Supporting Information

Dicopper(II) and Dizinc(II) Complexes with Nonsymmetric Dinucleating Ligands Based on Indolo[3,2-*c*]quinolines: Synthesis, Structure, Cytotoxicity and Intracellular Distribution

Michael F. Primik, # Simone Göschl, # Samuel M. Meier, # Nadine Eberherr, # Michael A. Jakupec, # Éva A. Enyedy,^{‡,†} Ghenadie Novitchi, [§] Vladimir B. Arion*^{,#}

E-mail: vladimir.arion@univie.ac.at

Institute of Inorganic Chemistry, University of Vienna, Währinger Str. 42, A-1090 Vienna, Austria

‡Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720, Szeged, Hungary

†HAS-USZ Bioinorganic Chemistry Research Group, Dóm tér 7, H-6720, Szeged, Hungary

§ Laboratoire National des Champs Magnétiques Intenses-CNRS, 25 Avenue des Martyrs, F-38042 Grenoble Cedex 9, France

Synthesis and NMR characterization of starting compounds and intermediates

Indolo[3,2-*c*]quinoline precursors were synthesized as described by Filak et al. (*Organometallics* **2011**, *30*, 273–283) and Primik et al. (*Inorg. Chem.* **2010**, *42*, 11084–11095).

5*H*-Indolo[3,2-*c*]quinolin-6(11*H*)-one

A mixture of isatin (10.2 g, 69.3 mmol) and 2-aminobenzylamine (9.0 g, 73.7 mmol) in glacial acetic acid (85 mL) was heated at 144 °C for 4 h under argon atmosphere. The solution was allowed to cool to room temperature generating a brown precipitate which was filtered, washed with cold acetic acid $(3 \times$ 5 mL) and water (twice 20 mL), and dried at 95 °C *in vacuo*. Yield: 12.3 g (80%) . ¹H NMR 500.13 MHz (DMSO- d_6 , δ_H , ppm): 12.55 (s, 1H, N11), 11.42 (s, 1H, N5), 8.23-8.18 (m, 2H), 7.63 (d, 1H, ³J = 7.9 Hz), 7.54 – 7.45 (m, 2H), 7.40-7.35 (m, 1H), 7.33-7.25 (m, 2H).

6-Chloro-11*H*-indolo[3,2-*c*]quinoline

A suspension of $5H$ -Indolo[3,2-*c*]quinolin-6(11*H*)-one (3.0 g, 13.0 mmol) in POCl₃ (40 mL) was refluxed at 130 °C for 26 h under argon atmosphere. The solution was allowed to cool to room temperature and was poured onto ice (300 mL) and slowly neutralized with solid sodium hydroxide until a pH of 7–8 was reached. The resulting aqueous suspension was extracted with ethyl acetate (5 \times 200 mL). The combined organic phases were washed with 5% NaHCO₃ aqueous solution (2×250 mL) and dried over $Na₂SO₄$. The solvent light beige product was isolated by removal of the solvent under reduced pressure and dried *in vacuo* overnight. Yield: 3.1 g (95%). ¹H NMR 500.13 MHz (DMSO- d_6 ,

 δ_H , ppm): 13.13 (s, 1H, N11), 8.57 (d, 1H, ³ $J = 8.2$ Hz), 8.45 (d, 1H, ³ $J = 7.8$ Hz), 8.07 (d, 1H, ³ $J = 8.3$ Hz), 7.84-7.73 (m, 3H), 7.61 – 7.56 (m, 1H), 7.46 – 7.41 (m, 1H).

6-Hydrazinyl-11*H*-indolo[3,2-*c*]quinoline

To 6-chloro-11*H*-indolo[3,2-*c*]quinoline (3.0 g, 11.9 mmol) hydrazine hydrate (50 mL) as reagent and solvent was added and the reaction mixture heated at 115 °C for 24 h under argon atmosphere. After cooling to room temperature, the resulting beige precipitate was filtered off, washed with water (2×10) mL), ethyl acetate and dried *in vacuo*. Yield: 2.8 g (95%). ¹H NMR 500.13 MHz (DMSO- d_6 , δ_{H} , ppm): 12.48 (bs, 1H, N11), 8.35 (d, 1H, $3J = 8.2$ Hz), 8.28 (d, 1H, $3J = 7.8$ Hz), 8.03 (bs, 1H, N12), 7.76 (d, 1H, ${}^{3}J$ = 7.8 Hz), 7.65 (d, 1H, ${}^{3}J$ = 7.3 Hz), 7.57-7.51 (m, 1H), 7.43 – 7.37 (m, 1H), 7.36 – 7.30 (m, 1H), 7.29-7.23 (m, 1H), 4.73 (bs, 1H, N13).

Figure S1. UV–vis spectra of 10 μ M solutions of EtoOC **HL**^{COOEt} (red/solid trace), 1 (blue/shortly dashed trace) and **2** (black, long dashed trace) in methanol.

Figure S2. UV−vis absorbance spectrum of the ligand **EtOOCHLCOOEt** (dashed trace) and its changes by the addition of copper(II) (solid traces) in methanol ($c_L = 250 \mu M$; $c_{Cu} = 0 - 562.5 \mu M$; $T = 298 \text{ K}$; $l =$ 1 cm).

Figure S3. The ESI mass spectra in the positive ion mode of **1** (A) and **2** (B) are shown. Complex **2** does not ionize in the positive ion mode. Positive ion mode (HV –4.5 kV, RF level 89%, trap drive 74.4, dry temperature 250 °C, nebulizer 8 psi, dry gas 6 L/min and average accumulation time 144 µs), diluted with water : methanol (50 : 50).

Figure S4. Details on isotopic distributions of the major detected mass signals of **1** (A) and **2** (B) and respective simulations (*grey*).

Figure S5. The impact of lowering the pH of the incubation solution is shown for **1** (A) and **2** (B). The control mass spectrum is recorded after 24 h of incubation, followed by acidification of solutions with formic acid and immediate measuring thereafter. Acidic conditions seem to lead to release of one metal-equivalent. Negative ion mode (HV 4.5 kV, RF level 89%, trap drive 63.8, dry temperature 250 °C, nebulizer 8 psi, dry gas 6 L/min and average accumulation time 2 ms), diluted with water : methanol : formic acid (50 : 50 : 0.2).

Figure S6. Fluorescence excitation (λ_{em} = 470 nm) and emission (λ_{ex} = 395 nm) spectra of 10 μ M solutions of **EtOOCHL**^{COOEt} (dashed traces) and **2** (solid traces) at physiological pH (20 mM HEPES buffer, 1% v/v DMSO).

Figure S7. Concentration-effect curves of **EtOOCHLCOOEt**, complexes **1** and **2**, in the human cancer cell lines A549 (A), CH1 (B) and SW480 (C), determined by the MTT assay using continuous exposure for 96 h.

	ion	m/z	$m_{\rm theor}$
ESI^+	$[(L-Me) + H^+]^+$	512.17 ± 0.04	512.19
	$[L + H^+]^+$	526.21 ± 0.01	526.21
	unidentified	540.12 ± 0.01	540.22
	$[Cu(L) + H^+]^+$	587.04 ± 0.03	587.12
	$[Cu2(L-Me)2]2+$	634.90 ± 0.02	635.02
	$[Cu2(L-Me)(OH) + H+]$ ⁺	651.92 ± 0.03	652.03
	$\left[\text{Cu}_2(\text{L})(\text{OH})\right]^+$	665.97 ± 0.01	666.05
	$[Cu2(L)(CH3O)]+$	679.97 ± 0.02	680.06
	$[Cu2(L-Me)(CH3O)(HOAc)+H+]+$	711.92 ± 0.06	712.05
ESI	$[L-Me]$ ⁻	510.22 ± 0.04	510.14
	$[L-H^{\dagger}]^-$	524.24 ± 0.01	524.19
	unidentified	538.25 ± 0.02	538.21
	$[Cu(L-Me)]$ ⁻	571.10 ± 0.06	571.09
	$[Zn(L-Me)]$ ⁻	572.13 ± 0.01	572.09
	$[Cu(L) + H^+]^-$	585.15 ± 0.02	585.11
	$[Cu2(L-Me)(OH)+]$ ⁻	650.04 ± 0.02	650.02
	$[Zn_2(L) - H^+]$ ⁻	654.06	654.03
	$[Zn_2(L-Me)(OH)]$	656.04 ± 0.01	656.01
	$[Cu2(L)(OH) – 2H+]$ ⁻	664.05	664.03
	$[Zn_2(L) - OH]$ ⁻	668.05	668.03
	$[Zn_2(L-Me)(OAc)]$	696.03	696.01

Table S1. The experimental masses and their assignment.