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Alternative Splicing Discovery from RNA-Sequencing Data. RNA
from CD4+ T and CD19+ B cells was used for the preparation of
nonstrand-specific paired-end cDNA libraries in a format com-
patible with Illumina sequencing technology, which was modified
from the work by Parkhomchuk et al. (1). In brief, an mRNA
fraction was enriched from total cellular RNA using oligo(dT)
selection, treated with DNase, fragmented, and converted to
cDNA with random hexamers. cDNA libraries were subjected to
strand-independent Illumina library preparation and sequenced
using an Illumina sequencing platform (2 × 76 bp).
We mapped the RNA-sequencing (RNA-seq) data to the mm9

(NCBIM37) genome assembly using TopHat (2), version 1.1.4,
which required that reads map uniquely. Using the UCSC known
gene annotations, we computed gene expression estimates using
Cufflinks (3).
TopHat outputs candidate splice junction predictions and a

read count for the number of sequencing reads supporting each
prediction. We took these reads to represent RNA splice junc-
tions within our samples. Separately we computed alignment and
coverage files to visualize the distribution of sequencing reads in

a genome browser. Using the summary read counts at each read
position within the genome based on the coverages, we estimated
the exon-level expression from the number of reads falling within
exon boundaries by computing the mean of the piled-up reads
with no subsequent normalization. (In total, we obtained 161,948
and 167,067 splice junctions, where 95,699 and 96,372 of these
junctions were observed more than 10 times in CD4+ T and
CD19+ B cells, respectively.) We further eliminated junctions
ending in multiple genes or located entirely in intronic regions.
This process resulted in a total of 92,562 and 91,882 junctions in
CD4+ T and CD19+ B cells, respectively.
On the basis of the UCSC mm9 mouse exon annotation

boundaries, we further categorized these splice junctions as ca-
nonical or alternative. If a junction end perfectly matched to two
neighboring exon boundaries, we characterized it as canonical.
Any junction with skipped exons or acceptor or donor sites
previously not in existing databases was characterized as alter-
native and binned into one of the categories shown in Fig. 1.
We defined the skipping ratio of an exon as the total read count

of junctions skipping that exon divided by the total number of
reads skipping it and junctions including it. A junction was
considered to include an exon if it fell within ±4 bp around exon-
annotated boundaries (Fig. S2A).

Alternative Splicing Discovery fromMicroarray Data.Transcriptional
profiling within the Immunological Genome Project (ImmGen)
cell populations has been previously described (4) (www.immgen.
org). All ImmGen microarray data were generated using Affy-
metrix MoGene1.0 ST chips, which contain probes across the
gene body. With two to three probes falling within an exon on
average, we could characterize exon-level expression. To enable
cross-comparison between microarray and RNA-seq data, we
selected a set of probes with expression that was well-correlated
(Pearson coefficient ≥ 0.7) between the microarray and RNA-
seq datasets. Our final list was composed of 171,000 probes lo-
cated in 75,673 exons and 7,261 genes. We estimated exon- and
gene-level expression of Affymetrix probes after probe-level ro-
bust multiarray average (RMA) normalization (5) and summa-
rized at the probe, exon, or gene level. For analysis of differential
use, we selected 172 populations that excluded nonhematopoietic
cell types and samples with lesser dynamic range.

Exon-Centric Discovery by Linear Regression. For each of 171,000
probes, we performed a linear regression between the probe’s ex-
pression and the integrated expression of the corresponding gene
across 802 ImmGen samples (three replicates per cell population
on average) and computed a residual of each sample to a re-
gression line estimated by a first-degree polynomial fit. We only
retained those exons that had a consistent slope for each probe–
gene regression for each of the probes and averaged the residual
values for each exon and cell type. For each cell type, we selected
the top 50 exons with the highest residual value, with exon/gene
expression ratio ≤ 1 (Fig. S2C) and gene-level expression ≥ 100.
We furthered required that at least five cell types have high re-
sidual value and that the difference in exon/gene expression ratio
was at least 0.4 (75th percentile) among the cell types (Fig. S2B).

Population-Centric Analysis of Exon/Gene Ratios. For each cell type,
we computed exon–gene ratios and selected exons that had a
difference of exon- and gene-level expression > 0.4 (log10 scale)
and a gene-level expression ≥ 100. To eliminate exons that con-
sistently showed lower exon expression compared with gene-level
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expression, we additionally required that at least five cell types not
fall into this range and had a difference in maximum and mini-
mum exon inclusion/exclusion ratios of at least 0.4 (75th percen-
tile) among the cell types. Fig. S2B shows the distribution of the
difference between maximum and minimum values of the exon/
gene expression ratios.
Combining the results from both the exon- and population-

centric methods resulted in 4,321 exons residing in 1,842 genes as
candidate exons that showed differential splicing among ImmGen
cell types. Prediction of exon exclusion patterns from Affymetrix
microarrays in CD4+ T and CD19+ B cells for both the exon-
and cell type-centric methods showed a similar profile of vali-
dation compared with skipped exons obtained from RNA-seq.
True positives were 15–20% for up to 100 flagged exons but
leveled off to 10% if more exons were flagged (Fig. S2 D and E).

Clustering of Flagged Exons. For k ranging from 10 to 30, we
performed a k-means clustering on the row-normalized exon/gene

ratios (a metric of exon inclusion), with 10 random initializations
for each value of k. We chose the clusters that had the biggest
difference between mean intercluster distances and mean intra-
cluster distances in Euclidean space, which resulted in 28 clusters.

Splicing Regulators. We compiled a list of 229 genes with gene
ontology annotation related to splicing and splicing regulatory
activity. Among these genes, 165 genes were expressed ≥500 in
a cell population. We correlated the expression value of each
regulator across ImmGen cell types with the exon inclusion/ex-
clusion metric and computed a P value from a background dis-
tribution of correlations of each exon inclusion/exclusion metric
vs. a random set of 500 genes. We used a Benjamini–Hochberg
procedure to compute false discovery rate values for significance
between 165 splicing regulators and 4,321 exons; 7,536 such pairs
scored at a corrected false discovery rate < 0.5%. Because of the
high number of intercorrelated regulators, we focused on the
subset to 27 specific regulators shown in Fig. 5D.
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Fig. S1. (A) Gene-, exon-, and probe-level expression comparison between microarray and RNA-seq profiles in CD4+ T and CD19+ B cells. (B) Pairwise cor-
relation at gene level between ImmGen samples using all probes on the Affymetrix Mouse 1.0 ST chip (Left) and the integrated gene-level expression of
a selected subset of 171,000 probes (Right). Population-level correlations at gene level did not change when we used a filtered subset of probes.

Ergun et al. www.pnas.org/cgi/content/short/1311839110 2 of 3

www.pnas.org/cgi/content/short/1311839110


Number of exons

Tr
ue

 p
os

iti
ve

s

Number of exons

Tr
ue

 p
os

iti
ve

s

D E

0 0.5 1 1.5 2 2.50

1000

2000

3000

4000

5000

6000
B

N
um

be
r o

f e
xo

ns

Max ( exon expression
gene expression ) - Min ( exon expression

gene expression )

75th percentile

1.6

1.2

0

0.8

0.4

2

0-1-2 1

Exon/Gene ratio
D

is
ta

nc
e 

to
 d

ia
go

na
l

CD19+BC

0 100 200 300 400 500

0.1

0.2

0.3

0.4

0.5

0 100 200 300 400 500

0.1

0.2

0.3

0.4

0.5

0.4

A
Skipping Ratio =

a
a + b + c

a

b c

Fig. S2. (A) Skipping ratio for an exon computed as the ratio of junctions skipping that exon normalized by the total number of reads skipping it and junctions
including it. (B) Difference between maximum and minimum exon inclusion/exclusion ratio for a given exon; 75th percentile (0.4) was chosen as a cutoff to
ensure variability between inclusion/exclusion in flagged exons for the population-centric method. (C) Combined residual values for each population vs. exon/
gene ratio from the exon-centric method. (D and E) Comparison between flagged exons in Affymetrix and skipped exons obtained from exon–exon junctions
from RNA-seq data in CD19+ B cells. Percent of true positives flagged by the exon-centric method as a function of exon number and percent of true positives
flagged by the population-centric method as a function of exon number, respectively, are shown.
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