## A Novel Implicit Solvent Model for Simulating the Molecular

## Dynamics of RNA

Yufeng Liu,<sup>†</sup> Esmael Haddadian,<sup>‡</sup> Tobin R. Sosnick,<sup>§</sup> Karl F. Freed,<sup>¶\*</sup> and Haipeng Gong<sup>†\*</sup>



**Figure S1.** The influence of Debye-Hückle screening constant  $\kappa$  on the distance-dependent electrostatic screenings in our model. The dielectric function  $\epsilon(r)$  and the overall screening term in electrostatic calculation (Eq. 13),  $\exp(-\kappa r)/\epsilon(r)$ , are plotted in the panel (**A**) and (**B**), respectively, for various  $\kappa$  values.  $\kappa = 0$  (black), 0.1 (red), 0.15 (blue), 0.2 (cyan), and 0.4 (tan) correspond to the monovalent salt of 0, 0.1, 0.225, 0.4, and 1.6 M respectively.



Figure S2. The RNA duplex retains the A-form conformation in the implicit solvent simulation. (A) The trajectory RMSDs of the simulated molecules when aligned to the canonical A-form (black) and B-form (red) conformations respectively. (B-D) The structural snapshot taken from the implicit solvent simulation (B) shows higher degree of structural similarity to the canonical A-form RNA duplex (C) than to the canonical B-form RNA duplex (D).



**Figure S3.** Duplex bending and the disruption of terminal G-C base pairs in the explicit solvent simulation of the A-form RNA duplex. Both bent (**A**) and straight (**B**) helical conformations are observed in the trajectory for frames 247 and 370, respectively, in the explicit solvent simulation. The terminal G-C pairs are preserved (**C**) in the early stage (frame 0) but become broken (**D**) at late stages (frame 460) in the explicit solvent simulation. All unrelated atoms are neglected to emphasize the terminal nucleotides.



**Figure S4.** The Watson-Crick region of the SRL rRNA retains the A-form helical conformation in the implicit solvent simulation. (**A**) The trajectory RMSD of the Watson-Crick region (red) is greatly lower than that of the overall RNA molecule (black). (**B-D**) The structural snapshot taken from the implicit solvent simulation (**B**) contains a stable Watson-Crick region (cyan), which is structurally similar to both the canonical A-form RNA duplex (**C**) and the corresponding region in the crystal structure of the SRL rRNA (**D**).



**Figure S5**. RMSD time series for the explicit (black) and implicit (red) simulations without explicit  $Mg^{2+}$  ions. Both SRL rRNA (left) and tRNA (right) simulations for implicit systems yield RMSDs remarkably larger than for explicit ones, which indicates the necessity to include  $Mg^{2+}$  in our implicit solvent model.



**Figure S6.** RMSD time series for tRNA with or without the five unpaired nucleotides located at the 3'-end. As labeled in the figure, the RMSD of entire molecule in implicit solvent (red) significantly decreases by  $\sim 1$  Å when disregarding the residues at the 3'-end (green). On the contrary, explicit solvent simulations display little reduction of the RMSD if the unpaired terminal residues of the 3'-end are neglected (blue vs. black).



**Figure S7.** The overall coordination numbers around the seven  $Mg^{2+}$  in the simulation of tRNA using implicit (red) and explicit (black) solvent.



**Figure S8.** Structural disruption by  $Mg^{2+}$  in the implicit solvent simulation. Nine nucleotides (nucleotides A9, U11, U12, A21, A22, A23, A24, G45 and A46) as well as a nearby  $Mg^{2+}$  ion (residue index 79) are displayed here. (**A**) In the crystal structure, the  $Mg^{2+}$  stays besides the nucleotides and does not perturb the two base triplets (A9-A23-U12 and A9-U11-A24) which are stabilized by 7 hydrogen bonds (red dashed lines). (**B**) After 50 ns simulation, the ion is squeezed into the nucleotide core and thus breaks the previous triplets, leading to the reformation of two weakly interacting triplets (U12-A23-G45 and U11-A24-G45) with only 4 connecting hydrogen bonds. Thus, the overall orientation changes greatly (both A and B are taken from structurally aligned tRNA conformations). Additionally, the A9-G45 stacking is disrupted, leaving G45 unpacked, and A21 and G22 are also not well packed after simulation.

| Atom | gi        | Atom | gi              |
|------|-----------|------|-----------------|
| С    | 0.001624  | O2   | $-0.033022^{*}$ |
| CA   | -0.014606 | O2-  | -1.402429*      |
| СТ   | -0.005197 | OA   | -0.075714       |
| Ν    | -0.093329 | OH   | -0.078084       |
| N2   | -0.065938 | OS   | -0.084605       |
| NC   | -0.085392 | Р    | 0.007208        |
| 0    | -0.069924 |      |                 |

**Table S1.** Weight  $g_i$  of each atom type i for evaluating the solvation energy with the SASA model. Weights are obtained from fits to solvation energies.

The atom-type denotations are as follows:

C: carbonyl carbon

CA: conjugated carbon in the base

CT: sp3 hybridized carbon

N: glycosyl nitrogen

N2: NH2

NC: conjugated nitrogen in the base

O: carbonyl oxygen

O2: double bonded oxygen in carboxylate or phosphate

O2-: negatively charged oxygen in the carboxylate or phosphate

OA: carbonyl oxygen in the base

OH: hydroxyl oxygen

OS: ether oxygen

P: phosphus.

<sup>\*</sup>Since O2 and O2- are chemically identical, their  $g_i$  values are set to be the average of the fitted data, which gives  $g_i$  of -0.7177255.

| Sustam             | RMSD in the last 1ns (Å) |                          |  |
|--------------------|--------------------------|--------------------------|--|
| System             | With Mg <sup>2+</sup>    | Without Mg <sup>2+</sup> |  |
| Our model          | $5.13 \pm 0.16$          | $9.94 \pm 0.32$          |  |
| $GB_{HCT}$         | $14.76 \pm 0.75$         | $15.92 \pm 0.39$         |  |
| GB <sub>OBC1</sub> | $20.87 \pm 0.92$         | $19.61 \pm 0.76$         |  |
| GB <sub>OBC2</sub> | $14.51 \pm 0.74$         | $17.17 \pm 0.58$         |  |

**Table S2.** Comparison of our model with various GB models for simulations of tRNA.

RMSDs are calculated with respect to the crystal structure of tRNA for structural snapshots in the last 1 ns of the 10 ns trajectories with and without  $Mg^{2+}$  ions.

| Model compound      | Solvation energy (kcal/mol) |
|---------------------|-----------------------------|
| trimathulhosnhota   | و ۲۵ (KCal/IIIOI)           |
| triethylphosphate   | -0.70                       |
| tripropylphosphate  | -7.80                       |
| dihydrogenphosphate | -68.00                      |
| phosphine           | -06.00                      |
| prospinie           | -4.70                       |
| A-methylpyridine    | -4.94                       |
| 4-incuryipyridine   | -4.74                       |
| 2-methylpyraine     | -5.57                       |
| 2-ethylpyrazine     | -5.51                       |
| aniline             | -5.51                       |
| 4-methylaniline     | -5.55                       |
| 3-aminoaniline      | -9.92                       |
| benzene             | -0.87                       |
| 1-methylthymine     | -0.37                       |
| 9-methyladenine     | -13.60                      |
| methanol            | -5.11                       |
| ethanol             | -5.11                       |
| cyclopentanol       | -5.01                       |
| dimethylether       | -1.92                       |
| diethylether        | -1.72                       |
| tetrahydrofuran     | -3.47                       |
| tetrahydropyran     | -3.12                       |
| 2-methoxyethanol    | -5.12                       |
| acetamide           | -9.71                       |
| N-methylacetamide   | -10.00                      |
| benzamide           | -10.90                      |
| urea                | -13.80                      |
| 1 4-dioxane         | -5.05                       |
| acetone             | -3.85                       |
| 2-butanone          | -3 64                       |
| ethanal             | -3.50                       |
| propanal            | -3 44                       |
| formic              | -78.00                      |
| acetate             | -80.00                      |
| aceticacid          | -6 70                       |
| propionate          | -78.00                      |
| propionicacid       | -6.47                       |
| benzoicacid         | -7.90                       |
| benzoate            | -73.00                      |
| methane             | 2.00                        |

**Table S3.** The model compounds and their experimental solvation energies used in our model to derive the best estimates of  $g_i$  values for various atom types in RNAs.

| ethane       | 1.83 |
|--------------|------|
| cyclopentane | 1.20 |