
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The E-step

In the E-step we compute the mean values E(Ae) and E(A¬e), with e ranging
over all types. The mean values are taken with respect to the probability
distribution P (−|x,Θt). They are computed using Pearl’s message passing
algorithm. Here we show only the slightly harder case when the event type
e is associated either with duplications or speciation, i.e. when we have to
consider both the parent and the child in the tree to determine the exact
event.

Summing over all pairs of random variables (p, c) for which transition e
can take place we have:

E(Ae) =
∑
(p,c)

P (p, c|x,Θt)

=
∑
(p,c)

P (p, c,x|Θt)

P (x|Θt)

=
∑
(p,c)

P (c,x|p,Θt)P (p|Θt)

P (x|Θt)

=
∑
(p,c)

P (c,x|p,Θt)P (p|Θt)P (p,x|Θt)

P (x|Θt)P (p,x|Θt)

=
∑
(p,c)

P (c,x|p,Θt)P (p|Θt)P (p|x,Θt)P (x|Θt)

P (x|Θt)P (x|p,Θt)P (p|Θt)

=
∑
(p,c)

P (p|x,Θt)P (x, c|p,Θt)

P (x|p,Θt)
= (∗).

We split the evidence x into the evidence below p (dp) and the evidence
above p (np) and take advantage of the implied conditional independencies:

(∗) =
∑
(p,c)

P (p|x,Θt)P (dp,np, c|p,Θt)

P (dp,np|p,Θt)

=
∑
(p,c)

P (p|x,Θt)P (dp, c|p,Θt)P (np|p,Θt)

P (dp|p,Θt)P (np|p,Θt)

=
∑
(p,c)

P (p|x,Θt)P (dp, c|p,Θt)

P (dp|p,Θt)
, (3)

2



where P (dp, c|p,Θt) can be written as:

P (dp, c|p,Θt) =P (dc,dp−c, c|p,Θt) = P (dp−c|p,Θt)P (dc, c|p,Θt)

=P (dp−c|p,Θt)P (dc|c,Θt)P (c|p,Θt),

where dc is the observed evidence below c and dp−c is the evidence below p
which is not below c. We observe that each of the probabilities in (3) can be
easily computed as part of the Pearls message passing algorithm [Pearl, 1988],
either as the posterior probabilities or from the appropriate λ messages and
λ values (for details see [Pearl, 1988, Neapolitan, 2003]).

The M-step

The M-step of the algorithm determines new parameter values that maximize
the Q function. The terms of the expression (2) can be maximized separately
with respect to one of the model parameters:

E(Ae(y)) log(pe) + E(A¬e(y)) log(1− pe), for each type e.

For a given e, we find p∗e for which the derivative is equal to 0:

∂Q
∂pe

=
E(Ae)

p∗e
− E(A¬e)

1− p∗e
= 0

p∗e =
E(Ae)

E(Ae) + E(A¬e)
.

Notice that ∂Q
∂pe

> 0 for pe < p∗e and ∂Q
∂pe

< 0 for pe > p∗e. Thus p∗e is the

optimal value and is selected as pe in the new set of parameters Θt+1.
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