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Effects of Cross-Validation Routine 

The results presented in the main text which use 20-fold cross validation for the generation of test 

predictions, are an estimate of predictive power given one already has some mutant information on the 

complex in question to train upon. This type of cross validation is not a valid estimate of the 

generalization ability on an unseen complex. Therefore, two additional cross-validation mechanisms 

were also applied; Leave-Complex-Out CV (LCO-CV), where all mutations of a complex are left out as a 

test set and Leave-Homology-Out CV  (LHO-CV); a more stringent form of cross-validation which 

accounts for homology and interface similarity as suggested in [1, 2]. The PCCs of the test predictions 

with ΔKoff, of the two CV routines, are shown in Figure S3. 

 

Figure S3. PCCs for Off-Rate Prediction Models with 713 off-rate mutant dataset from SKEMPI. Leave-Complex-Out CV(LCO-CV), Leave-Homolgy-Out CV (LHO-CV) 

and LCO-CV for complex which undergo minimal to no conformational changes with I_RMSD < 1.5 Å as defined in [3]. The models differ by their features sets. 

First 6 use hotspot descriptor sets, followed by molecular descriptor set model (Molecular), and models which combine both (+Mol). 

Keeping in mind that 20-Fold CV results for models are at R > 0.7, the LCO-CV and LHO-CV, the models 

severely over-fit. In essence, the predictive ability of the hotspot descriptors such as 

HSEner_PosCoopRFSpot (|R|=0.57), Int_HS_EnergyHotpoint1 (|R|=0.57) and SuppHSEnergyKFC2a (|R|=0.62) is 

being impeded by the learning model and noise from other features.  It is important to note that the 

LHO-CV might not be well suited for certain practical purposes. For example, if one wishes to be able to 

predict mutations on an enzyme inhibitor complex, it would be natural to have such complexes in the 

training set, unlike what is actually done here in LHO-CV. The largest amount of over-fitting is observed 

for the molecular descriptor model, which is alleviated with the hotspot descriptor models and In both 

CV mechanisms, the correlations achieved by the hotspot descriptor models, is higher than that 

achieved by the molecular descriptor set model. 
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To understand potential reasons behind the large reduction in prediction accuracies for LCO/LHO-CV 

mechanisms, LCO-CV was also performed on the subset of 14 complexes and 265 mutations which show 

little to no conformational change. It is observed that the reduction in our ability to model the effects of 

mutations on unseen/unrelated is largely affected by conformational changes. For example for 

RFSpot_KFC2Off-Rate, the correlation achieved is as high as 0.8 when limited to rigid complexes, even 

though LCO-CV is being performed.  

To further investigate potential differences in complexes across LHO folds, models are built for 

mutations only within a fold and the most important features are highlighted and compared to the 

features from models built on other LHO folds. Genetic Algorithm Feature Selection (GA-FS) is used to 

build such specialized off-rate prediction models and both linear and non-linear models are investigated. 

Table S9 summarizes the results of the GS-FS runs, the complexes within each set and the number of 

mutations per set. The PCCs with ΔKoff confirm that predictions on mutations where information from 

related complexes can be exploited may be highly accurate. 

Table S9. Specialized Feature Selection Models for related sets of complexes. The PCCs shown are an average over the Leave-One-Out Cross Validation (LOO-CV) 

prediction results over 50 runs. LOO-CV results are an outer-wrapper validation loop, whereas an inner-wrapper validation loop is used to optimize the feature 

set and SVM Cost and gamma parameters. 

SET_IDs SET1 SET2 SET3 SET4 SET5 SET6 SET7 SET8 SET9 SET10 SET11 

GS-FS (SVM) PCC with ΔKoff 0.55 0.89 0.66 0.97 0.94 0.91 0.84 0.75 0.71 0.92 0.68 
GS-FS (LR) PCC ΔKoff 0.47 0.86 0.49 0.95 0.92 0.85 0.77 0.72 0.68 0.79 0.63 

            
Mutation Count 58 62 79 39 74 87 63 36 84 100 31 

PDB_IDs 1A22_A_B 1A4Y_A_B 1B2S_A_D 1CBW_FGH_I 1DAN_HL_UT 1EMV_A_B 1FC2_C_D 1IAR_A_B 1JRH_LH_I 1JTG_A_B 1KTZ_A_B 

  1Z7X_W_X 1B2U_A_D 1GL0_E_I  1FR2_A_B 1LFD_A_B  1NMB_N_LH  1REW_AB_C 

   1B3S_A_D 1GL1_A_I  2GYK_A_B 1MAH_A_F  2I26_N_L  2QJ9_AB_C 

   1BRS_A_D 1TM1_E_I  2VLN_A_B 1MQ8_A_B  2VIR_AB_C  2QJA_AB_C 

   1X1W_A_D 2FTL_E_I  2VLO_A_B 2AJF_A_E  2VIS_AB_C  2QJB_AB_C 

   1X1X_A_D 2SIC_E_I  2VLP_A_B 2B42_A_B  2VLJ_ABC_DE   

      2VLQ_A_B 2GOX_A_B  2VLR_ABC_DE   

      2WPT_A_B 3D5R_A_C  3HFM_HL_Y   

       3D5S_A_C     

       3BP8_A_C     

       3BK3_A_C     

 

The Features that make it to the final models (Figure S4) indicate a heterogeneity set of features 

employed for each set of related complexes, and no one-feature-fits-all may be identified. This again 

may contribute to the reduction in PCCs when using LHO-CV mechanisms, as mutations on unseen 

complexes may be better predicted using features which were not prominent in the training set 

mutations. Biases related to different experimental methods from which the ΔKoff of the mutations 

where calculated are also known to have significant effects on the prediction of binding free energies [4, 

5] and may also play a role in the reduction of accuracy when using LHO- and LCO-CV mechanisms 
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Figure S4 LEFT: GA-FS (LR), RIGHT: GA-FS (SVM). The colour bar indicates the percentage number of times the given feature made it to the feature set of the final 
model after a GA-FS run. Features shown are those which make it to the final model more than 50% of the time for at least one set on the x-axis. 
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