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Stretching and Relaxation of Malaria-Infected Red Blood Cells
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ABSTRACT The invasion of red blood cells (RBCs) by malaria parasites is a complex dynamic process, in which the infected
RBCs gradually lose their deformability and their ability to recover their original shape is greatly reduced with the maturation of
the parasites. In this work, we developed two types of cell model, one with an included parasite, and the other without an included
parasite. The former is a representation of real malaria-infected RBCs, in which the parasite is treated as a rigid body. In the
latter, where the parasite is absent, the membrane modulus and viscosity are elevated so as to produce the same features pre-
sent in the parasite model. In both cases, the cell membrane is modeled as a viscoelastic triangular network connected by worm-
like chains. We studied the transient behaviors of stretching deformation and shape relaxation of malaria-infected RBCs based
on these two models and found that both models can generate results in agreement with those of previously published studies.
With the parasite maturation, the shape deformation becomes smaller and smaller due to increasing cell rigidity, whereas the
shape relaxation time becomes longer and longer due to the cell’s reduced ability to recover its original shape.
INTRODUCTION
Malaria is a mosquito-borne infection induced by parasites
of the genus Plasmodium, of which Plasmodium falciparum
causes the majority of fatalities and produces the most
severe clinical manifestations (1,2). It begins with a bite
from an infected female mosquito, transmitting a sporozoite
to liver cells through blood vessels. In liver cells, the sporo-
zoite reproduces asexually thousands of merozoites, which
rupture the liver cells and return to blood vessels. The mer-
ozoites then start to invade healthy red blood cells (hRBCs),
where they develop into ring, trophozoite, and schizont
forms until more merozoites are produced and the infected
red blood cells (iRBCs) burst (3). This article concentrates
on these three forms of iRBC caused by P. falciparum,
denoted as rRBCs, tRBCs, and sRBCs, respectively.

In malaria disease, the invasion of hRBCs by parasites is a
complex dynamic process, accompanied by progressive
changes in the shape, size, and mechanical properties of
the cell (2,4–7). An hRBC has a biconcave disklike shape
with a major diameter of ~7.8 mm (8). Upon penetration,
the parasite develops into a thin ring-shaped disk of diam-
eter 2~3 mm (9), which is why this is called the ring stage.
At this stage, the rRBC shows almost no change in shape
and size. At the trophozoite stage, the parasite increases in
size to ~4 mm and becomes more rounded. The tRBC shows
obvious changes in shape, with many bumps and depres-
sions on its surface, and its volume increases by ~17%
(5,9,10) compared to the hRBC. At the schizont stage, the
parasite undergoes several rounds of mitosis to produce
daughter parasites, comprising up to ~50% of the sRBC
volume (11). The sRBC is nearly spherical in shape; its sur-
face area decreases by ~18% compared to the hRBC (5,9).
Mechanically, the iRBC gradually loses its deformability
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and its ability to recover its original shape greatly decreases
with maturation of the parasites (11,12). There are two
major reasons for this. One is that the parasites secrete pro-
teins on the cell membrane to modify its structure, thus
increasing its shear modulus and viscosity (9). The other
is that the presence of the rigidity-producing parasite re-
duces cell deformability (13) and increases cell viscosity
(14). An additional cause has to do with the cell geometry,
characterized by the surface area/volume ratio. In most
studies, the cell surface area and volume are usually
assumed to be conserved, because the cell area dilation
modulus is significantly large and the cell penetrability is
not considered, leading to a negligible effect of cell geome-
try. Thus far, few studies (14) have been done on how
malaria parasites reduce the shape recoverability of the
cell, but there are a number of works (11,15,16) on how
the cell loses its deformability due to infestation by malaria
parasites. Hosseini and Feng (11) studied the effect of para-
site size on the stretching deformation of iRBCs using the
smoothed-particle hydrodynamics method, and they pointed
out that there is a compensation effect between the elevation
of the membrane shear modulus and the size of the parasite
in generating the same amount of stretching deformation.
This conclusion may explain the difference in membrane
shear modulus measured by optical tweezers and micropi-
pette aspirations. In the stretching experiments by optical
tweezers (17–19), the iRBC is treated as an entire specimen
to be stretched diametrically, such that the effect of the
parasite is offset by the elevation of the membrane shear
modulus. As a result, the loss of deformability is entirely
ascribed to the elevation of the membrane shear modulus,
and the shear modulus is measured at ~5.3, 16, 21.3, and
53.3 mN/m for the hRBC, rRBC, tRBC, and sRBC, respec-
tively. This case can be analyzed by a cell model without an
included parasite. In the stretching experiments by micropi-
pette aspiration (13,20,21,22,23), the membrane shear
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modulus is measured to be ~6 mN/m for the hRBC and
15 mN/m for the rRBC, tRBC, and sRBC, because the mem-
brane is probed locally and the effect of the parasite is thus
considered separately. Hence, this case can only be analyzed
by a cell model with an included parasite.

In this work, we developed two cell models, one with and
the other without an included parasite. The model with an
included parasite was developed directly from a real
malaria-infected RBC, where the parasite is modeled as a
rigid body. The model without an included parasite is an
RBC model in which the membrane modulus and viscosity
are elevated to produce the same features present in the
parasite model. In both models, the cell membrane is repre-
sented by a triangular network formed by nonlinear worm-
like chains instead of linear chains to more reasonably
model the shape deformation. Moreover, a viscous term is
also added into each chain to describe the membrane viscos-
ity. Based on these two models, we investigated the transient
behaviors in the stretching deformation and shape relaxation
of malaria-infected RBCs.
MODEL DEVELOPMENT

Cell models

Fig. 1 schematically illustrates the models with an included
parasite for hRBC, rRBC, tRBC, and sRBC. An hRBC has a
biconcave shape, given by (8)

z ¼ 5
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where ðx; y; zÞ are the coordinates of the membrane particle;
R0 is the hRBC radius of 3.91 mm; C0, C1, and C2 are three
FIGURE 1 Schematic illustration of cell models. (a) An hRBCwith char-

acteristic biconcave shape. (b) An rRBC with the same shape as the hRBC,

with a ring-disk parasite of 3.3% volume fraction at the cell center. (c) A

tRBC with biconcave shape thicker than that of the hRBC and a biconcave

parasite of 40%volume fraction at the cell center. (d) An sRBCwith spheroid

shape, and a spheroid parasite of 50% volume fraction at the cell center.
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coefficients with values of 0.81, 7.83, and �4.39 mm,
respectively. Since the rRBC has a shape similar to that of
the hRBC, we still use Eq. 1 to model it, with the same
radius and coefficients as for the hRBC,. However, a rigid
ring disk is introduced to represent the parasite, with diam-
eter and thickness set to 2.0 and 1.0 mm (9), as shown in
Fig. 1 b. The tRBC is more or less axisymmetric and slightly
thicker than the rRBC in shape, although there are many
protuberants and depressions on the cell membrane surface
(18). Therefore, we still use the biconcave shape described
by Eq. 1 to represent the tRBC, but the radius, R0, is set
to 3.80 mm and the three coefficients C0, C1, and C2 are
2.10, 7.58, and�5.59 mm to make the cell thicker. The para-
site inside the tRBC is also modeled as a biconcave body
with the same coefficients, C0, C1, and C2, as the tRBC.
However, its radius is set to 2.9 mm so that the parasite
occupies ~40% of the tRBC volume. These values of
tRBC and internal parasite are chosen to match the tRBC
data reported by Esposito et al. (5), as listed in Table 1. At
the schizont stage, because the sRBC exhibits a nearly
spherical shape, an oblate spheroid is used to model the
sRBC, with radii 3.5 mm � 3.5 mm � 1.685 mm, as shown
in Fig. 1 d. The parasite is also modeled as an oblate
spheroid of the same aspect ratio as the sRBC. Its radii
are chosen as 2.78 mm � 2.78 mm � 1.339 mm so that the
parasite occupies ~50% of the sRBC volume.

The model without an included parasite adopts the same
iRBC configuration above, but without the parasite. The
absence of a parasite is compensated for by elevating the
membrane shear modulus and viscosity. In the model with
an included parasite, the membrane shear modulus is set to
be 6.0 mN/m for the hRBC and 15 mN/m for the rRBC, the
tRBC, and the sRBC, as listed in Table 1. The membrane vis-
cosity is 0.6 mNs/m for the hRBC, and 1.6 mNs/m for the
rRBC, the tRBC, and the sRBC. In the model without an
included parasite, the membrane shear modulus is 6.0, 15,
35, and 40 mN/m and the membrane viscosity is 0.6, 1.6,
15, and 56 mNs/m for the hRBC, the rRBC, the tRBC, and
the sRBC, respectively. In fact, the membrane shear modulus
and viscosity in this model cannot be regarded as material
properties; they are used only to provide an effective and
quick means of producing a stretching and relaxation defor-
mation consistent with the data. We may refer to these as the
equivalent membrane shear modulus and equivalent mem-
brane viscosity. It is obvious that the model without an
included parasite is more easily implemented in numerical
simulations than the model with an included parasite, due
to the absence of parasite. For example, the Supporting
Material alludes to the simulation of iRBCs in simple shear
flow based on the model without an included parasite (24).
Model formulation

The dissipative particle dynamics (DPD) method is used to
model the cells, with or without an included parasite. In this



TABLE 1 Parameters of healthy and infected RBCs used in this and other studies

Cell type Surface area (mm2) Volume (mm3)

Parasite volume

fraction

Shear modulus (mN/m) Membrane viscosity (mNs/m)

Model with

parasite

Model without

parasite

Model with

parasite

Model without

parasite

hRBC 135 94 — 6.0 6.0 0.6 0.6

120 5 15 (5) 88 5 20 (5) — 6.0 (22) — 0.6–0.8 (27) —

rRBC 135 94 3.3% 15 15 1.6a 1.6

110 5 8 (5) 83 5 12 (5) 3–15% (6) 15.3 (23) 15 (11) — 1.5–2.5 (28)

tRBC 135 116 40% 15 35 1.6a 15

119 5 14 (5) 103 5 26 (5) 15–50% (6) 9–18 (13) 30 (11) — 11–19.5 (29)

sRBC 104 86 50% 15 40 1.6a 56

98 5 13 (5) 81 5 8 (5) 50–80% (6) 9–14 (13) 40 (11) — —

For all four cell types, data in the upper row are from this study, and data in the lower row are from the literature, with individual studies identified by the

numbers in parentheses.
aNo experimental values for membrane viscosity were found in the literature.
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method, the whole cell is turned into a system of DPD
particles; each particle represents a cluster of molecules
on the mesoscopic scale (15). The particles on the cell mem-
brane are connected as a triangular network of nonlinear
wormlike chains, and the parasite is treated as a rigid
body by a set of constrained particles. All particles move
in accordance with Newton’s second law,

mi

d2ri
dt2

¼
X
jsi

fDPDij ; i˛PInt; (2)

m
d2ri ¼

X
fDPD þ fM; i˛P ; (3)
i

dt2
jsi

ij i Mem

m
d2ri ¼ 1 X X

fDPD; i˛P ; (4)
i
dt2 NP i˛Ppar jsi

ij Par

where mi and ri are the mass and location of the ith particle;
t is the time; PInt, PMem, and PPar are three sets of internal,
membrane, and parasite particles, respectively; and NP is
the number of parasite particles. In Eq. 4, only the transla-
tional motion of the parasite is tracked, since it is a rigid
body. The DPD force, fDPDij , is used to describe the interac-
tions between any two particles, which include conservative
ðfCij Þ,dissipative ðfDij Þ, and random ðfRijÞ forces:

fDPDij ¼ fCij þ fDij þ fRij : (5)

The conservative force is related to the compressibility of

fluid, and the dissipative force represents the viscous nature
of the fluid. The presence of the random force guarantees
a constant system temperature (specific kinetic energy)
through a fluctuation-dissipation theorem. The membrane
force, fMi , is used to describe the behaviors of the cell
membrane, including the elastic part, fElai , and the viscous
part, fVisi :

fMi ¼ fElai þ fVisi ; (6)
The elastic part is characterized by a total energy potential
(25), consisting of the in-plane energy generated by the
stretching deformation, the bending energy by the bending
deformation, the area-constraint energy by the surface
area change, and the volume-constraint energy by the
volume change. The viscous part is modeled by a dissipative
and a random part, introduced to determine the membrane
viscosity and keep the system temperature constant. The
details of all the forces can be found in the Supporting
Material.
RESULTS AND DISCUSSION

Stretching deformation

In the experiments performed by Suresh et al. (17) using
optical tweezers, two silica beads of diameter 2 mm attached
to opposite ends of a healthy or infected RBC are pulled
apart diametrically, imposing a constant stretching force.
Thus, in the simulation, a constant stretching force is acting
uniformly on the membrane particles lying inside a circular
domain of diameter 2 mm at opposite ends of the cell. Fig. 2
compares the simulation described in this article with the
experimental results of Suresh et al. (17) in terms of the vari-
ation in the axial (stretching direction) and transverse (width
direction) diameters, which are plotted for the hRBC, rRBC,
tRBC, and sRBC under different stretching forces from 0 to
200 pN. Note that the variation in diameter is defined as
ðD� D0Þ=D0, where D and D0 are current and initial diam-
eters of the RBC. Under a 100 pN force, the axial diameter
varies from 80% for the hRBC to 44.5%, 31.1%, and 20.3%
for the rRBC, tRBC, and sRBC, respectively. Thus, the
elongational deformation decreases by 35.5%, 48.9%, and
59.7% for the rRBC, tRBC and sRBC compared with the
hRBC. In other words, the cell gradually loses its deform-
ability with maturation of the parasite, as illustrated by
the deformed shapes in Fig. 2. Past studies (11,17) have
shown that the membrane bending modulus is not signifi-
cant in the stretching deformation, which is dominated by
in-plane elasticity. Here, the bending modulus is set to
Biophysical Journal 105(5) 1103–1109



FIGURE 2 Comparison between numerical results and experimental data (17). Stretching response of the hRBC (a), rRBC(b), tRBC(c), and sRBC (d)

subjected to stretching forces from 0 to 200 pN. The deformed shapes are the steady shapes of the hRBC, rRBC, tRBC, and sRBC with included parasites

subjected to a stretching force of 100 pN.
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2.4 � 10�19 J in all simulation cases. For the cases with
included parasites, the shear modulus is set to 6.0 mN/m
for the hRBC and 15 mN/m for the rRBC, tRBC, and
sRBC, as noted in Table 1. For the cases without included
parasites, however, it is set to 6.0, 15, 35, and 40 mN/m
for the hRBC, rRBC, tRBC, and sRBC, respectively. In all
cases, we find that the numerical results presented here
are in good agreement with the experimental data (17).
These values also agree with the estimated values of
Hosseini and Feng (11), who used the smoothed-particle
hydrodynamics method in their estimates to generate a
deformation similar to that produced in experiments. In
addition, shear modulus values were found to be 5.3, 16,
21.3, and 53.3 mN/m in the work of Suresh et al. (17) and
6.3, 14.5, 29, and 40 mN/m in that of Fedosov et al. (15)
for the cases without included parasites.

In the ring stage, the presence of the parasite does not
affect the stretching deformation in any significant way,
as shown in Fig. 2 b. As a result, we conclude that the
loss of deformability of rRBC is mainly attributed by the
increase in shear modulus to 15 mN/m from 6.0 mN/m
for the hRBC. In the trophozoite stage, the tRBC with
the parasite has an increase in axial diameter similar to
Biophysical Journal 105(5) 1103–1109
that of the tRBC without the parasite but a more gradual
decrease in transverse diameter, as plotted in Fig. 2 c. In
the schizont stage, the sRBC with the parasite has a
more gradual increase in both axial diameter and transverse
diameter compared to the sRBC without the parasite, as
shown in Fig. 2 d. The large included parasite yields an
additional resistance to the squeezing of the cell in the
transverse direction, leading to a more gradual decrease
in the transverse diameter for both the tRBC and sRBC
with included parasites. However, this resistance is much
stronger in the schizont stage than in the trophozoite stage
due to the increase in size of the parasite, so that the differ-
ence in axial diameter between the sRBCs with and
without the parasite is more obvious than for the tRBCs
with and without the parasite. In addition, the shear
modulus of the iRBC with the parasite is smaller than
that without the parasite in the trophozoite and schizont
stages, implying that the loss of deformability of the
tRBC and sRBC also depends on the presence of the large
parasite. Compared with the rRBC, the tRBC loses 13.4%
elongation deformation under the 100 pN stretching force,
whereas the sRBC loses 24.5% elongation deformation.
Because they both have the same shear modulus, the
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additional loss in elongational deformation is due to the
size of the parasite: 40% cell volume for the tRBC, and
50% for the sRBC.
Shape relaxation

The ability of the cell to recover its original shape results
from the elastic energy storage in the membrane (26). The
rate of shape recovery is mainly determined by the viscous
dissipation within the membrane (27). Therefore, the cell
shape relaxation is also related to the membrane elastic
and viscous properties, characterized by a shape relaxation
time defined as (27)

tc ¼ mM

hM
; (7)

where hM and mM are the membrane shear modulus and
FIGURE 3 Variation of axial and transverse diameters of hRBCand rRBC

(a) and the tRBC and sRBC (b) during stretching and relaxation. The

deformed shapes show the shape evolution of the hRBC, rRBC, tRBC, and

sRBC with included parasites at 2.465, 2.613, and 4.93 s during relaxation.
viscosity. To calculate the shape relaxation time from the
simulation data, the exponential model of Hochmuth et al.
(27) is adopted:�
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where DA and DT are the axial and transverse diameters; t is
the time variable; t0 is the time at the instant the force is
released; and the subscripts max and N correspond to the
release and recovery states, respectively.

Fig. 3 plots the axial and transverse diameters of hRBC,
rRBC, tRBC, and sRBC subject to 100 pN force during
stretching and relaxation, from which three conclusions
can be drawn. First, the changes in the axial and transverse
diameters become smaller with increasing parasite matura-
tion, indicating that the iRBC gradually loses its deformabil-
ity. Second, both diameters approach their own steady-state
values more gradually with increasing parasite maturation
in terms of both stretching and relaxation, showing that
the iRBC has an increasing membrane viscosity. Therefore,
the iRBC recovers to its original shape more slowly with
increasing parasite maturation, as shown by the deformed
shapes in Fig. 3. This has been observed experimentally
(14). Last, the rRBCs with and without an included parasite
have about the same axial and transverse diameters during
both stretching and relaxation. However, the tRBC and
sRBCwith included parasites have smaller variations in axial
and transverse diameters compared to the tRBC and sRBC
without included parasites. This clearly implies that a larger
parasite makes the cell more resistant to deformation.

Fig. 4 illustrates the best fit, based on Eq. 8, for calcu-
lating the shape relaxation time of hRBC, rRBC, tRBC,
and sRBC, where f ðDA;DTÞ is defined as the lefthand side
of Eq. 8. With increasing time, f ðDA;DTÞ gradually
approaches zero for all four types of cell, showing that the
cell gradually recovers its original shape. Furthermore,
f ðDA;DTÞ approaches zero more slowly with increasing
parasite maturation, implying a reduction of cell recover-
ability. The shape relaxation time is calculated to be
0.111 s for the hRBC, 0.128, 0.368, and 0.5 s for the
rRBC, tRBC, and sRBC with parasites, and 0.125, 0.486,
and 0.792 s for the rRBC, tRBC, and sRBC without para-
sites. Hochmuth et al. (27) estimated the shape relaxation
time of the hRBC to be 0.1–0.13 s by a micropipette aspira-
tion technique. Cranston et al. (28) measured it to be 0.092–
0.15 s for the hRBC, and 0.101–0.173 s for the rRBC, and
they also pointed out that the shape relaxation time defi-
nitely increases with increasing parasite maturation. Maur-
itz et al. (29) measured it to be 0.104 s for the hRBC, and
0.4 s for the tRBC by an optical tweezers method. Our
values for the hRBC, rRBC, and tRBC agree well with
published results. So far, there are no data published
on the shape relaxation time of the sRBC infected by
P. falciparum. However, Handayani et al. (30) reported the
Biophysical Journal 105(5) 1103–1109



FIGURE 4 Fitting of the relaxation time of the hRBC and rRBC (a) and

the tRBC and sRBC (b) according to Eq. 8, where f(DA, DT) stands for the

lefthand side of the equation and t0 is 2.465 s.
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normalized recovery ratio (defined as the ratio of the shape
relaxation time of the hRBC to that of the iRBC) to be
~0.63, 0.43, and 0.32 for the rRBC, tRBC, and sRBC in-
fected by P. vivax. For comparison, the normalized recovery
ratio in this work is calculated to be 0.876, 0.302, and 0.222
for the rRBC, tRBC, and sRBC with parasites, and 0.888,
0.228, and 0.14 for the same without parasites. A qualitative
agreement is thus found on the decreasing trend of the
normalized recovery ratio. The shape relaxation time can
also be directly estimated from Eq. 7 by the known mem-
brane shear modulus and viscosity. However, this procedure
may not be applicable to the cell model with included para-
site, because the iRBC’s relaxation is hampered by the pres-
ence of the parasite. For the hRBC, the shape relaxation
time is estimated from Eq. 7 to be 0.1 s, as noted in Table 1.
For the rRBC, tRBC, and sRBC, it is directly calculated to
be 0.107, 0.428, and 1.4 s, respectively. Except for the shape
relaxation time of the sRBC, those of the others are rela-
tively close to the values obtained by the best fit. The large
difference for the sRBCmay be attributed to the small mem-
Biophysical Journal 105(5) 1103–1109
brane shear modulus (40 mN/m) used in the cell model
without included parasite. Note that Suresh et al. (17)
used a membrane shear modulus of 53.3 mN/m for the
sRBC to simulate stretching deformation of the cell.
CONCLUSIONS

In this work, we developed two models for malaria-infected
cells, one with and the other without an included parasite.
The former is a representation of malaria-infected RBCs,
whereas the latter is a model with parameters adjusted to
fit experimental data—both the membrane modulus and vis-
cosity are elevated to produce a stretching deformation and a
shape relaxation time similar to those observed in other
studies. Based on these models, we then investigated the
stretching deformation and shape relaxation time of
malaria-infected RBCs. In the stretching simulation, the
axial and transverse diameters were measured and com-
pared with earlier experimental results. Good agreement
was observed for all four types of cells, hRBC, rRBC,
tRBC, and sRBC. With increasing parasite maturation,
the iRBC gradually loses its deformability, and the effects
of the included parasite on iRBC deformability can be
emulated in the model without included parasites by simply
increasing the membrane shear modulus. In the shape relax-
ation simulation, the shape relaxation time was calculated
and observed to be consistent with previously reported
values. With parasite maturation, the iRBC gradually re-
duces its shape recoverability, and the effect of the included
parasite on the iRBC’s shape recoverability can be compen-
sated in the model without included parasites by simply
increasing the membrane viscosity.
SUPPORTING MATERIAL

One figure and Supporting Methods are available at http://www.biophysj.

org/biophysj/supplemental/S0006-3495(13)00791-1.
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1 Model formulations 

1.1 Dissipative particle dynamics 

Dissipative particle dynamics (DPD) is a mesoscale stochastic simulation method proposed by 

Hoogerbrugge and Koelman (1), and reformulated by Español and Warren (2) to ensure a thermal 

equilibrium state. It is widely applied to simulate complex fluid systems, such as multiphase flow, 

colloidal suspensions, and polymeric blends. In a DPD system, the simulation domain is represented 

by a system of particles, called DPD particles, and the interaction between any two particles is 

characterized by the DPD force ( DPD

ijf ), which consists of a conservative ( C

ijf ), a dissipative ( D

ijf ) and 

a random ( R

ijf ) forces,  

 DPD C D R

ij ij ij ij  f f f f . (1) 

The conservative force is related to the compressibility of fluid, and the dissipative force mainly 

determines the viscosity of fluid. The balance between the random and the dissipative forces 

maintains a constant temperature (specific kinetic energy) in the system. They are defined as (2)  

 ˆ( )C

ij i

C

ij ij jr f r , (2) 

 ˆ( )( )D D

ij ij ij ij ijij r   f r v r , (3) 

 ˆ( )R

ij ij ij i

R

i jj r dt f r , (4) 

where ij , 
ij  and 

ij  are coefficients to characterize the force strengths; ij  is a normally 

distributed random variable with zero mean and unit variance; dt  is the time step (in the context of 

stochastic differential equation); ( )C

ijr , ( )D

ijr  and ( )R

ijr  are weight functions; ij i j r r r , 

ij ijr  r , îj ij ijrr r , and ij i j v v v . The weight functions ( )C

ijr
 
and ( )D

ijr  are defined by  
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where 
cr  is the cut-off radius; s  is the exponent of the dissipative weight function. The weight 

function ( )R

ijr  satisfies 

 
2

( ) ( )D R

ij ijr r     ,  (7) 

to keep a constant Boltzmann temperature
Bk T  in the DPD system: 

 
2 2ij B ijk T  .  (8) 

1.2 Discrete cell model 

In the present discrete cell model, the whole cell is discretized into a system of DPD particles; the 

particles on the cell surface are connected into a viscoelastic triangular network representing the cell 

membrane. Hence, the membrane force 
M

if  acting on the thi  particle consists of the elastic (
Ela

if ) and 

viscous (
Vis

if ) parts,  

 
M Ela Vis

i i i f f f . (9) 

The elastic part is characterized by a total energy potential totalU , (3)  

 
Ela total
i

i

U



f

r
, (10) 

where  

 total in plane bending area volumeU U U U U    , (11) 

in which in planeU   is the in-plane energy for describing the stretching deformation, bendingU  the 

bending energy for the bending deformation, areaU  the area-constraint energy for the area 

conservation, and volumeU  the volume-constraint energy for the volume conservation. In the present 



work, the membrane particles are connected by nonlinear-worm like chains, and therefore the in-plane 

energy is defined as (4) 
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

 
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 




 , (12) 

where jl  and max

jl  are the current and maximum length of the 
thj  chain; Bk T  is the Boltzmann 

temperature; jp  is the persistence length; and jk  is a coefficient; 
cN  is the number of chains. It 

should be pointed out that the first part in Eq. (12) is attractive, but the second part repulsive to 

maintain a nonzero equilibrium length of each chain. The bending energy provides resistance to 

membrane wrinkle and distortion, (5) defined as 

   
1

1
cN

R

bending b j j

j

U k cos  


   , (13) 

where bk  is the bending coefficient; j  is the instantaneous angle between two adjacent triangles 

having the common 
thj  edge; R

j  is the spontaneous angle. The area conservation constraint is given 

by 

 

2 2

1

( ) ( )

2 2

t
des desN

ga tot tot la j j

area des des
jtot j

k A A k A A
U

A A

 
  , (14) 

where gak  and lak  are the global and local area constraint constants; totA  and jA  are the areas of the 

cell membrane and 
thj  triangle; 

des

totA  and des

jA  are the corresponding desired areas; tN  is the 

number of triangles on the cell membrane. The first part in Eq. (14) places a constraint on the global 

area of cell membrane, while the second part on the global area of each triangle. Note that the 

conservation of surface area is achieved by increasing total and local area constraint constants. 

Similarly, the volume conservation constraint is 

 

2( )

2

des

v tot tot
volume des

tot

k V V
U

V


 , (15) 

where vk  is the global volume constraint constant, totV  and 
des

totV  are the current and desired global 

volumes of the cell.  

The viscous part in Eq. (9) is modelled by the general fluid particle model, (6) in which a 

viscous component is introduced into each membrane chain,  



 
, ,

( , )

( )
j

c

D Vis R Vis

i ij ij

i j

Vis

N

 f f f , (16) 

where the subscripts i  and j  are the two endpoints of a chain; ,D Vis

ijf  is the dissipative part mainly 

determined the viscosity of cell membrane, (6) 

 , ˆ ˆ( )D Vis T C

ij ij ij ij ij    f v v r r , (17) 

where 
T  and 

C  are the dissipative parameters. In addition, a random part ,R Vis

ijf
 
is added in Eq. (16) 

to balance the temperature via a fluctuation-dissipation theorem (6), 

 
, 3

ˆ2 ( 2 [ ] )
3

C T
R Vis T S

ij B ij ij ijk T d tr d
 




  f W W I r , (18) 

where I  is the unit second-order tensor; [ ]ijtr dW  is the trace of a random matrix formed by 

independent Wiener increments ijdW ; 
S

ijdW  is the traceless symmetric part of ijdW .  

Fedosov et al. (3) conducted a linear analysis for a regular hexagonal network on the cell 

membrane, and derived the macroscopic shear modulus 
M

 

as 
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where the subscript ‘0’ refers to the stress-free state. The bending modulus 
M

 

is shown to be (3)  

 
2

3

M

bk  , (20) 

and the area dilution modulus 
M

 

as (3) 

 2M M

ga lak k    . (21) 

The membrane viscosity is estimated as (3) 

 
3

3
4

C
M T 

   . (22) 

2 Numerical methods 

At the initial state, the particle velocity is set by 



 
1

3 1i i

w i

T

N N m

 
  

 
v e , (23) 

where N
 
and wN  are the numbers of total particles and wall particles; ie  is a unit random vector. 

This velocity ensures that the initial system temperature is T . The particle acceleration is set to be 

zero. As a result, the DPD force DPD

ijf  and the viscous part 
Vis

if  
of membrane force are easily 

calculated. On the other hand, the initial state of cell is regarded as a stress-free state, such that the 

desired area ( des

jA  and 
des

totA ) and volume (
des

totV ) are set to be the values of initial area and volume of 

cell, as well as the equilibrium length ,0jl
 
and spontaneous angle R

j . Therefore, the elastic part of 

membrane force is also obtained. Subsequently, we use the modified velocity-Verlet algorithm (7) to 

solve the equation governing the particle motion, such that the location and velocity of each particle is 

updated.  

3 Dynamics in shear flow 

It has been shown that the cell models with and without included parasites can produce a reasonable 

stretching deformation and shape relaxation time for healthy and malaria-infected RBCs. In this 

section, we further study their dynamic behaviours in simple shear flow. Models with included 

parasites are much more complex to be implemented in numerical simulations of simple shear flow, 

because the rotation of rigid parasites should be considered. Therefore, numerical works on the 

malaria-infect RBC often adopted models without included parasites, such as Suresh et al.’s work (8, 

9), and Fedosov et al.’s work (10). Here, we also use the cell model without included parasite. The 

dynamical motions of a cell in shear flow are broadly classified into three types (11): tank-treading, 

swinging, and tumbling. However, Yazdani and Bagchi (12) pointed out that the swinging motion is 

more complex, and classified it into several types: swinging with tank-treading, breathing at zero 

inclination, breathing with swinging, and breathing with tumbling. We use this detailed classification 

to identify our simulation results shown in Fig. 1. At the same shear rate, hRBC and iRBC exhibit the 

different dynamical behaviours. The hRBC first inclines and gradually approaches to a steady state, 

known as the tank-treading motion, consistent with Yazdani et al.’s work (12). In this motion, the 

initial biconcave dimples are completely absent; both the deformed shape and its angle of inclination 

undergo some slight periodic oscillations. The rRBC exhibits a similar behaviour to the hRBC, but the 



biconcave dimples are not completely absent and the oscillations are obvious. This mode is called 

swinging with tank-treading motion (12). The tRBC undergoes a complex shape deformation, where 

the membrane folds toward the cell interior so as to form two concave cusp-like dimples at the tRBC 

ends. The folding is periodic, and the tRBC swings with a periodic angular oscillation. This behaviour 

is called breathing with swinging motion (12). The sRBC exhibits a similar behaviour to the tRBC, 

but the membrane folding is not so obvious and the sRBC undergoes a tumbling motion. This is called 

breathing with tumbling motion (12).   
 

Fig. 1 Dynamic behaviours of (a) hRBC, (b) rRBC, (c) tRBC and (d) sRBC in simple shear flow with the shear rate 

 ̇             . The snapshots are taken from 0 to 6.6 ms with the time interval of 0.508 ms.   
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