Supplementary Information

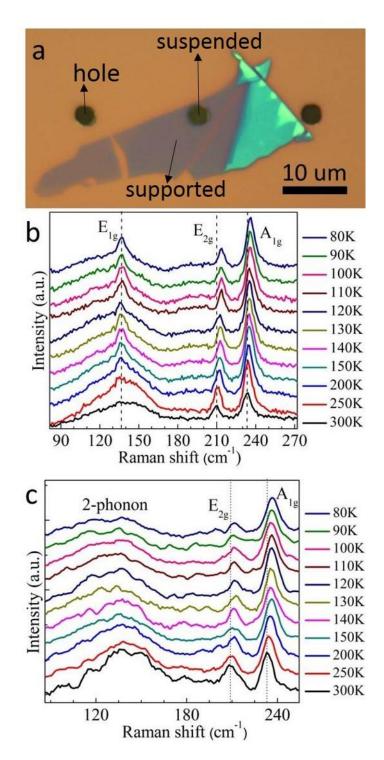
Contrast and Raman spectroscopy study of single- and few-layered charge density wave material: 2H-TaSe₂

Parviz Hajiyev^{1†}, Chunxiao Cong^{2†}, Caiyu Qiu ², Ting Yu ^{1, 2, 3}*

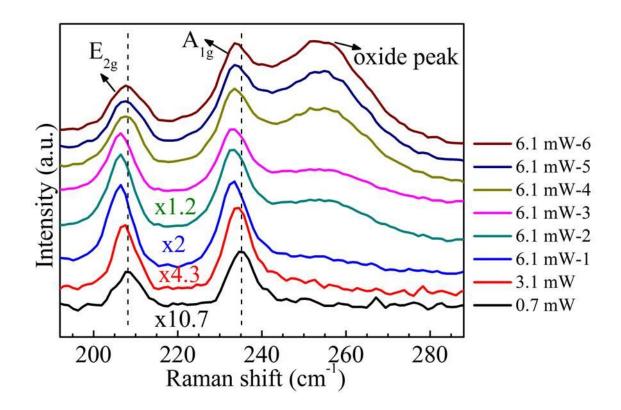
¹ Graphene Research Centre, National University of Singapore, 117546 Singapore

² Division of Physics and Applied Physics, School of Physical and Mathematical Sciences,

Nanyang Technological University, 637371 Singapore


³ Department of Physics, Faculty of Science, National University of Singapore, 117542
Singapore

† Equally contributed


*Address correspondence to yuting@ntu.edu.sg

There are 2 figures in this Supplementary Information section.

Supplementary Figures S1 depicts Raman spectra of supported and suspended part of the same 3-layer TaSe₂ sample.

Supplementary Figure S1 | **This graph shows low temperature Raman measurement of suspended and supported 3-layer TaSe₂.** (a) Optical image of suspended and supported trilayer TaSe₂ (b) Low temperature Raman measurement of 3-layer supported TaSe₂. (c) Low temperature Raman measurement of 3-layer suspended TaSe₂.

Supplementary Figure S2 | This graph shows burning stages of bulk TaSe₂. Until 3.1 mW laser power, the intensity of the E_{2g} peak is roughly ~80% of that of the A_{1g} peak. At 6.1 mW (blue line) laser power, it shows the pre-burn stage where the intensity of the E_{2g} peak becomes as strong as or even stronger than that of the A_{1g} peak. If we repeat the same measurement with same power, we observe emergence of broad oxide peak at around ~255 cm⁻¹. Appearance of oxide peak accompanies sample color change due to burning as well. Red-shift due to laser induced local heating can be also observed when power increased from 0.7 mW to 6.1 mW.

Referring to Supplementary Figure S2, we conclude that the E_{2g} intensity must be kept lower than that of the A_{1g} peak for healthy Raman spectra of $TaSe_2$ samples. If the E_{2g} peak intensity is as strong as or stronger than the A_{1g} peak intensity, this must accepted as an indication of pre-burn stage and laser power must be decreased.