The mechanism for activation of GTP hydrolysis on the ribosome

Supplementary materials and methods

Rebecca M. Voorhees*, T. Martin Schmeing*‡, Ann C. Kelley, and V. Ramakrishnan†

MRC Laboratory of Molecular Biology, Cambridge, UK, CB2 0QH *These authors contributed equally to this work ‡ Current address: Biochemistry Department, McGill University, Bellini Life Sciences Complex Room 465, 3649 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 0B1. Email: martin.schmeing@mcgill.ca †To whom correspondence should be addressed. E-mail: ramak@mrc-lmb.cam.ac.uk

Materials and Methods

Ribosomes from *Thermus thermophilus* harboring a C-terminal truncation of protein L9(*1*) were purified as previously described(*2*) from cells grown at the Bioexpression and Fermentation Facility at the University of Georgia. mRNA with the sequence 5'GGCAAGGAGGUAAAAAUGUUCUGGAAA was purchased from Dharmcon (Thermo Scientific). Trp-tRNA^{Trp} was prepared as described (*3*).

Complexes of trp-tRNA^{Trp}-GDPCP-70S ribosome were prepared and purified by Ni-NTA affinity purification as described (*3*) with the exception that the antibiotic paromomycin was included in the reaction mixture to increase sample yield. The trptRNA^{Trp} used in this study contained a G24A mutation, which increased the reproducibility of crystal growth. On cognate mRNA, it is known that this tRNA behaves identically to wild type trp-tRNA^{Trp}(*4*) and crystal structures of G24A and tRNA^{Trp} and bound to the ribosome on the cognate codon are extremely similar (*3*).

Crystals were grown as described(5) by vapor diffusion in sitting drop trays by addition of 3 μ L reservoir (100 mM MES pH 6.3, 60-100 mM KCl, 50 mM sucrose, 1% glycerol, and 5.3% (w/v) PEG20K) to 3 μ L of the 70S-TC sample, and cryo-protected stepwise to a final solution of 100 mM MES pH 6.3, 100 mM KCl, 50 mM sucrose, 1.1% glycerol, 6.0% (w/v) PEG20K, 15 mM MgOAc₂, and 30% (w/v) PEG400 before being frozen by plunging into liquid nitrogen.

Data was collected at beamline ID 14-4 of the European Synchrotron Light Source(6), and integrated and scaled using XDS(7). These crystals are in space group P2₁, with unit cell dimensions a=197.6 b=274.9 c=282.5, β =91.8. This crystal form is related to our previous crystals (5) (3), which were also in P2₁, but the length of the a axis is doubled in the previous form. The two forms are related by a small translation of the ribosome, which converts the non-crystallographic symmetry in the larger unit cell into crystallographic symmetry, leading to only one ribosome molecule in this smaller asymmetric unit.

The structure was determined by molecular replacement in CNS(δ), using a ligandfree ribosome as the search model. Iterative rounds of model building and refinement were carried out in coot(9) and CNS(δ) as previously described(5). To avoid contamination of R_{free}, the R_{free} set was inherited from our previous data with the conversion h_{new}=l_{old}/2, k_{new}=-k_{old}, l_{new}=h_{old} to account for the change in unit cell. All figures were made in Pymol(10).

Supplemental Figures

fig s1. Binding the ribosome induces a distortion in the 3' end of the aminoacyl-tRNA (green—activated structure, grey—isolated TC) that disrupts interactions between the Switch I loop of EF-Tu (red—activated, grey—TC) and the tRNA backbone.

fig s2. In the activated structure of EF-Tu bound to the ribosome, the Switch I loop (red) is in a well ordered and located in the GTPase center. We see no evidence that a disordered or radically remodeled Switch I (pink)(*11*) is required for GTPase activation and hydrolysis on the ribosome.

fig s3. Several interactions between EF-Tu and the GTP stabilize the β and γ phosphates that are important for GTP hydrolysis. Additionally, several interactions between the Switch I residue Thr61 and the γ phosphate explain how release of Pi results in the disordering of Switch I.

fig s4. A small rotation in the G-domain of EF-Tu relative to domains 2 and 3 is observed between the GDPCP (red) and kirromycin (pink) stabilized structures bound to the ribosome.

Data collection	70S-TC-GDPCP
	(merged from 3 crystals)
Space Group	P21
Cell dimensions	
<i>a, b, c</i> (Å)	$a=197.6 \ b=274.9 \ c=282.5$
α, β, γ (°)	α=90.0 β=91.8 γ=90.0
Resolution (Å)	50-3.1 (3.2-3.1) * [†]
R_{sym} (%)	22.8 (126.3)
$I/\sigma I$	6.98 (1.16) *
Completeness (%)	98.8(89.6)
Redundancy	5.2 (4.3)
Refinement	
Resolution (Å)	50.0-3.1 [†]
No. unique reflections	537024
R_{work}/R_{free}	23.1/26.8
No. atoms	
RNA	102,537
Protein	50,602
<i>B-factors</i>	
RNA	83
Protein	87
R.m.s deviations	
Bond lengths (Å)	0.007
Bond angles (°)	1.2

 Table s1. Summary of crystallographic data and refinement

* $I/\sigma I = 1.88$ at 3.2 Å resolution (using a bin from 3.4-3.2 Å resolution) † $R_{work}/R_{free} = 33.2/35.4$ for data from 3.2-3.1 Å resolution

References

- 1. Y. G. Gao et al., Science **326**, 694 (2009).
- 2. M. Selmer et al., Science 313, 1935 (2006).
- 3. T. M. Schmeing, Voorhees, R.M., Kelley, A.C., and V. Ramakrishnan, *Submitted* (2010).
- 4. L. Cochella, R. Green, *Science* **308**, 1178 (2005).
- 5. T. M. Schmeing et al., Science **326**, 688 (2009).
- 6. A. A. McCarthy et al., J Synchrotron Radiat 16, 803 (2009).
- 7. W. Kabsch, J. Appl. Cryst. 26, 795 (1993).
- 8. A. T. Brünger et al., Acta Crystallogr D Biol Crystallogr 54, 905 (1998).
- 9. P. Emsley, K. Cowtan, Acta Crystallogr D Biol Crystallogr 60, 2126 (2004).
- 10. W. L. DeLano, http://www.pymol.org (2006).
- 11. E. Villa et al., Proc Natl Acad Sci US A 106, 1063 (2009).