Supporting Information

Edholm et al. 10.1073/pnas.1309840110

SI Materials and Methods

Experimental Animals. Transgenic Xenopus laevis was generated using I-SecI meganuclease as previously described (1). Briefly, the I-SecI-Xenopus nonclassical gene 10 (XNC10) shRNA-GFP expression vector was constructed by cloning the GFP reporter flanked by the 18-bp I-SecI recognition sites into the I-SceIpB-SIISk+ vector (provided by R. Grainger, University of Virginia, Charlottesville, VA). Subsequently, the XNC10 shRNA under the control of the hU6 Pol III promoter was cloned into the I-SecI-GFP vector. Before microinjection, females were primed with human chronic gonadotropin (Sigma), and eggs were fertilized, dejellied, and injected with 80 pg I-SceI meganucleasedigested XNC10shRNA-GFP expression vector as previously described (1). After injection, all embryos were incubated at 13 °C for 4 h to delay cell division, transferred to 0.3× modified Barth's saline supplemented with 5 µg/mL gentamicin, and reared at 18 °C until hatching. Transgenic larvae were screened for GFP expression at developmental stage 56 using an SMZ1500 Nikon stereomicroscope.

Construction and Production of b2m-XNC10 Tetrameric Complexes. Beta 2 microglobulin (b2m) was engineered with a 23-aa Glyrich C-terminal flexible linker (GGGGSGGSGGGSGGGSSGTE-LGSGS). Soluble XNC10 encompassing the α 1- α 3 domains and lacking the transmembrane segment and cytoplasmic domain was engineered with a substrate sequence (GLNDIFEAQKIEWH) for BirA site-specific biotinylation at the end of the α 3 domain. The b2m-linker-XNC10 construct was generated by sequential cloning into the pMIBV5-HisA expression vector (Invitrogen) with a polyhistidine region and a V5 epitope tag at the C terminus. It was transfected into Sf9 insect cells using the Cellfectin reagent (Invitrogen) according to the manufacturer's protocol. After 2 wk of Blasticidin selection, stably transfected cells were expanded for large-scale protein production. Monomeric b2m-linker-XNC10 (b2m-linker-XNC10) was purified by Ni-NTA-Agarose Chromatography (Qiagen) using high-stringency conditions (50 mM NaH₂PO₄, 500 mM NaCl, 100 mM Imidazole, 0.5% Tween, pH 8.0), eluted in 50 mM NaH₂PO₄, 500 mM NaCl, and 250 mM Imidazole, pH 8.0, dialyzed against 10 mM Tris HCl, pH 7.4, and concentrated to 1 µg/µL using Amicon Ultra Centrifugal Filter (Millipore). BirA enzymatic biotinylation was performed for 16-18 h at 30 °C according to the manufacturer's protocol (Avidity), and the purified biotinylated proteins were extensively dialyzed against amphibian PBS, pH 7.5, to remove any unbound biotin. The specificity and degree of biotinylation were verified by Western blot analysis using HRP-conjugated streptavidin (Pierce). XNC10 tetramers were generated by incubating b2m-linker-XNC10 with fluorochrome-labeled streptavidin at a 5:1 ratio at room temperature for 4 h before use in flow cytometry analysis.

Conditions for Flow Cytometry. For flow cytometry, cells (0.25×10^6) were stained with 5 µg XNC10-tetramer (XNC10-T) -allophycocyanin (APC) for 30 min at 4 °C followed by *Xenopus* anti-CD8 (AM22), -CD5 (pan T-cell marker 2B1), or -MHC class II (AM20) mAbs and FITC-conjugated goat anti-mouse secondary Abs (Southern Biotech); 50,000 events were collected with an FACSCanto II (BD Bioscience) and analyzed using FlowJo software (Tree Star Inc.). Dead cells were excluded using Propidium iodide (BD Pharmingen). Splenocytes were FACS sorted (F-Aria-18; BD Bioscience), and subsamples from each sorted fraction were analyzed by flow cytometry to verify sorting purity.

Conditions for Quantitative PCR, RT-PCR, and 5'-RACE. RNA was prepared using TRIzol Reagent (Invitrogen) and treated with DNase (Ambion; Life Technologies) according to the manufacturer's protocol; 500 ng total RNA were transcribed into cDNA with iScript reverse transcriptase using a mix of oligo-dT and random hexamer primers (Bio-Rad). Typical parameters for RT-PCR were 5 min at 94 °C followed by 30 cycles of 94 °C for 30 s, 59 °C for 30 s, and 72 °C for 1 min with a final extension cycle of 72 °C for 10 min. For nested reactions, 1 µL initial PCR reaction was used as a template in the subsequent PCR. Quantitative PCR parameters were 2 min at 95 °C followed by 40 cycles of 95 °C for 15 s and 60 °C for 1 min. Quantitative PCR gene expression was performed using the $\Delta\Delta CT$ method with the ABI 7300 Real-Time PCR System and PerfeCta SYBR Green FastMix ROX. Expression analyses of XNC10 and invariant T cell receptor (iTCR) a chain were normalized to the GAPDH endogenous control against the lowest observed tissue expression. Analysis was performed using the ABI sequence detection system software, and all primers were validated before use (Table S7). PCR products were cloned into pGEM-T (Promega) and sequenced. The IMGT/DomainGapAlign TOOL (http://imgt.cines. fr) or when possible, IMGT/V-QUEST (2) was used to determine complementarily determining regions (CDRs), framework, and strand delimitations. For 5'-rapid amplification of cDNA ends (RACE) analysis, RNA was isolated with the SMARTer RACE cDNA Amplification Kit (Clontech Laboratories) and amplified with either a T cell receptor (TCR) a or TCR constant regionspecific primers.

TCRα Repertoire Sequence Analysis. The 454 GS junior reads were split by barcode identification into three populations using the fastx_barcode_splitter from fastx-toolkit (http://hannonlab.cshl. edu/fastx toolkit/index.html). Any reads <200 bp in length were removed using the fastq quality trimmer from the fastx-toolkit with the following parameter: -t 0 -l 200. The remaining reads were screened for the anchoring $C\alpha$ region using BLASTn version 2.2.27 (3) with the following parameters: -outfmt 6 -evalue 1e-5 -perc identity 95. To determine the sequence identity, known V α and J α sequences were used as the query in a BLAST search with the following parameters: -outfmt 6 -evalue 1e-10 -perc_identity 95, where the Cα-anchored region and size-selected reads were the subject database. Initial clustering of the selected sequences was performed using uSEarch version 6.0.307 with a >85% cutoff (4). A Perl script was used to correlate the V α and J α BLAST identification of each sequence and the clusters obtained with uSearch; therefore, the frequency of each V α and J α region was recorded for each cluster. All major clusters were then reclustered with 100% and >95% identify thresholds and correlated with the V α and Ja BLAST identification using the same Perl script described.

Nedelkovska H, Edholm ES, Haynes N, Robert J (2013) Effective RNAi-mediated β2microglobulin loss of function by transgenesis in Xenopus laevis. *Biol Open* 2(3):335–342.

Lefranc MP, et al. (2003) IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains. *Dev Comp Immunol* 27(1):55–77.

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410.

Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461.

Fig. S1. Design and production of an *X. laevis* class lb XNC10 tetramer. (*A*) Schematic representation of the *b2m*-linker-XNC10 construct used to generate 2-m-XNC10 monomers. (*B*) *b2m*-XNC10 protein was purified from concentrated SF9 insect culture supernatant under native conditions using Ni-NTA-agarose; the eluted proteins were separated by reducing 10% (vol/vol) SDS/PAGE, transferred to nitrocellulose membranes, and visualized by Western blot using anti–V5-HRP. Eluted 2-m-XNC10 protein was dialyzed against 10 mM Tris·HCl, subjected to Bir A enzymatic biotinylation, dialyzed extensively against amphibian PBS, and analyzed, except where visualized using streptavidine-HRP. (C) Monomeric biotinylated 2-m-XNC10 was concentrated to 1 g/L, incubated with streptavidin-APC at a 5:1 molar ratio, and run on an 8% SDS/PAGE gel under nonreducing conditions. Proteins were visualized using Coomassie Blue stain. Arrowheads indicate appropriately sized 2-m-XNC10 proteins. WB, western blot.

Fig. 52. Identification of XNC10-T⁺ T-cell populations in the peripheral blood leukocytes (PBL) of adult *X. laevis*. Flow cytometry of live PBL isolated from adult unprimed *X. laevis* and double stained with streptavidine-APC-conjugated XNC10-T and CD8 or CD5-specific mAbs. Percentage of positive staining cells is indicated in the scatterplot. Data are representative of three independent experiments.

Fig. S3. No detectable XNC10-T⁺-cell populations in the thymus of either larval or adult *X. laevis*. Flow cytometry of thymocytes either (*A*) pooled from four stage 53 tadpoles or (*B*) isolated from a single adult unprimed *X. laevis*. Cells were double stained with streptavidine-APC-conjugated XNC10-T and CD8-specific mAb and gated on live cells. Percentage of positive staining cells is indicated in the scatterplot. Data are representative of three independent experiments.

Fig. 54. Identification of CD8 expressing type II XNC10-T⁺ cells. (A) Flow cytometry of spleen leukocytes isolated from adult unprimed *X. laevis* (1 y), gated on live cells, and double stained with streptavidine-phycoerythrin–conjugated XNC10-T and CD8 mAb. Sorting gates and percentages of cells are indicated in the plot. (*B*) Gene expression profiles of sorted XNC10-T^{+/}CD8^{dim+} cells, CD8⁺ and XNC10-T⁻ CD8⁻ double negative cells from spleen leukocytes, actin, and loading control: CD8α, CD8β, CD4, and TCRVα6.

		CI	DR1	CDR2
Vb6-a	SAQQVKVIQDQK	FLAVTLGSSVKVQCSHTGPS	<u>SYYA</u> MLWYQQKLGQGL	KLMVL <u>SSDT</u>
Vb6-b	SAQQVKVIQDQK	FLAVTLGSSVKVQCSHTGPS	SYYAMFWYQQKLGQGL	KLMVLSSDT
Vb6-c	SAQQVKVIQDQK	FLAVTLGSSVKVQCSHTGP	SYYAMLWYQQKLGQGL	KLMVLSSDT
Vb7-a	LTQLINVTQDYR	FLAVPERSPVKLHCSHSAS	GFYSMFWYQQKLGQGL	TLMVFSSDT
Vb7-b	LTQLINVTQDYR	FLAVPERSPVKLHCSHSAS	GFYSMFWYQQKLGQGL	TLMVFSSDT
Vb10	GVVVTOEKK	LIVAHHGKSLAIPCOHDATI	DYLNMLWYOORPGKEL	KLLAISAGKG-
Vb13	VCQGVLVKQEKR	LVLVPFDQSADIPCNODQS7	THLNMYWYQQNPGEGL	KLMIYSTNEK-
vb14	CLAAPVVQYPT	VQLSHPGDNVTVQCEHNDGS	SYTRKYWYRQENNGPL	TLLGSTYTTOE
vb19	SGLCQDGRVVQVPL	LLVARVGAEMSLRCRVTDS	SLSNTLWYRQGGDGPL	TLIGHTYRGGT
	* *	*	** * *	*
			CDR3	frequency
Vb6-a	KPGNMEEGFKEWSMER	PDTQTSDLSISQVGAEHSAV	VYFCAASEGQDY	OAYFGDG 60%
Vb6-b	KPGNMEEGFKEWSMER	PDTQKSDLSISQVGAEHSAV	VYFCAASDIGGONSGY	AOTFGDG 2.8%
Vb6-c	KPGNMEEGFKEWSMER	PDTQASDLSISQVGAEHSAV	VYFCAASDGGPLTE	ROYFGDG 2.8%
Vb7-a	KPGNMEEGFKEWSMER	PDTQTSDLSISQVGAEHSAV	VYFCAASEGQDY	QAYFGDG 2.8%
Vb7-b	KPGNMEEGFKEWSMER	PDTQNSYLSISQVGSEHSAV	VYFCAASPGGVD	ROYFGEG 2.8%
Vb10	-DTTIENEFKGK-WTMER	PDVLNSTLNRDKVDGEDSAV	VYYCASSHRQLSGN	KVTFGEG 2.8%
Vb13	-EEKMEKEYEER-WSLNR	PDIYNSVLRLKEAKMEDAA	QYFCASQSSQGN-T	AAYFGEG 20%
vb14	ATVEKDFVGGRIIIQH	KTAQGAVLIILRVSPQDSAI	LYYCASS-GREGON	RLYFGDG 2.8%
vb19	PSIESSFSGTNITIRA	ESTDSSLLLISGVSGQHSG7	TYFCAGSIDRGNAA	VQYFGDG 2.8%
	*	*	* **	** *

Fig. S5. TCR rearrangements isolated from XNC10-T⁺ populations. Amino acid alignment of TCR rearrangements isolated from XNC10-T⁺ populations sorted from adult spleen. CDRs are underlined and indicated at the top of the sequence. Conserved Cys-23 and -104 are highlighted in gray; the glycine bulge motif in the J region is bold, and residues conserved in all sequences are indicated by asterisks. The frequency of each V-D-J rearrangement in the XNC10-T⁺ population is indicated at the end of the sequence.

а	
	να6
19 -iV α6	TTCCATCTCTGTAAAGGAGAAGCCAAAGTGACAGACTCTGCCGTGTATTTCTGTGCTGCA
12 ³	TTCCATCTCTGTAAAGGAGAAGCCAAAGTGACAGACTCTGCCGTGTATTTCTGTGCTGCA
20 ³	TTCCATCTCTGTAAAGGAGAAGCCAAAGTGACAGACTCTGCCGTGTATTTCTGTGCTGCA
14 ³	TTCCATCTCTGTAAAGGAGAAGCCAAAGTGACAGACTCTGCCGTGTATTTCTGTGCTGCA
173	TTCCATCTCTGTAAAGGAGAAGCCAAAGTGACAGACTCTGCCGTGTATTTCTGTGCTGCA
13 ¹	TTCCATCTCTGTAAAGGAGAAGCCAAAGTGACAGACTCTGCCGTGTATTTCTGTGCTGCA
15^{1}	TTCCATCTCTGTAAAGGAGAAGCCAAAGTGACAGACTCTGCCGTGTATTTCTGTGCTGCA
31	TTCCATCTCTGTAAAGGAGAAGCCAAAGTGACAGACTCTGCCGTGTATTTCTGTGCTGCA
181	TTCCATCTCTGTAAAGGAGAAGCCAAAGTGACAGACTCTGCCGTGTATTTCTGTGCTGCA
2 ¹	TTCCATCTCTGTAAAGGAGAAGCCAAAGTGACAGACTCTGCCGTGTATTTCTGTGCTGCA
16²	TTCCATCTCTGTAAAGGAGAAGCCAAAGTGACAGACTCTGCCGTGTATTTCTGTGCTGCA

	< J
19- iV α6	AGTGATACTGGGGGTTCCACCAAACTCACATTTGGGAAAGGAACAAAACTGACAGT
12 ³	AGTGCTGTCAACAAGCTTATGTTTGGCAAAGGGACCCAGCTAATTGT
20 ³	A GTACTGGA-ACAG-GTGGCTTAAAAAATATTTTTGGCAGGGGAACAAAGCTTAATGT
14 ³	AGTGCTGTTAA-CAAGCTTATGTTTGGCAAAGGGACCCAGCTAATTGT
17 ³	A GTGCTGTCAA-CAAGCTTATGATTGGCAAAGGGACCCAGATAATTGT
131	A G <u>GA</u> TGAATATGGATCTTCAGTATAACTTGCCTTTGGAAAAGGAACAACGCTGTCAGT
15 ¹	AGGATGAATATGGATCTTCGGTATAACTTGCCTTTGGAAAAGGAACAACGCTGTAAGT
3 ¹	A TACTGGTTCAGGCAACTGGAGAATTATATTTGGCAGGGGCACTAGACTTTCTGT
181	ATACTGGTTCAGGCAACTGGAGAATTATATTTGGCAGGGGCACTAGACTTTCTGT
2 ¹	ATACTGGTTCAGGCAACTGGAGAATTATATTTGGCAGGGGCACTAGACTTTCTGT
16 ²	A G
	*
	< C region
19- iV α6	TCTACCAAACATTAAAGATGTAGAACCTTCAATGTATCGCCTCAAAGCTGAC
12 ³	GATGCCAAACATTAAAGATGTAGAACCTTCAATGTATCGCCTCAAAGCTGAC
20 ³	AATTGCAGACATTAAAGATGTAGAACCTTCAATGTATCGCCTCAAAGCTGAC
14 ³	GATGCCAAACATTAAAGATGTAGAACCTTCAATGTATCGCCTCAAAGCTGAC
17 ³	GATGCCAAACATTAAAGATGTAGAACCTTCAATGTATCGCCTCAAAGCTGAC
13 ¹	GACAGCTGACATTAAAGATGTAGAACCTTCAATGTATCGCCTCAAAGCTGAC
15^{1}	GACAGCTGACATTAAAGATGTAGAACCTTCAATGTATCGCCTCAAAGCTGAC
3 ¹	GACTCCAGACATTAAAGATGTAGAACCTTCAATGTATCGCCTCAAAGCTGAC
181	GACTCCAGACATTAAAGATGTAGAACCTTCAATGTATCGCCTCAAAGCTGA-
21	GACTCCAGACATTAAAGATGTAGAACCTTCAATGTATCGCCTCAAAGCTGAC
16 ²	ACATTAAAGATGTAGAACCTTCAATGTATCGCCTCAAAGCTGAC

b	
24- iV α6	GAGAATTTACAG-TGAAAATTGAAAAGAAAGATTTCCATCTCTGTAAAGGAGAAG
20 ³	GAGAATTTACAG-TGAAAATTGAAAAGAAAGATTTCCATCTCTGTAAAGGAGAAG
23 ¹	GAGAATTTACAG-TGAAAATTGAAAAGAAAGATCTCCATCTCTGTAAAGGAGAAG
26 ¹	GAGAATTTACAG-TGAAAATTGAAAAGAAAGATTTCCATCTCTGTAAAGGAGAAG
274	AAGGATTTTCAGCTGAGCACAAGAGAAGTGAAACATCTTTCCATCTGAAAAAAGACAAAG
184	AAGGATTTTCAGCTGAGCACAAGAGAAGTGAAACATCTTTCCATCTGAAAAAAGACAAAG
	** *** *** *** ** *** *** ** ******* ****
24- iV α6	CCAAAGTGACAGACTCTGCCGCGTATTTCTGTGCTGCAA GTGATACTGGGGGTTCCACCA
20 ³	CCAAAGTGACAGACTCTGCCGTGTATTTCTGTGCTGCAA GTGATGGTTCGGGTTATAACA
23 ¹	CCAAAGTGACAGACTCTGCCGTGTATTTCTGTGCTGCAATACCAATAACTACA
261	CCAAAGTGACAGACTCTGCCGTGTATTTCTGTGCTGCAATACCAATAACTACA
274	CTGAACTGCAAGACTCCGGGGTGTATTTCTGTGCTGTCAGTGGTTCGGGTTATAACA
184	CTGAACTGCAAGACTCCGGGGTGTATTTCTGTGGTGTCA GTGATATACCAACTTG-GCTA
	* ** ** ***** * * ******** ** * * *

Fig. S6. (Continued)

PNAS PNAS

	< C region
24 -iV α6	AACTCACATTTGGGAAAGGAACAAAACTGACAGTTCTACCAAACATTAAAGATGTAGAAC
20 ³	AGCTGAGCTTTGGAGAAGGGACCAGGCTGAATGTGAGGCCATACATTAAAGATGTAGAAC
23 ¹	AACTCACATTTGGCTTTGGGACCAAACTTCTAGTGAGAGCCAACATTAAAGATGTAGAAC
26 ¹	AACTCACATTTGGCTTTGGGGCCAAACTTCTAGTGAGGGCCAACATTAAAGATGTAGAAC
274	AGCTGAGCTTTGGAGAAGGGACCAGGCTGAATGTGAGGCCATACATTAAAGATGTAGAAC
184	AGCTTACTCTTGGTGGTGGCACTCATCTCTCTGTACAGCCCAACATTAAAGATGTAGAAC
	* ** * **** ** ** ** ** ***************
24 -iV α6	CTTCAATGTATCGCCTCAAAGCTGACGGGAAGCAACCAGAGGTCCCTGAATCTGTGTGCC
20 ³	CTTCAATGTATCGCCTCAAAGCTGACAGGAAGCAACCAGAGGTCCCTGAATCTGTGTGCC
23 ¹	CTTCAATGTATCGCCTCAAAGCTGACAGGAAGCAACCAGAGGTCCCTGAATCTGTGTGCC
26 ¹	CTTCAATGTATCGCCTCAAAGCTGACAGGAAGCAACCAGAGGTCCCTGAATCTGTGTGCC
274	CTTCAATGTATCGCCTCAAAGCTGACAGGAAGCAACCAGAGGTCCCTGAATCTGTGTGCC
184	CTTCAATGTATCGCCTCAAAGCTGACAGGAAGCAACCAGAGGTCCCTGAATCTGTGTGCC

Fig. S6. Nested RT-PCR using V α 6-specific forward primers combined with TCR α C-region reverse primers revealed a high number of nonproductive rearrangements in the spleen of developmental stage 53 XNC10shRNA Tg tadpoles. Nucleotide alignment of sequences from (A) XNC10Tg-1 and (B) XNC10Tg-2. V α 6 sequence is shown in bold, and nucleotides conserved in all sequences are indicated by asterisks. J and C regions are indicated above the sequence. Nonproductive rearrangements because of ¹insertion or deletion of nucleotide resulting in a frame shift in the CDR3a junctional region, ²no detectable J region, or ⁴pseudononfunctional Va6 gene are indicated. ³Productive rearrangement of V α 6 to a J region other than J α 1.43. Control sequences (n = 20) from two age-matched dejellied controls were all productive, with 30%/15% iV α 6-J α 1.43 and 70%/85% V α 6 rearranged to other J α regions in outbred animals 1 and -2, respectively.

					CDR	1			CDR2
Va6-Ja1.43	-LALMDRMFSNP	SPIFQYY	RGNN	IYRLNC	THS	<u>GADY</u> LYW	VQYPNK	PLELLVNN	LGOK
Va23-Ja1.3	CVVGNAINSK	EEYISRE	RIGEN	IVTLTC	EYS <u>TSST</u>	TPY-LFW	RQYPNQ	IEYLLY <u>RG</u>	<u>AKGY</u>
Va40-Ja1.22	SLCQANVIQ	PTMEEVI	AGAN	ILTLQC	KHP <u>SITT</u>	SDY-IHW	KQTPDQ	QPKFLIRA	<u>LKD</u> T
Va22-Ja1.32	TCDH	YQSVYLV	/GGH1	ASLPC	SYK <u>DS</u>	AISNLKW	RQYPGE	KPNELMTI	FTDG
Va41-Ja1.40	CICKGNVTQ	PPKKEVS	SAGAN	IVTLQC	YHS <u>SITP</u>	GDY-IHW	IQNPGQ	QPKFLMNG	FKDV
Va45-Ja1.14	SGSVFGDSVKEK	DSQLFA	EEGIS	SVDLAC	SYS <u>TSFS</u>	TTYNLYW	RQYTYG	GPEYIL <u>FK</u>	ANQG
			*	* *	:	: *:	* *	:	
							CDR3		
Va6-Ja1.43	SNGEFTVKIEK-		KDE	HLCKG	EAKVTDS	AAYFCAA	DTGGST	KLTFGK	$\mathbf{G}\mathbf{T}$
Va23-Ja1.3	<u>SNLK</u> HDGNYEKG	KFDSIT	IDTSI	QLIIF	SLTVEDS	ALYLCAL:	SDTGIGY	G-KNIFGM	AT
Va40-Ja1.22	TSDLLTIIFSK-	I	ORKSS	SELHIQ	NVKAEES	GVYLCAV:	STGGY	G-NMIFGQ	GT
Va22-Ja1.32	NRTEGRFTAELQ	KF	OKTS	SFLYVP	NTRVTDS	AYYVCATI	NAGA	<u>GSKLI</u> FGT	GΤ
Va41-Ja1.40	TSELHTMTFST-	I	ORKSS	SELHIQ	NVKAEES	GVYLCAL:	SDHTGGW	N-KLTFGA	GT
Va45-Ja1.14	<u>S-L</u> KNTAPFAEK	KFQSEVE	TNST	TLTIT	NVKPEDS	ATYRCAL	DRAYSGS	GWELNFGS	GT
				*	:*	* **		**	*
Va6-Ja1.43	KLTVLP 100								
Va23-Ja1.3	KLTVKH 25 1	00							
Va40-Ja1.22	QLKVNP 29	21 100							
Va22-Ja1.32	KLSVFP 21	23 27	100						
Va41-Ja1.40	TLKVQA 35	28 37	66	100					
Va45-Ja1.14	QLIVQP 22	24 30	19	33					

Fig. 57. The dominant invariant TCR \langle rearrangements are distinct. Amino acid alignment of dominant TCR \langle rearrangements isolated from CD8⁻ and CD8^{dim+} populations sorted from stage 50 tadpoles. CDRs are underlined and indicated at the top of the sequence. Conserved Cys-23 and -104 are highlighted in gray, the glycine bulge motif in the J region is bold, residues conserved in all sequences are indicated by asterisks, and conserved substitutions are indicated at the bottom of the sequence. Percent amino acid identity based on pairwise alignments is indicated at the end of the sequences.

Table S1. ICK V α -J α and V β -D β -J β genes use by XNC10-1 type II ce	Table S1.	51. TCR Vα-Jα and	Νβ-Dβ-Jβ	genes use	by XNC10-T ^{amm}	type II cel
--	-----------	-------------------	----------	-----------	---------------------------	-------------

PNAS PNAS

να	n-nucleotides		Jα	CDR3	Amino acids	Clones
TCR V α -J α gene use by XNC10-T ^{dim+} type II cells						
V α 6						
CAAS	_		DT G GST KL TFGKGTKLTVL	Jα1.43	12	15
Vα15.2						
CAVS	—		YS G NNL KL IFGSGTQLIVH	Jα1.20	12	2
Vα3.5						
CAV	—		EFS G SKLIFGSGTELIVQ	Jα1.10	10	1
V α 28						
CAVS	—		YS G SGWE L NFGSGTQLIVQ	Jα1.14	12	1
Vα14						
CGVR	g		Y G ASD KL VFGKGTILSVTA	Jα1.47	11	1
Vα46.1						
CAVS	gt		T G GWKYVFGSGTRLKVL	Jα1.11	11	1
CAFRDE	ggg		AGSVG KL IFGSGTRLIIQ	Jα1.18	14	3
Vα3.1						
CAVSA	gca		YGS KL TMGLGTVLFVR	Jα1.53	11	2
Vβ	n-Dβ-n		Jβ	CDR3	Amino acids	Clones
TCR V β -D β -J β gene use by XNC10-T ^{dim+} type II cells						
Vβ1.1						
CAATS	cgggacaggggggg	Dβ2	TNERQYFGDGTILTVL	Jβ 8	15	1
Vβ1.2						
CAA	ccactggag	Dβ1	TAAYFGEGTVLTVL	Jβ3	9	1
Vβ2						
CAWS	agaggacaggggga	Dβ2	NYQAYFGDGTILTVL	Jβ13	13	
Vβ3						
CAWS	cgcgacaggc	Dβ2	TADRLYFGDGTILTVL	Jβ 9	12	4
Vβ6						
CAASE	gggacagg	Dβ2	DYQAYFGDGTILTVL	Jβ13	11	9
Vβ9						
CASSH	ccgacaact	Dβ2	SGNKVTFGEGTILHVL	Jβ2	13	3
CAVS	gagacagggtggg	Dβ2	DRQYFGEGTILTVL	Jβ 8	12	1
Vβ16						
CAASK	gggacat	Dβ2	TTERQYFGDGTILTVL	Jβ6	12	2
Vβ18						
CTSS	acgacaga	Dβ2	NYQAYFGDGTILTVL	Jβ13	11	2
CTSS	taggggggggtg	Dβ2	ANTAAYFGEGTVLTVL	Jβ3	13	1
CTSS	taggggggggtg	Dβ2	AAYFGEGTVLTVF	Jβ3	13	1
Vβ20						
CAAS	gggggggggg	Dβ2	DYQAYFGDGTILTVL	Jβ13	11	1
CASSI	cgcgacaggc	Dβ2	TERQYFGDGTILTVL	Jβ6	13	1

RNA from sorted type II XNC10-T^{dim+} cells was subjected to 5'-RACE using TCRα and -β constant region primers; 26 TCRα clones and 30 TCRβ clones were sequenced. Nongerm line-encoded nucleotides are shown. Residues in the CDR3α region conserved with the invariant Vα6-Ja1.43 rearrangement (Gly-110, Lys-115, and Leu-116) are bold. The CDR3 region is defined according to the International Immunogenetics numbering (1). Number of clones signifies the number of sequences with identical nucleotide sequences.

1. Lefranc MP, et al. (2003) IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains. Dev Comp Immunol 27(1):55–77.

Table S2. TCR V	α -J α gene usage by	CD8 ⁺ cells			
Vα	n-nucleotides	Jα	CDR3	(aa)	Clones
V α 25					
CALRS	-	DGYKYTFGSGTQLIVI	Jα1.16	10	2
CALRS	ct	NYGASNKLIFGPGTKINVK	Jα1.2	14	1
CALRR	-	DTGGRALTFGKGTQINVM	Jα1.27	12	1
CALRR	-	TGGRALTFGKGTQINVM	Jα1.27	11	1
CALRR	-	ATGTVGKLIFGSGTRLIIQ	Jα1.18	13	1
Vα46.1					
CALSD	cgc	NAGFSKLVFGKGTQLLIT	Jα1.17	13	2
CALSDA	g	SYASKVLFGTGTLLTVRS	Jα1.4	12	1
CALSDA	-	AYSGSGWELNFGSGTQLIVQ	Jα1.14	15	1
CALTDAA	-	TGYSKLTFGKGTQLVIL	Jα1.13	13	1
Vα39		•			
CALRE	а	AYTGTVGKLIFGSGTRLIIQ	Jα1.18	14	1
CALR	-	DFVTDKLTFGIGTILLVN	Jα1.1	11	1
CAL	аа	SAATKLIFGEGTOLNVR	Jα1.26	10	1
Vα23	-9				
CALSD	aaa	DTAGRTI TEGKGTOINVM	lα1.24	13	1
CALRDA	aa		Jα2.1	15	1
Vα18.1	~g		20211		•
	<i>t</i>	VEOSNYRI HEGIGTRU VR	lα1 49	12	1
Va 3 2	ť		541.45	12	
		YGGGNYKI TEGSGTKI IVT	lα1.8	13	1
Va32			541.0	15	•
CATD	_		lα1 32	17	1
Val2	-	DAGAGSKEILGTGTKESVI	501.52	12	1
	taa		la1 53	13	1
Va28	igg		Jul.55	15	
	-		la1 8	12	1
V~41	-	Dadaki Keli asarkewi	Julio	12	
			1~1.22	12	1
V _~ 42	-	AdAdekQII di di kesvi	Ju1.52	12	
	20		la1 24	11	1
	ay		Ju1.24		
να5.4	<i>t</i> 22		L1 10	12	1
CAV	ldd	STIAGSKVIFGKGTILTVIN	Ja1.19	12	I
να29			1 1 22	1.4	1
	g	ANAGAGLKQIFGIGIKLSVF	Ja1.52	14	I
	4		L1 10	10	1
	t	STAGSKIIFGKGTILTVN	Ja1.19	13	I
να σαι σα			1.1.0	12	1
CALSA	-	DVGGFKILFGSGTKLINVK	Ja1.9	12	I
Vα3.3			1.1.4	11	1
CAVR	gg	ASYASKVLFGIGILLIVKS	$J\alpha 1.4$	11	1
Vα31			1 1 1 6	10	
CAVS	ag	DGTKTIFGSGTQLIVI	Jα1.16	10	1
Vα24				42	
CALSD	g	GAGEGKLVEGKGTQLLII	Jα1.17	12	1
να3.1					-
CAVS	ссс	NNYGKLIFGKGTILFVK	Jα1.3	11	1

. . CD0+ - 11

PNAS PNAS

RNA from sorted CD8+ cells was subjected to 5'-RACE using TCRα constant region primer; 31 TCRα clones were sequenced. Each $V\alpha$ family and subfamily is boldfaced. Non-germline encoded nucleotides are shown in italic. Number of clones signifies number of sequences with identical nucleotide sequences. The CDR3 region is defined as according to the International IMGT (1).

1. Lefranc MP, et al. (2003) IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains. Dev Comp Immunol 27(1):55–77.

Table S3. X. laevis Ja gene segments

Scaffold	Position	Jα	Amino acid translation
8495	123'399	Jα1.53	ETGYGSKLTMGLGTVLFVR
8495	124'980	Jα1.52	EYGSSV*LAFGKGTTLSVT
8495	125'409	Jα1.51	TGSGXNWRIIFGRGTRLSVT
8495	126'533	Jα1.50	SFGGAEKLVFGRGTTLSIV
8495	128'025	Jα1.49	EOSNYRLHFGIGTRLLVR
8495	128'875	Jα1.48	AGSSDKI VEGSGTTI NIV
8495	129'416	Jα1.47	KYGASDKI VEGKGTII SVT
8495	131'632	lα1 46	FTANHGMSKIVEGKGTRI NIR
8495	132'188	Jα1.10	
8495	133'487	lα1 44	
8495	135'324	lα1 43	TGGSTKI TEGKGTKI TVI
8495	136'349	Jα1.13	
8495	137'382	lα1 41	GYTKI TEGKGTKI TVI
8495	137'763	Jα1.40	GGWNKI TEGAGTTI KVO
8495	139'026	lα1 39	SKTI NNI IFFKGTHKTK-
8495	139'286	Jα1.35	GSGYNKI SEGEGTRI NVR
8495	139'633	lα1 37	
8495	142'664	Jα1.36	KGSTWGKLIEGKGTKLOVI
8495	143'064	Ja1.30	
8495	144'036	Jα1.33	
8495	144'576	Jα1.31	
8495	145'242	Jα1.33	
8495	145'903	Jα1.32	TGSYKI TEGSGTNI VVK
8/95	1/6/326	Ja1.31	
8495	148'420	Ja1.30	SGSGVGKLIEGTGTKLKVT
8/95	1/0/103	Ja1.25	
8/95	1/19/710	Ja1.20	TGGRALTEGKGTOINIVM
8/95	1/19/833	Ja1.27	
8/05	149 000	Ja 1.20	
8/05	151/082	Ja1.25	
8/05	151'067	Ja1.24	SCONPRI TEGTOTELSVV
8/95	155'012	Ja1.25	
8/05	155'826	Ja 1.22	
8/05	157'950	Ja 1.2 1	
8/95	158'386	Ja1.20	
8/95	159'//8	Ja1.15	VTGSVGKUEGSGTBUIO
8495	161/325	Jα1.10	
8495	161/919	Ja1.17	NDGYKYTEGSGTOLIVI
8495	162'609	Jα1.15	TNSNWKIIFGKGTKLNVY
8495	163'504	Jα1.15	YSGSGWELNEGSGTOLIVO
8495	164'298	Jα1.13	ANTGYSKI TEGKGTOLVII
8495	165'622	Jα1.13	YAGSSYGKI SEGSGTKI MVI
8495	166'114	Jα1.12	TGGWKYVEGSGTRLKVI
8495	166'886	Jα1.11	FESGSKI JEGSGTELIVO
8495	167'579	Jα1.10	
8495	168'579	Jα1.8	YGGGNYKI TEGSGTKI IVT
8495	169'459	lα1.7	TAAGGYRUEGIGTKUVT
8495	172'110	la1.6b	YGGSKMIEGKGTILTVT
8495	173'484	Jα1.65	
8495	174'052	Jα15	TYNTGKI TEGHGTKI I VK
8495	175'428	Jα1.5	SYASKVIEGTGTITTVR
8495	178'246	Ja 1.1	TGIGYGKNIEGMATKI TVK
8495	178'815	Ja1.5	
8495	179'105	Jα1.2	NYGASNKI IEGPGTKINIVK
8495	179'913		EVTDKI TEGIGTILI VN
<u>4741</u>	76'544	Ja 1.0	NWGTGNKIJEGGGTELTVI
4741	70'6/12	1~2.1	YGGGNDKI TEGSGTULIVE
 	2 0 40 81'020	Jaz.z	
47 <u>4</u> 1	8/1/27	1.20	
4741	86'016	Jα2.7	
47 <u>4</u> 1	9//107	Ja2.5	
4741	98'656	Jaz.0	
4741	107/100	Ja2.7	
	107 100	Juz.0	

PNAS PNAS

Table S4. TCR V α -J α and V β -D β -J β gene use by type I XNC10-T ⁺ cells						
να	n-nucleotides	Dβ	Jα	CDR3	Amino acids	Clones
TCR V α -J α gene use by type I XNC10-T ⁺ cells						
Vα6						
CAASD	—		T G GST KL TFGKGTKLTVL	Jα1.43	12	35
Vβ	n-Dβ-n		Jβ	CDR3	Amino acids	Clones
TCR V $\beta\text{-}D\beta\text{-}J\beta$ gene use by type I XNC10-T $^+$ cells						
V β6						
CAASE	gggacagg	Dβ2	DYQAYFGDGTILTVL	Jβ13	11	21
CAASD	atcggaggacaaa		NSGYAQTFGDGTLLTVL	Jβ10	15	1
CAASD	ggggggcccct		TERQYFGDGTILTVL	Jβ6	13	1
ν β7						
CAASE	gggacagg	Dβ2	DYQAYFGDGTILTVL	Jβ13	11	1
CAAS	ccagggggggt	Dβ2	DRQYFGEGTILTVL	Jβ8	11	1
V β13						
CASQS	gccagggg	Dβ2	NTAAYFGEGTVLTVL	Jβ3	12	7
V β10						
CASSH	ccgacaact	Dβ2	SGNKVTFGEGTILHVL	Jβ2	13	1
V β14						
CASS	ggcaggga	Dβ2	GQNRLYFGDGTIVTVL	Jβ11	12	1
V β19						
CAGS	tcgacagggg	Dβ2	NAAVQYFGDGTVLTVL	Jβ5	13	1

RNA from sorted type I XNC10-T⁺ cells was subjected to 5'-RACE using TCR α and - β constant region primers, and 35 clones from each reaction were sequenced. CDR3 α residues conserved in the type II cells (Gly-110, Lys-115, and Leu-116) are bold. Representative TCR α and - β repertoires from sorted type II XNC10-T^{dim+} and CD8⁺ cells are shown in Tables S1 and S2. CDR3 regions are determined according to the IMGT numbering for TCR V domains (1). Number of clones signifies the number of sequences with identical nucleotide sequences.

1. Lefranc MP, et al. (2003) IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains. Dev Comp Immunol 27(1):55–77.

PNAS PNAS

Table S5.	ΤCR V β-Dβ-Jβ	aene use	bv CD8 ⁺	cells
10010 001	i en up op op	gene ase i	<i>.</i> , <i></i>	

PNAS PNAS

Vβ	n-Dβ-n	Dβ	Jβ	CDR3	Amino acids	Clones
Vβ1.1						
CAA	tggaca	Dβ2	SANTAAYFGEGTVLTVL	Jβ3	11	1
CAA	ccccgggacaggggggg	Dβ2	ERQYFGDGTILTVL	J β 7	12	3
Vβ1.2						
CAASD	ggggggagg	Dβ1	TNTAAYFGEGTVLTVL	Jβ3	12	2
Vβ1.3						
CAA	aaaaat		TGQAQYFGDGTVLTVL	Jβ4	10	1
CAVSI	tcggca	Dβ2	NDRQYFGEGTILTVL	Jβ3	11	1
V β 4						
CAAS	acaggggt	Dβ2	NDRQYFGEGTILTVL	Jβ8	11	1
V β 5						
CAASI	gatggggg	Dβ1	YQAYFGDGTILTVL	Jβ13	11	1
V β6						
CAASD	gggacaggggg	Dβ2	GYAQTFGDGTLLTVL	Jβ10	13	1
CAASE	gggacagg	Dβ2	DYQAYFGDGTILTVL	Jβ13	11	1
V β 7						
CAASE	agg		NERQYFGDGTILTVL	Jβ7	10	1
CAAS	ccacgggacaatt	Dβ2	NAAVQYFGDGTILTVL	Jβ5	13	1
CAA	gggacaggggg	Dβ2	TTERQYFGDGTILTVL	Jβ6	12	1
V β 8						
CAVSI	atcgacaagt		TGQAQYFGDGTVLTVL	J β 4	13	1
CAVSI	tcggcag		NDRQYFGEGTILTVL	Jβ8	11	1
V β 9						
CAVSM	ggactggggggagcctc	Dβ1	PNTAAYFGEGTVLTVL	Jβ3	15	1
CAV	gggacatct	Dβ2	SSGNKVTFGEGTILHVL	Jβ2	12	1
Vβ13						
CASQS	ccgggacagt	Dβ2	TNDRQYFGEGTILTVL	Jβ8	13	1
CASQ	gaggacagggag	Dβ2	NDRQYFGEGTILTVL	Jβ8	12	2
CASQ	ccccgacaggggg	Dβ2	AYSAAYFGEGTIVSVL	Jβ12	13	1
CASQS	tacagggg	Dβ2	TYSAAYFGEGTIVSVL	Jβ12	13	1
CASQ	cccgggacagggggg	Dβ2	DERQYFGDGTILTVL	Jβ7	13	1
Vβ14						
CASSI	aggggggagcg	Dβ1	AYFGEGTVLTVL	Jβ3	10	1
CASS	tatcgggggggggg		DYQAYFGDGTILTVL	Jβ13	12	1
CVSS	cccgac		SDRAQYFGEGTRLLVL	Jβ1	11	1
CASSI	gggggggggg		DYQAHFGDGTILTVL	Jβ13	12	1
Vβ15						
CSASL	aaacaggcaat	Dβ2	YSGYAQTFGDGTLLTVL	Jβ10	14	1
Vβ16						
CAAS	ccgggacaggggg	Dβ2	AGQTQYFGDGTVLTVL	Jβ4	13	1
CASQ	ccgggacagt	Dβ2	TNDRQYFGEGTILTVL	J β 7	13	1
V β17						
CASST	gggcagat		NDRQYFGEGTILTVL	J β 8	12	1
CASST	ggggggcccggg		AYFGEGTVLTVL	Jβ3	10	1
V β 19	-					
CAGST	gggggagg		AAVQYFGDGTILTVL	Jβ5	12	1
CAGST	gacagt	Dβ2	TNERQYFGDGTILTVL	J β 7	12	1

RNA from sorted XNC10-T⁻/CD8⁺ cells was subjected to 5'-RACE using TCR β constant region primers; 36 TCR β clones were sequenced clones. Nongerm line-encoded nucleotides are shown. The CDR3 region is defined according to the IMGT numbering (1). The number of clones signifies the number of sequences with identical nucleotide sequences.

1. Lefranc MP, et al. (2003) IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains. Dev Comp Immunol 27(1):55–77.

		Total population (%)
Vα family	No. of sequences	identified $V\alpha$ segments
Var	171	0 9500906221
νασ	1/1	0.0000000000000000000000000000000000000
V022	107	0.020202101
V@25	95	0.40/2192921
Va40	70	0.9195009951
V@41	79	0.5900052051
V045	210	1.0550115041
	13	0.0653102241
	10	0.0302300341
να2	15	0.0/535/951
να3	911	4.5/6/39513/
να4	0	0.030143181
νασ	14	0.0703340871
Va7	59	0.2964079381
να9	60	0.3105033911
	900	4.5214770162
	32	0.1607636271
	1,560	7.83/22682/2
να13	1,093	5.4910826432
Vα14	70	0.3516/04351
να15	351	1./633/60362
Vα16	261	1.3112283352
Vα1/	353	1.//3423/631
Vα18	2,210	11.102/38013
Vα19	1	0.0050238631
Vα20	127	0.6380306461
Vα21	167	0.838985181
Vα24	6	0.030143181
Vα25	704	3.536/99/991
Vα26	3/2	1.8688//16/1
Vα27	64	0.32152/2541
Vα29	201	1.0097965341
Vα30	110	0.5526249691
Vα31	18	0.090429541
Vα33	110	0.5526249691
να34	97	0.48/314/451
Vα36	147	0.7385079131
να3/	120	0.6028636021
να38	50 570	0.3205511181
να39	5/3	2.8/80/3/1
να42	80	0.4019090681
V045	40	0.23109/7141
Va44	140	0.7055406091
Va46	1,059	0.00414701
Vα55	105	0.929414721
Va50	246	1 7292567101
V038	540	0.0100/77771
V0 \/\/59	2	0.0100477271
Vv59	95	0.4772070101
Va61	236	1 1856217511
	230	0.075257051
Vα62	120	0.075557951
	129	1 2400/03/21
Va65	241	1.2400542401
Va66	200	2.0433000371
Va67	294	1.47/0100201
Va68	212	1.00000000001
Va60	1 010	5 07/10100/1
Va09	1,010	0.0741019041
Va70	44	0.22104330/1
Vu/1	30 106	0.1000000011
vu/2	ספו סכ	0.2040//21/1
να/3	/9	0.3908852051

Table S6. TCR α repertoire in CD8⁺ from stage 50 tadpoles

PNAS PNAS

Table S6. Cont.

$V\alpha$ family	No. of sequences	Total population (%) identified Vα segments
Vα74	88	0.4420999751
Vα75	60	0.3014318011
Vα76	316	1.5875408191
Vα77	27	0.135644311
Vα78	675	3.3911077621
Vα79	156	0.7837226831
Vα80	543	2.72795781
Vα81	120	0.6028636021
Vα82	14	0.0703340871
Vα83	10	0.0502386341
Other Vα		
36 different with >10 sequences/cluster	73	0.366742025
Total	19,905	100

Table S7. Primers used in the study

Primer identification

PNAS PNAS

5'-3' sequence

β2-m F			
β2-m R	acagaattcgaaaatgtccagtctgtactt*		
XNC10α1 F	tcaaaacttaaaacaatttcaatacaacacaacactaatttcaaatc*		
XNC10α3 R	acagaattcgtgccattcgattttctgagcttcgaagatgtcg ttcaaaccaccaaatggtacaatcaggggattctc*		
CD8α F	aagccacctacgactaccaccaa [†]		
CD8α R	ccgttcttctcagtctcaggcaca ⁺		
CD8 _β F	tcatcatctctttctggggc [†]		
CD8β R	aattcagtgggtgcttcctg [†]		
CD4 F	tccatctctgacatcccctc [†]		
CD4 R	tcaccagacacacgtccatt [†]		
TCRαC R2	agtgaccaggcacacgagttcagg ^{†‡}		
TCRαC R1	gtcagctttgaggcgatacattg [§]		
ΤCRβC R	caagtagccatggtcagtctgttcc [†]		
Vα6-F1	ggctcttatggacagaatgttcag [†]		
GAPDH F	accccttcatcgacttggac [†]		
GAPDH R	ggagccagacagtttgtagtg [†]		
β-actin F	ggtgtcatggttggaatgg [†]		
β-actin R	tgggttacaccatcacctgag [†]		
TCRαC A12	ccatctcatccctgcgtgtctccgactcag <u>agacgtctc</u> aagctttgcggcgatacattgaag [¶]		
TCRαC D12	ccatctcatccctgcgtgtctccgactcag <u>ctgactgac</u> aagctttgaggcgatacattgaag [¶]		
TCRαC D12	ccatctcatccctgcgtgtctccgactcag <u>gtctagtgc</u> aagctttgaggcgatacattgaag [¶]		
XNC10 F	cgccatcgcattcgtctttc		
XNC10 R	tcttcaacaccagtcttgttc		
Vα6 F2	caacccgtcacccatctttc [¶]		
Jα1.43R	gagtttggtggaacccccagt ^{¶∥}		
GAPDH F	gacatcaaggccgccattaagact		
GAPDH R	agatggaggagtgagtgtcaccat [∥]		

*Expression of β 2-m-XNC0.

[†]RT-PCR. [‡]5′-RACE. [§]Nested RT-PCR [¶]Deep sequencing.

Quantitative PCR.