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Supplementary Methods

Nondimensionalization

The equations in the main text are non-dimensionalized to simplify the

system and improve numerical stability using the same approach as our

previous model (Barrett et al., 2012). The variables were scaled such that

cO2,i(t) = CO2,i(T )/ĈO2
; cmrO2

(t) = CMRO2
(T )/ĴO2

;

fi(t) = Fi(T )/F̂ ; gi = Gi/Ĝ;

jO2,i(t) = JO2,i(T )/ĴO2
; nO2

(t) = NO2
(T )/N̂O2

;

pO2,i(t) = PO2,i(T )/P̂O2
; t = T/T̂ ;

vi(t) = Vi(T )/V̂ ; vt = Vt/V̂ .

(S.1)

We defined the scales as

ĈO2
= CO2,ref ; F̂ = F ∗; Ĝ = N̂O2

/P̂O2
T̂ ;

ĴO2
= N̂O2

/T̂ ; N̂O2
= ĈO2

V̂ ; P̂O2
= PO2,ref ;

T̂ = V̂ /F̂ ; and V̂ =
∑

3

i=1
V ∗

i

(S.2)

where CO2,ref and PO2,ref are reference values for oxygen concentration and

partial pressure, F ∗ is the flow at baseline, and
∑

3

i=1
V ∗

i is the total volume

of the three compartments at baseline. Derived variables or parameters not

specifically mentioned in Equation (S.1) are nondimensionalized using the

scale with the correct dimensions.

CMRO2 Stimulus

The CMRO2 stimulus, st(t), is described by the piecewise function

st(t) =















sup(t), t < t0 + τup

sdecay(t), t0 + τup ≤ t ≤ t0 + tstim

sdown(t), t > t0 + tstim

(S.3)
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where:

sup(t) =
1

2
s∗up

[

1 + erf

(

t− [t0 + τup/2]

32−1/2τup

)]

; (S.4a)

sdecay(t) =
(

s∗up − s∗
)

exp

(

t0 + τup − t

τdecay

)

+ s∗; (S.4b)

sdown(t) = send exp

(

t0 + tstim − t

τdown

)

; (S.4c)

t0 is the stimulus onset time; τX are time constants (where X is one of up,

decay, or down); tstim is the duration of stimulation (where tstim ≥ τup);

s∗up is the peak value of sup(t); erf is the Gauss error function:

erf (x) =
2√
π

∫ x

0

exp
(

−t2
)

dt; (S.5)

s∗ is the steady state value of the stimulus; and send, the stimulus value at

tend, is given by sdecay(tend).

To fit model predictions of tissue PO2 to experimental measurements,

the optimization algorithm adjusted the three stimulus time constants (τup,

τdown, and τdecay) and two stimulus amplitudes (s∗up, s
∗), as described in the

Methods section in the main text (Experimental Design subsection).

Calculating Mean Tissue PO2

This section describes how the model calculates PO2 in tissue, and provides

the basis for calculating the value of baseline tissue PO2 (see below). Al-

though using an assumed or estimated PO2 value would partially remove

the need for this additional modelling, we believe that the equations in this

section represent a more rigorous approach. As a consequence, the predic-

tions in the main text do not depend on the details of the following model,

but do rely on the baseline PO2 value it produces.

While including these equations adds an additional layer of complexity,

there are a number of advantages of doing so. For example, this technique

makes it possible to estimate baseline tissue PO2 using the radial measure-

ments of tissue PO2 made by Vovenko (1999), whose vascular PO2 mea-
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surements define the model’s reference state (see below). In addition, this

approach allows us to predict the dynamic PO2 of tissue with a baseline PO2

value different to the average, as discussed below. For brevity, the notation

used for most of this section is different to that of the main text.

Oxygen transport in an annular slice of tissue of radius R2 surrounding

a blood vessel of radius R1 can be described by the differential equation

1

r

d

dr

(

r
dp

dr

)

=
m

D
(S.6)

where r is the radial co-ordinate, p(r) is the oxygen partial pressure, and the

constants m andD are the tissue consumption rate and diffusivity of oxygen,

respectively. Solving this equation subject to the boundary conditions

p(R1) = pb;
dp

dr

∣

∣

∣

r=R2

= 0 (S.7)

leads to

p(r) = pb +
m

4D

(

r2 −R2
1

)

−
mR2

2

2D
ln

r

R1

, (S.8)

where the constant pb is the PO2 in the blood vessel.

Making the substitution k = m
D and applying the additional constraint

p(R2) = pt0, where pt0 is the lowest partial pressure in the tissue, Equation

(S.8) becomes

p(r) = pb +
1

4
k
(

r2 −R2
1

)

−
1

2
kR2

2 ln
r

R1

, (S.9)

where

k = (pt0 − pb)/α (S.10)

and

α =
1

4

(

R2
2 −R2

1

)

−
1

2
R2

2 ln
R2

R1

. (S.11)

The average PO2 in the tissue area, p̄, can be calculated by substituting
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Equation (S.9) into the integral

p̄ =

∫ R2

R1
rp(r)dr

∫ R2

R1
rdr

, (S.12)

and solving analytically (by parts) to obtain

p̄ = pb +
1

8
k
R4

2 −R4
1

R2
2
−R2

1

+
1

4
k
(

R2
2 −R2

1

)

−
1

2
k

R4
2

R2
2
−R2

1

ln
R2

R1

. (S.13)

Equation (S.13) can also be written as a weighted sum of the two boundary

partial pressures, such that

p̄ = wbpb + (1− wb)pt0 (S.14)

where wb, the weight applied to the oxygen partial pressure in the blood, is

given by

wb = 1−
R4

2 −R4
1

8α
(

R2
2
−R2

1

) −
1

4α

(

R2
2 −R2

1

)

+
R4

2

2α
(

R2
2
−R2

1

) ln
R2

R1

. (S.15)

For a tissue compartment made up of three of the annuli described by the

preceding equations, the average oxygen partial pressure, p̄t, can be written

as a weighted sum of the individual compartment averages such that

p̄t =

3
∑

i=1

w′

ip̄i, (S.16)

where w′

i is the weight applied to compartment i (weights must sum to 1),

and p̄i is the average partial pressure, which is calculated from Equation

(S.14). We used the baseline vascular volume fractions, v∗i , as compartment

weights (w′

i). For simplicity, we assumed constant radii (R1 and R2) in

the different vascular compartments. On the basis of recent evidence from

two-photon microscopy (Devor et al., 2011), we assumed the minimum PO2

was the same for tissue surrounding each of the vascular compartments. As

such, Equation (S.16) can also be written in terms of the vascular PO2 and
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the minimum PO2 in the tissue so

p̄t = wt0pt0 +

3
∑

i=1

wipbi, (S.17)

where wi = w′

iwb, wt0 = 1−
∑

3

i=1
wi, and pbi are the boundary partial pres-

sures in the three vascular (blood) compartments. Using the same notation

as the main text, Equation (S.17) would be written as

p̄O2 ,t(t) = wt0pO2,t0(t) +
3

∑

i=1

wip̄O2 ,i(t) (S.18)

Parameter Selection and Solution Procedure

This section gives more detail on the choice of parameters used in the model,

and how the equations were solved to produce the predictions in the results

section. Equation numbers not prefaced by ‘S’ refer to equations in the main

text. Supplementary Table 1 summarizes the parameter values, with more

detail given below.

In brief, the model was solved in three stages: 1) calculating the full

set of parameters in a reference state; 2) adjusting the baseline parameters

to account for experimental conditions different from the reference state

(discussed in the next subsection); and 3) numerically solving the equations

to produce the dynamic results. We chose to use the conditions observed by

Vovenko (1999) as a reference state for the model, since these data provided

nearly all of the measurements required to parametrize the model.

To determine the dimensionless tissue volume, we calculated the mean

vascular volume fraction (2.87%) from data reported by a range of groups

with different methodologies (An and Lin, 2002; Ito et al., 2005, 2001; Kim

et al., 2007; Lauwers et al., 2008; Reichold et al., 2009; Weber et al., 2008).

Since we scale volume terms by the total baseline vascular volume (Barrett

et al., 2012), this means the dimensionless tissue volume, vt, becomes 34.8.

First, we set [R1, R2] = [15, 135] µm on the basis of recent measurements

of radial PO2 in tissue (Devor et al., 2011), and included modifications to
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these parameters in the sensitivity analysis. Next, to determine the baseline

value for the minimum tissue PO2, pO2,t0
∗, we fit the model described in

Equation (S.9) to radial measurements of tissue PO2 in all three vascular

compartments (Vovenko, 1999). Then, we used measurements of vascular

PO2 (Vovenko, 1999) to calculate baseline O2 concentrations (cO2,i,i+1
∗)

from Equation (7), baseline O2 amounts (nO2,i,i+1
∗) and the leak concen-

tration (cO2,l) from Equation (3), and average vascular PO2 (p̄O2 ,i
∗) from

Equation (6). This makes it possible to calculate the average tissue PO2

(p̄O2 ,t
∗) from Equation (S.18). The baseline oxygen consumption, cmr∗O2

,

was calculated from Equation (2).

We identified a feasible range of values for the shunt conduction coeffi-

cient, gs, by requiring all conduction coefficients to be greater than zero to

ensure that O2 diffuses down its partial pressure gradient. The steady state

forms of equations (1a) and (1c) then yield two inequalities that define the

feasible range for gs. Initial simulations (data not shown) suggested that

the dynamics of PO2 were not particularly sensitive to the value of gs, so

we defined gs as the mean of the feasible range, but included values at the

top and bottom 10% of the range in the sensitivity analysis. The remaining

conduction coefficients were determined by solving Equations (1) at steady

state. At this point, the model is fully parametrized in the reference state.

Adjusting Baseline Conditions

This section describes the process of adjusting the parameters from the refer-

ence state conditions to the conditions under which the other data sets were

obtained. All of the parameters adjusted under these different experimental

conditions are listed in Supplementary Table 2.

To adjust the model from the reference state to the conditions reported

by Masamoto et al. (2008), we changed only the value for femoral artery PO2

(pO2,0) as no other vascular PO2 measurements were reported. As such, we

assumed that baseline CMRO2 (cmr∗O2
) and the O2 conduction coefficients

(g and gs) were unchanged from the reference state. This means the steady

state version of Equations (1) and (2) can be solved directly for the new

6



baseline conditions.

For the simulations of data from Yaseen et al. (2011) and Vazquez

et al. (2010), we adjusted the femoral artery PO2 (pO2,0), large venous PO2

(pO2

∗

,3,4), and average venous PO2 (p̄O2 ,3
∗) to match the reported measure-

ments (see Table 2 in the main text). For all simulations, the concentration

of oxygen ‘leaked’ between the femoral artery and large cerebral arteries,

cO2,l , remained constant. Adding the steady state form of Equations (1)

and (2), the adjusted baseline CMRO2 is obtained such that

cmr∗O2
= f∗

(

cO2

∗

,0,1 − cO2

∗

,3,4

)

, (S.19)

where f∗ is the baseline CBF, and cO2

∗

,0,1 and cO2

∗

,3,4 are the baseline in-

put arterial and output venous oxygen concentrations calculated from the

imposed PO2 values.

In both cases, the baseline state is underdetermined: the steady state

form of Equations (1) and (2) provide 3 equations to determine 6 unknowns

(g, gs, pO2

∗

,1,2 and p̄O2 ,t
∗). Therefore, it was necessary to make one or more

assumptions about the baseline conditions. We describe the particular as-

sumption used in more detail below, but during development we tested a

number of plausible assumptions, which gave mostly similar results since

the input (femoral artery PO2) and output (large venous PO2) values were

defined by experimental data.

To determine the O2 conduction coefficients we assumed that, for the

same femoral artery PO2, the proportion of CMRO2 supplied by each com-

partment at baseline would be constant between different experimental con-

ditions. For example, for the conditions reported by Vazquez et al. (2010),

we assumed that the steady state fraction of total oxygen flux supplied by

each vascular compartment would be the same as those under the reference

state conditions, if the femoral artery PO2 was reduced to that of the refer-

ence state (Vovenko, 1999) while maintaining the newly-calculated CMRO2.

Since CMRO2 remains constant between these two conditions, the out-

put venous O2 concentration under the reference femoral artery PO2 con-

ditions, ćO2

∗

,3,4, can be calculated from a modified form of Equation (S.19)
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as

ćO2

∗

,3,4 = ćO2

∗

,0,1 − cmr∗O2
/f∗. (S.20)

Then, ṕO2

∗

,3,4 can be calculated from ćO2

∗

,3,4 using Equation (7).

This leaves a system of 6 equations (the previously mentioned 3, plus

the steady state form of Equations (1) and (2) under the reference femoral

artery PO2 conditions) and 9 unknowns (the previously mentioned 6, plus

ṕO2

∗

,1,2, ṕO2

∗

,2,3, and ´̄pO2

∗

,t). The final 3 equations come from the assumption

of constant fractional O2 supply from each compartment, such that

gi

(

´̄pO2

∗

,i − ´̄pO2

∗

,t

)

cmr∗O2

= kO2,i, (S.21)

where the constant kO2,i is the proportion of CMRO2 supplied from the com-

partment, and is calculated from the reference conditions. This assumption

requires that the shunt conduction coefficient (gs) be free to deviate from

the mean of the feasible range; however, the value was determined to be

within ∼ 10% of the mean.

Finally, with the adjusted parameters fully specified, the four ordinary

differential equations specified in Equations (1) and (2) were solved numer-

ically to produce the dynamic predictions.

Adjusting Tissue PO2 Predictions

The methods section in the main text outlines the principle behind adjusting

the tissue PO2 predictions and the rationale for doing so. However, in

practice there are five steps required to produce these additional predictions.

First, the mean baseline tissue PO2, p̄O2 ,t
∗, is calculated by adjusting

the reference state for different experimental conditions, as described in the

previous section. Second, we choose new weights, w⋆
x, to satisfy the equation

pO2,
⋆
t = w⋆

t0pO2,t0
∗ +

3
∑

i=1

w⋆
i p̄O2 ,i

∗, (S.22)

where pO2,
⋆
t is the measured tissue PO2 at baseline. The new weights must
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sum to one, but since Equation (S.22) is still underconstrained, the new

weights are calculated by minimising the change from the original weights

(i.e. w⋆
x − wx).

Third, the dynamic mean tissue PO2, p̄O2 ,t(t), is calculated by solving

the ordinary differential equations in the main text, as discussed in the

previous section. Fourth, the minimum tissue PO2, pO2,t0(t), is calculated

by rearranging Equation (S.18). Finally the additional dynamic tissue PO2

prediction is calculated from

pO2,
⋆
t (t) = w⋆

t0pO2,t0(t) +

3
∑

i=1

w⋆
i p̄O2 ,i(t). (S.23)

In this way it is possible to estimate the dynamic PO2 of tissue with any

baseline value between the minimum tissue value, pO2,t0
∗, and the maximum

vascular (arterial) value, p̄O2 ,1
∗.

Steps three, four, and five are repeated during each iteration of the

optimisation in order to determine the CMRO2 parameters that generate

the best fit between Equation (S.23) and the experimental observations.

However, the new weights, w⋆
x, are only calculated once to match the model-

predicted and measured baseline tissue PO2, and are not used as fitting

parameters in the dynamic simulations.
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Supplementary Table 1: List of model parameters in the reference state. Parameters with three values represent
x = [x1, x2, x3]. Parameters with lower case symbols are dimensionless (see the Supplementary Methods), while
parameters with upper case symbols are not and are given with appropriate units.

Symbol Description Value Reference

CO2,l O2 conc. leakage 0.116 mM See Supplementary Methods
CO2,max Hill equation max. O2 conc. 9.26 mM Cartheuser (1993)
prop(gs) Proportion of shunt feasible range 50% See Supplementary Methods
h Hill equation exponent 2.6 Cartheuser (1993)
P50 Hill equation O2 P50 36 mmHg Cartheuser (1993)
∆PSNP SNP-induced pressure drop 50% Masamoto et al. (2008)
[R1, R2] Krogh cylinder radii [15, 135] µm See Supplementary Methods
v∗ Baseline vascular volume fraction [0.29, 0.44, 0.27] Barrett et al. (2012)
vt Tissue volume fraction 34.8 See Supplementary Methods
wb Vascular PO2 weight 0.133 See Supplementary Methods
w′

i Vascular compartment weight v∗ See Supplementary Methods
σO2

Tissue O2 solubility coefficient 1.46 µM/mmHg Dash and Bassingthwaighte (2004)

12



Supplementary Table 2: List of adjusted model parameters for simulations of experimental conditions (see Table
2 in the main text). Values give by ‘-’ are the same as the reference state (Vovenko).

Symbol Description Unit
Value for simulations of:

Vovenko (1999) Yaseen (2011) Masamoto (2008) Vazquez (2010)

PO2

∗

,0,1 Baseline input art. PO2 mmHg 81.2 99.4 103.7 116.7

PO2

∗

,1,2 Baseline art.–cap. PO2 mmHg 59.7 68.0 62.3 55.7

PO2

∗

,2,3 Baseline cap.–vei. PO2 mmHg 39.6 50.1 41.1 35.3

PO2

∗

,3,4 Baseline output vei. PO2 mmHg 41.3 54.4 44.6 40.3

P̄O2 ,t
∗ Mean baseline tis. PO2 mmHg 22.4 38.1 25.3 22.8

cmr∗O2
Baseline CMRO2 none 0.336 0.208 - 0.423

g1 Art. O2 conduction coef. none 0.075 0.059 - 0.096
g2 Cap. O2 conduction coef. none 0.790 0.619 - 1.124
g3 Vei. O2 conduction coef. none 0.201 0.155 - 0.309
gs Shunt O2 conduction coef. none 0.207 0.198 - 0.263
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Supplementary Table 3: List of parameters modified in the sensitivity anal-
ysis and the amount of perturbation imposed. For parameters with multiple
values (e.g. pO2

∗), each value was perturbed individually. Perturbations to
the reference conditions also affect simulations under modified experimental
conditions.

Data Set Symbol Perturbation

Reference

pO2

∗ ±10%
[R1, R2] ±10%
prop(gs) ±40%
v∗ ±10%
vt ±10%

Masamoto et al. (2008)
∆PSNP ±10%
pO2

∗

,0 ±10%

Vazquez et al. (2010)
pO2

∗

,0 ±10%

pO2

∗

,3,4 ±5%

p̄O2

∗

,3 ±5%
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Supplementary Figure 1: Model predictions (with additional mechanisms)
of data from Masamoto et al. (2008) in response to 10s electrical forepaw
stimulation. Format as per Figure 3 in the main text.
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Supplementary Figure 2: Model predictions (with additional mechanisms)
of data from Vazquez et al. (2010) in response to 20s electrical forepaw
stimulation. Format as per Figure 4 in the main text.
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