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Section S1 – Theoretical Foundation for Zero-Information Closure 

This section explains the theoretical underpinnings of the zero-information moment closure method. 

The section starts with an outline of zero information closure (ZI-closure) and then provides the 

algorithm for determining the maximum entropy distribution. It concludes with a simple reversible 

dimerization example to clarify the determination and implementation of several important equations. 

Further supplemental sections expand upon this information to describe an iterative ODE solving 

scheme and the steady-state determination method. The reversible dimerization example is extended in 

both cases all well.  

A closure scheme is used to determine the key relationship between higher and lower-order moments, 

necessary to close and solve the moment equations: 

         (S1) 

In most closure schemes F(μ) is an analytical expression related to a well-known characteristic equation. 

In the case of ZI-closure, however, the closure scheme refers to the maximum-entropy distribution or 

most-likely distribution.  

For a single component system the information entropy is defined as: 

 
              

 

   

 
 
 

(S2) 
For an unconstrained system the resulting maximum-entropy distribution is simply uniform. However, 

values of the lower-order moments, μ, act as constraints on the system. The result is best solved using a 

Lagrange multiplier method (here assuming a simple component with M known lower order moments): 

                      (S3) 
 

          

 

   

 
 
 
 

 
         

 

   

     
 
 
 

    
 

          

 

   

      
 
 

(S4) 
Taking Equation S3, the maximum is found by differentiating by p(x) and setting the result to zero: 

   

     
                           

 
(S5) 

                             (S6) 

An analytical expression for the maximum entropy distribution is determined with the same number of 

parameters as the number of known lower-order moments. The derivation of Equation S6 is easily 



extended to multi-component systems and, although we do not explore it here, continuous state-space 

systems. 

Using the lower-order moments, μ, the maximum entropy distribution is found by determining the 

Lagrange parameters, λ. The maximum-entropy moments, denoted with a subscript H, can be 

determined with the known pH(x). Take, for example, the determination of       for any arbitrarily high 

m in a single component system: 

 
              

 

   

 
 
 

(S7) 
Once again, this method may be extended to multi-component systems.  

Zero-information closure uses maximum-entropy moments as approximations for higher-order 

moments in simulation: 

      
  (S8) 

 

Note that the order of closure, M, used throughout the section is applied without drawing any 

conclusions about accuracy. At present the order of closure is chosen in a trial-and-error fashion. In the 

future, error analysis may be used to determine the necessary or optimal closure order using ZI-Closure.  

The method used within this study for the determination of the Lagrange parameters, λ, given a set of 

known lower-order moments, μ, is a simple Newton-Raphson optimization scheme. The exact algorithm 

is provided below: 

Algorithm S1: Newton-Raphson Method for Most-Likely Distribution Determination 

1) Initial Lagrange parameters guess, λ = λ0, is given. A range for each component is provided along 

with the values for the known moments that need to be matched, μ. Typically, the guess will be 

a set of zeros, although if a previous step in the simulation determined the parameters λ with 

reasonable accuracy those values can be used to speed up the simulation. 

2) Calculate       using λ (Equation S6) 

3) Calculate the lower-order maximum entropy moments, μH, using       (Equation S7) 

4) Calculate the difference between the known moments and maximum entropy moments: 

         (S9) 

5) Calculate the 2-norm error: 

         (S10) 

6) If ε ≤ tolerance proceed to (7). The tolerance was assumed to be the machine error (1·10-16) in 

this case. Else: 



a. Calculate the Jacobian matrix J: 

 
     

     

   
 

 
(S11) 

For a single component system the result is trivial (substituting Equation S6 into 

Equation S7) and is easily extended to multi-component systems: 

 
     

 

   
                          

 

   

           
 
 

(S12) 
 

b. As with any Newton-Raphson system the method uses a first-order Taylor expansion: 

        (S13) 

Thus an approximate parameter step is calculated: 

          (S14) 

c. This is used to get a new set of parameters: 

        (S15) 

d. Return to (2) 

7) Output λ for use in calculating the higher-order moments μ’H using Equation (S7) 

This basic Newton-Raphson scheme is used by the ODE time trajectory algorithm in determining the 

higher-order moments. This method is also modified to produce steady-state distributions for Algorithm 

S3 in Section S3. 

Throughout the supplemental material the lower-order moments in the simulation are often described 

as being “known”. Please note that while the values of the lower-order moments are not known through 

time a priori, at each time step these values will have been determined. This information is then utilized 

within the Newton-Raphson optimization scheme. The results of the ODE solving method will be, in fact, 

these lower order moments. The following example will serve to explain this further. 

 

 

Example – Reversible Dimerization 

The following is an example of how the above equations are calculated using a simple illustrative 

example of reversible dimerization: 

     
  
       

       
  
      



If we are looking to apply 2nd-order closure (approximate the 3rd-order moments and higher) then the 

moment vectors are: 

 

   

    
   

    

 , and           

 
 
 

Note that since B can be calculated by knowing A and the initial amounts A0 and B0 there is only one 

independent component which we take to be A. 

As for bounding the system the total number of monomer (A) in the system is A0 + 2 B0. For each 

reaction two monomers are consumed or produced, so the sets                   or 

                represent the two possible component ranges for the system. At this point such 

considerations are important in ensuring the method operates correctly. 

With the known lower-order moments, μ, the Lagrange parameters, λ, can be determined. Since we 

know three moments there will be three parameters to determine: 

 
   

  

  

  

  
 

 The final entropy maximized distribution takes the form: 

                         
    

This is determined using Algorithm S1. The most important part of this is the Jacobian which takes on a 

simple three by three form: 

   

 
 
 
 
 
 
 
      

   

      
   

      
   

     
   

 
     
   

     
   

      
   

      
   

      
    

 
 
 
 
 
 

 

 

    

              
               
              

  

 

Note the symmetry of the matrix and the necessity to determine much higher-order moments. This 

structure poses problems when the Jacobian is nearly singular (e.g. a delta functional) or when 

considering systems with nearly independent components. 

This short example should provide enough information to understand and apply the ZI-closure method 

to a variety of systems. In Sections S2 and S3 this example will be further expanded to show how time 

trajectories and steady-state distributions can be determined. 

 



Section S2 – Theoretical Foundation for the ODE Time Trajectory Method 

This section is designed to explain how the moment equation time trajectories are solved for through 

time using ZI-closure. The section is split into an outline of the method, a short but thorough description 

of the ODE algorithm utilized, and closing with an illustrative example. 

Start with an arbitrary reaction network with N components interacting according to R reactions. Note 

that we assume all reactions have elementary rate laws. The reaction network is fully described by a set 

of reaction rates, {k1, k2, …, kR}, and a stoichiometric matrix ν where νi,j corresponds to how component j 

is affected by reaction i. 

The reaction network can then be transformed into a set of moment equations up to order M (for 

example     is a first-order moment,       is a third order moment, etc.) [Sotiropoulos 2009, Smadbeck 

2012]: 

   

  
         

 
(S16) 

The vector μ is the set of lower-order moments of length     
   

 
  and μ’ is the set of higher-

order moments necessary for closure. If m additional orders of moments are needed for closure then μ’ 

is of size   
   

       
   

 . This can be calculated using the    equation above. Typically, m is 

equal to one if second-order reactions are present, two if third-order reactions are present, etc. Using 

this notation A is an       matrix and A’ is an      
  matrix. 

Using ZI-closure as described in Section S1, Equation S16 is closed by substituting in the maximum 

entropy higher-order moments (Equation S7): 

   

  
        

  
 

(S17) 
By recalculating the Lagrange parameters, λ, at each step any ODE solver can be used to determine time 

trajectories for the lower-order moments, μ. Herein we use the adaptive time step, 5th-order Runge-

Kutta ODE solver  (ode15s) built into MATLAB (The MathWorks Inc., Natick, MA). 

Algorithm S2: ODE Time Trajectory Method 

The following is a simple ODE solving method provided to illustrate how Algorithm S1 allows for the 

closure of Equation S16 and the determination of moment time trajectories. 

1) Define t = t0 and μ = μ0. The moment matrices A and A’ are known. The higher-order moments 

μ’=μ’0 are initially known as well. A range for the system components is necessary for the 

Newton-Raphson optimization. 

2) The first step is calculated with Equation S16 using the chosen ODE method obtaining Δμ and Δt. 

3) Step forward: μ = μ + Δμ and t = t + Δt. The higher-order moments μ’ are now unknown. 



4) If t ≥ tmax proceed to (5), else: 

a. Use Algorithm S1 to obtain parameters λ from μ 

b. Use Equation S7 to obtain μ’H from λ 

c. The next step, Δμ and Δt, is calculated with Equation S17 with the chosen ODE method. 

Again, Δt is adaptive to account for system stiffness and particular to the chosen solver. 

d. Return to (3) 

5) Return t, a vector of desired time points, and the corresponding vector through time for each of 

the lower-order moments μ 

The closure step is folded into the ODE solving scheme at step (4). 

Example – Reversible Dimerization 

See Section S1 for the beginning of this example problem. Here will be determined the appropriate A 

and A’ matrices given the reversible dimerization reaction network: 

     
  
       

       
  
      

The method for determining A and A’ is outlined in detail in a previous publication [Smadbeck 2012]. It 

can be noted that since B = (A0 + 2 B0 – A)/2 there is only one independent component (N = 1). We are 

looking at 2nd-order closure (M = 2) and m is one because there is a second-order reaction. Therefore: 

 
    

   
 

  
  

    
   

 

 
  

   
   
   

  
  

    
   

 
 

Therefore A will be a 3 × 3 matrix, and A’ will be a 3 × 1 matrix. Let S0 = A0 + 2 B0, and the two matrices 

can be determined to be: 

 
   

   
          

                    

  and      
 
 

    

  
 
 
 

At each step within the ODE solver A can be matrix multiplied by μ and A’ by μ’ to determine both Δμ 

and by extension Δt. 

The examples in Sections S1 and S2 now combine to show a clear picture of how the time trajectories 

using ZI-closure would be determined for a simple reversible dimerization system. This can be extended 

to a variety of different networks. In section S3 the example will conclude with an optimization method 

for immediately determining the steady-state distribution for the reversible dimerization network. 

  



Section S3 – Theoretical Foundation for the Steady-State Determination Method 

This section is designed to present the underlying theory for the one-step steady-state determination 

using ZI-closure. The section presents theory, the specific algorithm used to obtain steady-state 

distributions, and closes by completing the dimerization example from Sections S1 and S2. 

Steady-state determination is structurally similar to Algorithm S1 with one key difference. In Section S1 

lower-order moment values, μ, are known with given initial conditions (e.g. a Kronecker delta function 

or a Gaussian distribution). This information can then be used to obtain the desired information, the 

higher-order moments, μ’H. In the case of steady-state determination the lower-order moments are 

instead the desired information, μSS, and must be obtained using other available information. 

The information that is available, but was unused in Section S1, was the reaction network structure, 

Equation S16 from Section S2: 

   

  
         

 
 

 

In particular, take an augmented matrix B: 

             (S18) 
This matrix is NM x (NM+NM’) and is thus under-defined. The rank of B can be at most     , depending 

on the reaction network. Given this idealized case the null space will have a rank of   
   . The null 

space basis can be described by an (NM+NM’) x (NM’+1) matrix with   
    independent moments. The 

set of basis vectors for the null space can be manipulated such that it takes the form: 

 

    

 
 
 
 
 
 
 
 
 
 

     
                  

   

                  
   

     
                      

   

     
     
     
      

 
 
 
 
 
 
 
 
 

 

 
 
 

(S19) 

The entry C(m,n) indicates how the mth-moment scales with the nth independent moment with respect 

to the null-space of matrix B. The independent moments can, for the most part, be chosen arbitrarily. 

We typically choose the independent moments to be the higher-order moments and the 0th moment 

(which is always independent). Any linear combination of the columns in CSS (i.e. CSS matrix multiplied by 

any vector) is in the null space of the matrix B. 

This basis set is the additional information needed to obtain steady-states: a relationship between the 

lower-order moments and higher-order moments has now been established that must be satisfied by 

the steady-state distribution. This relationship results in a modified objective function: 



 
 
    

    
    

  

  
    

   

   
    

  

  
       

 
  

   
 

(S20) 

 

Note that the final form takes into account our choice of independent moments as the 0th moment 

(always equal to one) and the higher order moments, μ’H. Using the modified objective function, ΔμSS in 

place of Δμ, the same Newton-Raphson algorithm from Section S1 can be used to obtain steady-state 

distributions.  

When generating the results for this manuscript an expanded Jacobian was used instead. The expanded 

Jacobian matrix is an (NM + NM’)x(NM + NM’) matrix whereas in Section S1 it was an NM x NM matrix. The 

higher-order moments, μ’, are now present as both matched variables and fitted parameters. We have 

found that using an expanded Jacobian improves convergence to the steady-state solution. 

Algorithm S3: Steady-State Newton-Raphson Method 

1) Initial parameter guess, λSS=λSS,0, is given. A range for the components is also provided. Typically 

a guess is a vector of zeros, but if a previous step gave a reasonably close distribution the output 

parameters can be utilized as an initial guess. 

2) Calculate the null space (the matrix CSS) for Equation S18. 

3) Calculate       using λSS (Equation S6) 

4) Calculate μH and μ’H using       (Equation S7). 

5) The calculated moments, μH and μ’H, are then compared to those given by the null space 

(Equation S19 and S20): 

 
 
    

    
    

  

  
    

   

   
    

  

  
       

 
  

   
 
 

 

  

6) Calculate the 2-norm error: 

 
     

    

    
  

 

 
    

    
   

 
 

(S21) 
7) If εSS < tolerance proceed to (8). Note again that the tolerance was taken to be 1·10-16, the 

machine tolerance, but with a catch to prevent infinite loops. Else: 

a. Calculate the expanded Jacobian, JSS. This is similar to the Jacobian in Algorithm S1, but 

expanded to include the higher order moments, μ’H, as rows and the corresponding null 

space basis vectors as new columns. Essentially, the information for determining the 

steady-state lower-order moments are provided by the null space. The Jacobian is an 

(NM + NM’)x(NM + NM’) matrix (see section S2) and takes the form: 

 

    

 
 
 
 
 

  

   

  

   
 

  

   
     

  

 
 
 
 
 

 

 
 
 
 

(S22) 
Here    

  denotes the null space basis vectors corresponding to just the higher-order 

moments. The Jacobian from Algorithm S1 is present as the top-left corner of the 



steady-state Jacobian (Equation S11 and S12). See the example at the end of this section 

for a clearer view on how this steady-state Jacobian is developed. 

b. As with any Newton-Raphson scheme the method uses a first order Taylor expansion: 

 
 
    

    
       

    

    
   

 
(S23) 

Note that the higher-order moments are used as both a variable and a parameter in the 

steady-state algorithm. In reality you are not fitting the higher-order moments, but 

rather they are providing the null-space information. 

c. An approximate parameter step is calculated: 

 
 
    

    
      

   
    

    
   

 
(S24) 

d. A new parameter set is determined: 

               (S25) 

e. Return to (3) 

8) Output λSS for use in calculating μSS using Equation S7. 

The three algorithms presented in Sections S1-3 represent a method for the stochastic simulation of 

chemical reaction networks that is totally independent from Gillespie’s stochastic simulation algorithm 

and its descendents. The steady-state algorithm presented within this section in particular marks, 

potentially, the first universal one-step method for stochastic steady-state distribution determination. 

Example – Reversible Dimerization 

This section extends the examples in Section S1 and S2. Recall that the reaction network being explored 

is a simple reversible dimerization network: 

     
  
       

       
  
      

For the 2nd-order ZI-Closure recall that the lower and higher-order moment vectors are: 
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The matrices in Equation S16 are thus: 
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These can be used to create the augmented matrix B in Equation S18: 

 
    

                      
                        

                        

  
 



The null space is thus simple to obtain: 

 

    

 
 
 
 
 
 
 

  
    

           

  
 

               

          

           

   

           
   

 
 
 
 
 
 

 

 
 
 
 
 
 

CSS has two columns, one corresponding to the 0th moment (necessarily independent since it is 

invariant), and one corresponding to the single higher-order moment necessary for closure,     . 

The null basis vector corresponding to      is incorporated into the expanded Jacobian by including      

as both a matched variable and parameters. So the variables to be matched are: 

                
       

     , and the parameters to be fit are:             
     : 

 

    

 
 
 
 
 
 
 
 
 
 
       

   

       

   

       

   

       

       

      

   

      

   

      

   

      

       

       

   

       

   

       

   

       

       

       

   

       

   

       

   

       

        
 
 
 
 
 
 
 
 
 

 

 

Note that because     describes a relationship between the lower-order moments and higher-order 

moments it can be used for the last column in the Jacobian. The rest are found in the same manner as 

Equation S12: 

 

    

 
 
 
 
 
 
 
               

              
  

 

               

               
   

           

                 
 
 
 
 
 
 

 

 

 

  



Section S4 – Additional Data and Figures 

This section presents more results collected for models 1-3 from the body of the work. These additional 

results further substantiate the conclusions drawn in the main manuscript body. Furthermore, many of 

the lower-order ZI-Closure results are shown to provide insight on how increasing the order of ZI-

Closure affects accuracy. 



 

Figure S1.1 – Reversible Dimerization, Time Trajectory Results with 2nd-Order ZI-Closure 

Evolution of the (a) average and (b) variance of the number of A molecules using 2nd-order ZI-closure 

(solid lines). Different colored circles represent SSA results (100000 trajectories) for various values of 

equilibrium constant K= k2 / k1. The gray (K = 100), orange  (K = 10), yellow (K = 1), green (K = 0.1), and 

blue (K = 0.01) circles range across 5 orders of magnitude to demonstrate universailty of the method. 

Note that with second order closure the ZI-closure results differ substantially from the SSA when K is 

near one. The initial conditions are provided in the body of the manuscript. 



 

Figure S1.2 – Reversible Dimerization, Time Trajectory Results with 4th-Order ZI-Closure 

Evolution of the (a) average and (b) variance of the number of A molecules using 4th-order ZI-closure 

(solid lines). Different colored circles represent SSA results (100000 trajectories) for various values of 

equilibrium constant K= k2 / k1. The gray (K = 100), orange (K = 10), yellow (K = 1), green (K = 0.1), and 

blue (K = 0.01) circles range across 5 orders of magnitude to demonstrate universailty of the method. 

The initial conditions are provided in the body of the manuscript. 



 

Figure S2 – Reversible Dimerization, Steady-State Results 

The (a) average and (b) variance of the steady-state number of A molecules using 2nd (dashed lines) and 

4th-order ZI-closure (solid lines). The results range across seven orders of magnitude for the equilibrium 

constant K= k2 / k1 (K = 10-3 to 103). A comparison is made to the SSA results (squares) using 100000 

trajectories. Note the difference in accuracy near K equal to one for the two closure orders. 

 



 

Figure S3.1 – Michaelis-Menten Time Trajectories for Parameters Sets 1-5 

The (a) mean S, (b) mean E, (c) variance for S, (d) variance for E, and (e) covariance for the time 

trajectories for five parameters sets are shown using 4th-order ZI-closure (solid lines). The results are 

compared to SSA results (1·106 trajectories, circles, colors indicated below). The parameter sets are: [k1, 

k2, k3, k4] = [1, 0.1, 0.1, 0.1] (gray), [1, 0.1, 0.1, 1] (orange), [1, 0.1, 0.1, 10] (yellow), [1, 0.1, 1, 0.1] 

(green), [1, 0.1, 1, 1] (blue). The initial conditions are provided in the body of the manuscript. 



 

Figure S3.2 – Michaelis-Menten Time Trajectories for Parameters Sets 6-10 

The (a) mean S, (b) mean E, (c) variance for S, (d) variance for E, and (e) covariance for the time 

trajectories for five parameters sets are shown using 4th-order ZI-closure (solid lines). The results are 

compared to SSA results (1·106 trajectories, circles, colors indicated below). The parameter sets are: [k1, 

k2, k3, k4] = [1, 0.1, 1, 10] (gray), [1, 0.1, 10, 0.1] (orange), [1, 0.1, 10, 1] (yellow), [1, 0.1, 10, 10] (green), 

[1, 1, 0.1, 0.1] (blue). The initial conditions are provided in the body of the manuscript. 



 

Figure S3.3 – Michaelis-Menten Time Trajectories for Parameters Sets 11-15 

The (a) mean S, (b) mean E, (c) variance for S, (d) variance for E, and (e) covariance for the time 

trajectories for five parameters sets are shown using 4th-order ZI-closure (solid lines). The results are 

compared to SSA results (1·106 trajectories, circles, colors indicated below). The parameter sets are: [k1, 

k2, k3, k4] = [1, 1, 0.1, 1] (gray), [1, 1, 0.1, 10] (orange), [1, 1, 1, 0.1] (yellow), [1, 1, 1, 1] (green), [1, 1, 1, 

10] (blue). The initial conditions are provided in the body of the manuscript. 



 

Figure S3.4 – Michaelis-Menten Time Trajectories for Parameters Sets 16-20 

The (a) mean S, (b) mean E, (c) variance for S, (d) variance for E, and (e) covariance for the time 

trajectories for five parameters sets are shown using 4th-order ZI-closure (solid lines). The results are 

compared to SSA results (1·106 trajectories, circles, colors indicated below). The parameter sets are: [k1, 

k2, k3, k4] = [1, 1, 10, 0.1] (gray), [1, 1, 10, 1] (orange), [1, 1, 10, 10] (yellow), [1, 10, 0.1, 0.1] (green), [1, 

10, 0.1, 1] (blue). The initial conditions are provided in the body of the manuscript. 



 

Figure S3.5 – Michaelis-Menten Time Trajectories for Parameters Sets 21-25 

The (a) mean S, (b) mean E, (c) variance for S, (d) variance for E, and (e) covariance for the time 

trajectories for five parameters sets are shown using 4th-order ZI-closure (solid lines). The results are 

compared to SSA results (1·106 trajectories, circles, colors indicated below). The parameter sets are: [k1, 

k2, k3, k4] = [1, 10, 0.1, 10] (gray), [1, 10, 1, 0.1] (orange), [1, 10, 1, 1] (yellow), [1, 10, 1, 10] (green), [1, 

10, 10, 0.1] (blue). The initial conditions are provided in the body of the manuscript. 



 

Figure S3.6 – Michaelis-Menten Time Trajectories for Parameters Sets 26 and 27 

The (a) mean S, (b) mean E, (c) variance for S, (d) variance for E, and (e) covariance for the time 

trajectories for five parameters sets are shown using 4th-order ZI-closure (solid lines). The results are 

compared to SSA results (1·106 trajectories, circles, colors indicated below). The parameter sets are: [k1, 

k2, k3, k4] = [1, 10, 10, 1] (gray), [1, 10, 10, 10] (orange). The initial conditions are provided in the body of 

the manuscript. 

 



 

Figure S4.1 – Michaelis-Menten Steady-State Results across a range for k1 

The (a) mean S, (b) mean E, (c) variance for S, (d) variance for E, and (e) covariance for the steady-state 

Michaelis-Menten model with 2nd-order (dashed line) and 4th-order ZI-closure (solid line) compared to 

SSA results (1·106 trajectories, squares). The value for k1 is changed and all other parameters are set to 

one. Note that here there is no noticeable difference between 2nd and 4th-order closure. 



 

Figure S4.2 – Michaelis-Menten Steady-State Results across a range for k2 

The (a) mean S, (b) mean E, (c) variance for S, (d) variance for E, and (e) covariance for the steady-state 

Michaelis-Menten model with 2nd-order (dashed line) and 4th-order ZI-closure (solid line) compared to 

SSA results (1·106 trajectories, squares). The value for k1 is changed and all other parameters are set to 

one. Note that here there is no noticeable difference between 2nd and 4th-order closure. 



 

Figure S4.3 – Michaelis-Menten Steady-State Results across a range for k3 

The (a) mean S, (b) mean E, (c) variance for S, (d) variance for E, and (e) covariance for the steady-state 

Michaelis-Menten model with 2nd-order (dashed line) and 4th-order ZI-closure (solid line) compared to 

SSA results (1·106 trajectories, squares). The value for k1 is changed and all other parameters are set to 

one. The difference between 2nd and 4th-order closure is evident in the three 2nd-order plots (c-e). 



 

Figure S4.4 – Michaelis-Menten Steady-State Results across a range for k4 

The (a) mean S, (b) mean E, (c) variance for S, (d) variance for E, and (e) covariance for the steady-state 

Michaelis-Menten model with 2nd-order (dashed line) and 4th-order ZI-closure (solid line) compared to 

SSA results (1·106 trajectories, squares). The value for k1 is changed and all other parameters are set to 

one. The difference between 2nd and 4th-order closure is most evident in the covariance plot (e). 



 

Figure S5.1 – Schlögl model 8th, 10th, and 12th-order ZI-closure results 

The (a) mean and (b) variance results for 8th (dash-dot line), 10th (dashed line), and 12th-order ZI-closure 

(solid line) for the Schlögl model given the kinetic constants and initial conditions described in the body 

of the paper. The results are compared to SSA results (1·106 trajectories, circles). 



 

Figure S5.2 – Schlögl model 2nd, 4th, and 6th-order ZI-closure results 

The (a) mean and (b) variance results for 2nd (dash-dot line), 4th (dashed line), and 6th-order ZI-closure 

(solid line) for the Schlögl model given the kinetic constants and initial conditions described in the body 

of the paper. The results are compared to SSA results (1·106 trajectories, circles). 

 



 

Figure S6 – Steady-State Probability Distributions for 2nd, 4th, 6th, 8th, 10th, and 12th-order ZI-closure 

Steady-state distributions (sampled at t = 100 in the dynamic simulation, not from the steady-state 

optimization method) for (a) 2nd (dotted line), 4th (dashed line), and 6th-order closure (solid line); (b) 8th 

(dotted line), 10th (dashed line), and 12th-order closure (solid line). In all cases the results are compared 

to the SSA output (1·106 trajectories, triangles). Kinetic constants and initial conditions described in the 

body of the paper. 



 

Figure S7.1– Steady-State Schlögl Model Results for k1 with 6th, 8th, 10th, and 12th-order ZI-closure 

The steady-state (a) mean and (b) variance results for the Schlogl model when k1 is ranged (all other 

parameters held constant) for 6th (dotted line), 8th (dot-dash line), 10th (dashed line), and 12th-order ZI-

closure (solid line). In all cases the SSA results (1·106 trajectories, squares) are provided for comparison. 



 

Figure S7.2 – Steady-State Schlögl Model Results for k2 with 6th, 8th, 10th, and 12th-order ZI-closure 

The steady-state (a) mean and (b) variance results for the Schlogl model when k2 is ranged (all other 

parameters held constant) for 6th (dotted line), 8th (dot-dash line), 10th (dashed line), and 12th-order ZI-

closure (solid line). In all cases the SSA results (1·106 trajectories, squares) are provided for comparison. 



 

Figure S7.3 – Steady-State Schlögl Model Results for k3 with 6th, 8th, 10th, and 12th-order ZI-closure 

The steady-state (a) mean and (b) variance results for the Schlogl model when k3 is ranged (all other 

parameters held constant) for 6th (dotted line), 8th (dot-dash line), 10th (dashed line), and 12th-order ZI-

closure (solid line). In all cases the SSA results (1·106 trajectories, squares) are provided for comparison. 



 

Figure S7.4 – Steady-State Schlögl Model Results for k4 with 6th, 8th, 10th, and 12th-order ZI-closure 

The steady-state (a) mean and (b) variance results for the Schlogl model when k4 is ranged (all other 

parameters held constant) for 6th (dotted line), 8th (dot-dash line), 10th (dashed line), and 12th-order ZI-

closure (solid line). In all cases the SSA results (1·106 trajectories, squares) are provided for comparison. 

 

 


