SUPPLEMENTAL MATERIAL

A new telomerase RNA element that is critical for telomere elongation.

Nancy Laterreur¹, Sébastien Eschbach², Daniel Lafontaine² and Raymund J. Wellinger¹.

1. Department of Microbiology and infectious diseases

2. Department of Biology

RNA Group

Université de Sherbrooke

3201, rue Jean-Mignault

Sherbrooke, Québec, Canada

J1E 4K8

Tel: 819 821 8000 ext 75214

Fax: 819 820 6831

Address correspondence to Raymund J. Wellinger (raymund.wellinger@usherbrooke.ca)

SUPPLEMENTARY Tables

Table S1: Yeast strains

Table S2: Plasmids

Table S3 : Primers

SUPPLEMENTARY Figure Legends

Figure S1. Schematic display of all stem IVc RNA structures.

MFold predicted secondary structures of the stem IVc arm of the Tlc1 RNA and key elements. Top right: schematic representation of the predicted secondary structure of the entire RNA. Highlights are as in Figure 1: circled region indicates location of stem IVc. Blue: CS2 element. Green: CS2a element. Stars (*): positions of co-varying base pairs. Red: positions and mutated nucleotides of the corresponding *TLC1* alleles.

Figure S2. RNA structure analyses by SHAPE.

SHAPE modification performed on *in vitro* transcribed RNA comprising the stem-loop IVc substructure of wild-type (WT), or mutant OPM, SA5 and SA3 sequence. First lane of each panel: reactions were performed in absence of NMIA (No NMIA). Last lane of each panel: reactions were done in presence of NMIA (+ NMIA). U, C, G and A represent sequencing lanes on the WT panel; only lanes representing U and C were loaded on the OPM, SA5 and SA3 gels. Predicted secondary structures of the WT and the SA5 mutant are shown on the left for reference. Green nucleotides: CS2a element. Red nucleotides: altered positions. Diagnostic nucleotide positions are indicated on the right of each panel. Arrow indicates "strong stop" at positions 606/607. These nucleotides, for unknown reasons, cause a strong stop in the RTreaction, even in the absence of the NMIA compound (see left most lanes).

Figure S3. Normal telomere length in cells harbouring the *tlc1-OPC* **allele**.

Telomere length analysis of genomic DNA extracted from NLYH80 cells expressing WT or the *tlc1-OPC* allele. Three independent clones were tested for the OPC mutant. Lane 1 (M): endlabeled 1 Kb DNA ladder. Lanes 2 and 3: WT (SGY40) and *yku70* \triangle *(SGY42)* controls,

Supplemental material page 3

respectively. Lanes 4-6: NLYH80 + p*TLC1* WT. First lane of each triplet contains DNA from cells expressing both the *tlc1-OPC* allele and the complementing WT *TLC1* plasmid pAZ1. Other two lanes of each triplet contain DNA from cells expressing only the *tlc1-OPC* allele grown for 65 and 105 generations, respectively.

Figure S4. Tlc1 RNA expression levels, its localization and co-immunoprecipitation with Est1.

(A) Top: Northern blot analysis of total RNA extracted from the NLYH80, BY4705 (WT) and *tlc1* strains. Lanes 1-5 contain total RNA extracted from NLYH80 cells expressing the indicated *TLC1* alleles. Lane 6: total RNA extracted from a WT strain. Lane 7: total RNA extracted from NLYH80 that has lost the WT complementing *TLC1* plasmid pAZ1. **(B)** Detection of the Tlc1-RNA in WT, *tlc14*, *est14* and *ASL* expressing cells by FISH assay. DAPI panels: DNA staining. *TLC1* panels: Tlc1-RNA visualized with Cy3-labeled probes (see supplementary table 3 for sequences). Merge panels: merge of DAPI and Cy3 channels. The same intensity levels were set for all except the Normarski images. Scale bar = 500 nm. **(C)** RT-PCR analysis of Est1 binding to WT, ΔSL and $\Delta SL+IL$ Tlc1 RNAs. After immunoprecipitation of $HA₃$ -Est1, RT-PCR was performed with the primers indicated in Supplementary Table 3. NLYH80 strain was transformed with both the indicated *TLC1* expressing plasmids (WT, ΔSL and ΔSL +IL) and a smaller form of *TLC1*, *tlc1* Δ 148-440, that serves as an internal control (I.C.) for Est1-binding. RNAs extracted from the input and the post-IP flowthrough (FT) were also analyzed as indicated. RNAse treatments (+ lanes) of all samples in parallel served to control for unspecific amplifications or DNA contamination.

SUPPLEMENTARY References

- 68. Gravel, S. and Wellinger, R.J. (2002) Maintenance of double-stranded telomeric repeats as the critical determinant for cell viability in yeast cells lacking Ku. *Mol Cell Biol*, **22**, 2182-2193.
- 69. Chartrand, P., Bertrand, E., Singer, R.H. and Long, R.M. (2000) Sensitive and highresolution detection of RNA in situ. *Methods Enzymol*, **318**, 493-506.
- 70. Lue, N.F. and Xia, J. (1998) Species-specific and sequence-specific recognition of the dG-rich strand of telomeres by yeast telomerase. *Nucleic Acids Res*, **26**, 1495-1502.