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1 Model formulations 

1.1 Dissipative particle dynamics 

Dissipative particle dynamics (DPD) is a mesoscale stochastic simulation method proposed by 

Hoogerbrugge and Koelman (1), and reformulated by Español and Warren (2) to ensure a thermal 

equilibrium state. It is widely applied to simulate complex fluid systems, such as multiphase flow, 

colloidal suspensions, and polymeric blends. In a DPD system, the simulation domain is represented 

by a system of particles, called DPD particles, and the interaction between any two particles is 

characterized by the DPD force ( DPD

ijf ), which consists of a conservative ( C

ijf ), a dissipative ( D

ijf ) and 

a random ( R

ijf ) forces,  

 DPD C D R

ij ij ij ij  f f f f . (1) 

The conservative force is related to the compressibility of fluid, and the dissipative force mainly 

determines the viscosity of fluid. The balance between the random and the dissipative forces 

maintains a constant temperature (specific kinetic energy) in the system. They are defined as (2)  

 ˆ( )C

ij i

C

ij ij jr f r , (2) 

 ˆ( )( )D D

ij ij ij ij ijij r   f r v r , (3) 

 ˆ( )R

ij ij ij i

R

i jj r dt f r , (4) 

where ij , 
ij  and 

ij  are coefficients to characterize the force strengths; ij  is a normally 

distributed random variable with zero mean and unit variance; dt  is the time step (in the context of 

stochastic differential equation); ( )C

ijr , ( )D

ijr  and ( )R

ijr  are weight functions; ij i j r r r , 

ij ijr  r , îj ij ijrr r , and ij i j v v v . The weight functions ( )C

ijr
 
and ( )D

ijr  are defined by  

                                                      
1
 Department of Mechanical Engineering, National University of Singapore, Singapore 117576 



 
  ,1

( )
0,

ij c ij cC

ij

ij c

r r
r

r r

r r


 




 


,  (5) 

 
 

( )
0,

,1
s

ij c ij cD

ij

ij c

r r
r

r r

r r


 




 


,  (6) 

where 
cr  is the cut-off radius; s  is the exponent of the dissipative weight function. The weight 

function ( )R

ijr  satisfies 

 
2

( ) ( )D R

ij ijr r     ,  (7) 

to keep a constant Boltzmann temperature
Bk T  in the DPD system: 

 
2 2ij B ijk T  .  (8) 

1.2 Discrete cell model 

In the present discrete cell model, the whole cell is discretized into a system of DPD particles; the 

particles on the cell surface are connected into a viscoelastic triangular network representing the cell 

membrane. Hence, the membrane force 
M

if  acting on the thi  particle consists of the elastic (
Ela

if ) and 

viscous (
Vis

if ) parts,  

 
M Ela Vis

i i i f f f . (9) 

The elastic part is characterized by a total energy potential totalU , (3)  

 
Ela total
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i

U



f

r
, (10) 

where  

 total in plane bending area volumeU U U U U    , (11) 

in which in planeU   is the in-plane energy for describing the stretching deformation, bendingU  the 

bending energy for the bending deformation, areaU  the area-constraint energy for the area 

conservation, and volumeU  the volume-constraint energy for the volume conservation. In the present 



work, the membrane particles are connected by nonlinear-worm like chains, and therefore the in-plane 

energy is defined as (4) 
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where jl  and max

jl  are the current and maximum length of the 
thj  chain; Bk T  is the Boltzmann 

temperature; jp  is the persistence length; and jk  is a coefficient; 
cN  is the number of chains. It 

should be pointed out that the first part in Eq. (12) is attractive, but the second part repulsive to 

maintain a nonzero equilibrium length of each chain. The bending energy provides resistance to 

membrane wrinkle and distortion, (5) defined as 

   
1

1
cN

R

bending b j j

j

U k cos  


   , (13) 

where bk  is the bending coefficient; j  is the instantaneous angle between two adjacent triangles 

having the common 
thj  edge; R

j  is the spontaneous angle. The area conservation constraint is given 

by 
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t
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jtot j
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U

A A

 
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where gak  and lak  are the global and local area constraint constants; totA  and jA  are the areas of the 

cell membrane and 
thj  triangle; 

des

totA  and des

jA  are the corresponding desired areas; tN  is the 

number of triangles on the cell membrane. The first part in Eq. (14) places a constraint on the global 

area of cell membrane, while the second part on the global area of each triangle. Note that the 

conservation of surface area is achieved by increasing total and local area constraint constants. 

Similarly, the volume conservation constraint is 

 

2( )

2

des

v tot tot
volume des

tot

k V V
U

V


 , (15) 

where vk  is the global volume constraint constant, totV  and 
des

totV  are the current and desired global 

volumes of the cell.  

The viscous part in Eq. (9) is modelled by the general fluid particle model, (6) in which a 

viscous component is introduced into each membrane chain,  
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D Vis R Vis
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N

 f f f , (16) 

where the subscripts i  and j  are the two endpoints of a chain; ,D Vis

ijf  is the dissipative part mainly 

determined the viscosity of cell membrane, (6) 

 , ˆ ˆ( )D Vis T C

ij ij ij ij ij    f v v r r , (17) 

where 
T  and 

C  are the dissipative parameters. In addition, a random part ,R Vis

ijf
 
is added in Eq. (16) 

to balance the temperature via a fluctuation-dissipation theorem (6), 

 
, 3

ˆ2 ( 2 [ ] )
3

C T
R Vis T S

ij B ij ij ijk T d tr d
 




  f W W I r , (18) 

where I  is the unit second-order tensor; [ ]ijtr dW  is the trace of a random matrix formed by 

independent Wiener increments ijdW ; 
S

ijdW  is the traceless symmetric part of ijdW .  

Fedosov et al. (3) conducted a linear analysis for a regular hexagonal network on the cell 

membrane, and derived the macroscopic shear modulus 
M

 

as 
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where the subscript ‘0’ refers to the stress-free state. The bending modulus 
M

 

is shown to be (3)  

 
2

3

M

bk  , (20) 

and the area dilution modulus 
M

 

as (3) 

 2M M

ga lak k    . (21) 

The membrane viscosity is estimated as (3) 

 
3

3
4

C
M T 

   . (22) 

2 Numerical methods 

At the initial state, the particle velocity is set by 



 
1

3 1i i

w i

T

N N m

 
  

 
v e , (23) 

where N
 
and wN  are the numbers of total particles and wall particles; ie  is a unit random vector. 

This velocity ensures that the initial system temperature is T . The particle acceleration is set to be 

zero. As a result, the DPD force DPD

ijf  and the viscous part 
Vis

if  
of membrane force are easily 

calculated. On the other hand, the initial state of cell is regarded as a stress-free state, such that the 

desired area ( des

jA  and 
des

totA ) and volume (
des

totV ) are set to be the values of initial area and volume of 

cell, as well as the equilibrium length ,0jl
 
and spontaneous angle R

j . Therefore, the elastic part of 

membrane force is also obtained. Subsequently, we use the modified velocity-Verlet algorithm (7) to 

solve the equation governing the particle motion, such that the location and velocity of each particle is 

updated.  

3 Dynamics in shear flow 

It has been shown that the cell models with and without included parasites can produce a reasonable 

stretching deformation and shape relaxation time for healthy and malaria-infected RBCs. In this 

section, we further study their dynamic behaviours in simple shear flow. Models with included 

parasites are much more complex to be implemented in numerical simulations of simple shear flow, 

because the rotation of rigid parasites should be considered. Therefore, numerical works on the 

malaria-infect RBC often adopted models without included parasites, such as Suresh et al.’s work (8, 

9), and Fedosov et al.’s work (10). Here, we also use the cell model without included parasite. The 

dynamical motions of a cell in shear flow are broadly classified into three types (11): tank-treading, 

swinging, and tumbling. However, Yazdani and Bagchi (12) pointed out that the swinging motion is 

more complex, and classified it into several types: swinging with tank-treading, breathing at zero 

inclination, breathing with swinging, and breathing with tumbling. We use this detailed classification 

to identify our simulation results shown in Fig. 1. At the same shear rate, hRBC and iRBC exhibit the 

different dynamical behaviours. The hRBC first inclines and gradually approaches to a steady state, 

known as the tank-treading motion, consistent with Yazdani et al.’s work (12). In this motion, the 

initial biconcave dimples are completely absent; both the deformed shape and its angle of inclination 

undergo some slight periodic oscillations. The rRBC exhibits a similar behaviour to the hRBC, but the 



biconcave dimples are not completely absent and the oscillations are obvious. This mode is called 

swinging with tank-treading motion (12). The tRBC undergoes a complex shape deformation, where 

the membrane folds toward the cell interior so as to form two concave cusp-like dimples at the tRBC 

ends. The folding is periodic, and the tRBC swings with a periodic angular oscillation. This behaviour 

is called breathing with swinging motion (12). The sRBC exhibits a similar behaviour to the tRBC, 

but the membrane folding is not so obvious and the sRBC undergoes a tumbling motion. This is called 

breathing with tumbling motion (12).   

 

Fig. 1 Dynamic behaviours of (a) hRBC, (b) rRBC, (c) tRBC and (d) sRBC in simple shear flow with the shear rate 

 ̇             . The snapshots are taken from 0 to 6.6 ms with the time interval of 0.508 ms.   
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